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Abstract 

 

Achieving automatic 3D reconstruction for indoor scenes is extremely useful in the field of scene understanding. Building information 

modeling (BIM) models are essential for lowering project costs, assisting in building planning and renovations, as well as improving 

building management efficiency. However, nearly all current available scan-to-BIM approaches employ manual or semi-automatic 

methods. These approaches concentrate solely on significant structured objects, neglecting other unstructured elements such as 

furniture. The limitation arises from challenges in modeling incomplete point clouds of obstructed objects and capturing indoor scene 

details. Therefore, this research introduces an innovative and effective reconstruction framework based on deep learning semantic 

segmentation and model-driven techniques to address these limitations. The proposed framework utilizes wall segment recognition, 

feature extraction, opening detection, and automatic modeling to reconstruct 3D structured models of point clouds with different room 

layouts in both Manhattan and non-Manhattan architectures. Moreover, it provides 3D BIM models of actual unstructured elements by 

detecting objects, completing point clouds, establishing bounding boxes, determining type and orientation, and automatically 

generating 3D BIM models with a parametric algorithm implemented into the Revit software. We evaluated this framework using 

publicly available and locally generated point cloud datasets with varying furniture combinations and layout complexity. The results 

demonstrate the proposed framework's efficiency in reconstructing structured indoor elements, exhibiting completeness and geometric 

accuracy, and achieving precision and recall values greater than 98%. Furthermore, the generated unstructured 3D BIM models keep 

essential real-scene characteristics such as geometry, spatial locations, numerical aspects, various shapes, and orientations compared 

to literature methods. 

 

1. Introduction 

Nowadays, 3D semantic models are valuable and practical for 

augmented and virtual reality (Xiao and Furukawa, 2014), 

autonomous interior navigation (Fang et al., 2022), and building 

maintenance and repairs  (Chen and Tang, 2019). However, 

automatic reconstruction of corresponding 3D shapes and 

semantic information is hindered by the complexity of indoor 

surroundings with their inherent point cloud noise and 

incompleteness, especially for unstructured indoor objects like 

furniture (Kang et al., 2020). The demand for as-built building 

information modeling (AB-BIM) models is growing throughout 

the architecture, engineering, and construction fields. These 

models are essential for lowering project failure costs since they 

can be used as guides for planning and modifications. BIM is 

also extensively utilized in asset management and forms the 

foundation for assessing existing buildings (Bassier and 

Vergauwen, 2020). When initial designs for older or converted 

buildings are unavailable, scan-to-BIM, which turns laser-

scanned point clouds into BIM models, is particularly helpful for 

producing AB-BIM models (Gankhuyag and Han, 2021).  

 

BIM parametric models use geometric shapes and their 

adjustable features to operate as digital representations of 

designs. In the maintenance and operation phases, these models 

contain geometry and characteristics necessary for tasks like 

replacements, repairs, and performance evaluations (Chen and 

Tang, 2019). The scan-to-BIM process is usually labor-intensive 

and costly, requiring manual design efforts for a variety of scene 

elements. This process's technological and financial constraints 

prevent AB-BIM models from being widely improved. Recent 

work has focused on automating the scan-to-BIM process to 

alleviate the difficulties associated with AB-BIM modeling 

(Yang et al., 2020). Semantic segmentation accuracy in point 

clouds is enhanced for reconstruction using deep learning 

approaches. However, prior approaches give priority to necessary 

structural elements such as floors, walls, and ceilings (Romero-

Jarén and Arranz, 2021) (Tang et al., 2022); separate modeling 

efforts are still required for various unstructured indoor items, 

such as chairs and tables. 

Despite significant advances in the field, numerous issues persist 

in the scan-to-BIM reconstruction of indoor elements. Limited 

automation, difficulties obtaining all indoor features, and 

difficulty modeling incomplete point clouds due to scanning 

obstructions are among these problems. Current techniques do 

not effectively model structural apertures and neighboring items 

of the same class. They also have trouble taking into account the 

orientation of indoor elements and managing a variety of shapes 

within the same class. To overcome these challenges, we propose 

a new and efficient scan-to-BIM framework using deep learning 

algorithms and raw point cloud data. This framework automates 

the creation of 3D models for both structured and unstructured 

indoor features, aiming for parametric indoor scene 

representations. For structured elements like walls, doors, and 

windows, we present a method to accurately reconstruct 3D 

models for various room layouts, either Manhattan or non-

Manhattan structures. We develop a robust workflow for 

unstructured elements to reconstruct 3D models, even with 

incomplete 3D point cloud information. This method also uses a 

parametric algorithm in the Revit platform to automatically 

generate BIM models, ensuring the models retain essential real-

scene characteristics.  

This paper is structured as follows: We start with a review of 

previous studies on indoor unstructured object modeling. Then, 

we present our proposed framework's methodology and discuss 

each stage in detail. Finally, we present the experiment design as 

well as the results and conclude with suggestions for future 

research. 
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2. Literature Review 

2.1 Semantic Geometry-Based Approaches 

The semantic geometry-based approach targets 3D geometry 

recovery of indoor objects by incorporating semantic features to 

improve modeling accuracy for high-level applications. It 

efficiently provides more straightforward and more meaningful 

representations. The study of (Shao et al., 2012) proposed a semi-

automatic technique for modeling interior settings using sparse 

Kinect data. During RGB-D image segmentation, users label 

regions, and an algorithm arranges objects to recreate the scene. 

However, introducing new scenes or items not in the database 

may lead to inaccurate results. 

Additionally, this approach involves user assistance in object 

segmentation. The method of (Nan et al., 2012) used a technique 

that combines classification with region-growing segmentation 

in laser scans to identify and label unique point clouds. 

Classification confidence is increased by progressively 

identifying individual items. Next, a deform-to-fit technique is 

used to customize 3D models using training data. Nevertheless, 

their method needs high-quality scans to produce realistic object-

based models and precise scene segmentation. It also focuses on 

creating non-parametric 3D models.  

 

The research of (Kim et al., 2012) proposed a two-stage 

approach: an offline pre-scanning step for each target object to 

search for stable primitives, followed by an online modeling step 

to segment the scene, fit segments with primitives, and match 

repeated objects hierarchically. Nevertheless, they haven't 

reconstructed structured components or provided BIM models. 

Difficulties include incomplete data that results in identification 

errors and preliminary segmentation constraints that cause 

problems with grouping or splitting, creating a recovery 

challenge. The framework of (Poux et al., 2018) presented an 

integrated technique for 3D geometric semantics reconstruction 

using a part-to-whole model. The method examines 

characteristics, object relationships, and contextual data from 3D 

furniture images stored in the Model-Net10 library. However, no 

automatic 3D BIM models are available, and point clouds are 

clustered using voxels, which may cause problems with linked 

clusters. Rather than using raw measurements, their approach 

works directly with segmented, not raw point clouds. 

 

2.2 Deep Learning-Based Approaches 

Deep learning methods excel in 3D object model reconstruction 

compared to the semantic geometry-based approach. They 

independently learn complex features, offer a deeper semantic 

understanding, and efficiently handle large-scale point cloud 

datasets (Bapat et al., 2023). Some studies focus on non-

structural components (e.g., mechanical and electrical 

components), and recent reconstruction efforts in deep learning 

approaches are starting to include indoor object elements  

(Kufuor et al., 2021). The reference of (Park et al., 2022) 

presented a technique for indoor object-based point-net deep 

learning-based 3D model reconstruction. However, their 

accomplished models need human assistance to model the 

opening elements. Since they use a density-based clustering 

approach, it is challenging to identify closed class points 

independently. This method cannot consider different shapes of 

the same class and object's orientation. 

 

The study of (Wang et al., 2022) presented a primitive-based 

reconstruction technique for indoor object retrieval that makes 

use of semantic segmentation classes and a model library. 

Nevertheless, neither automatically generated nor manually 

generated 3D BIM models were provided. Furthermore, they 

overlooked incorporating structural opening elements in 3D 

models and using Euclidean clustering for point clouds has 

limitations with connected clusters. The work of (Kim et al., 

2023) used semantic segmentation for geometry from point 

clouds and materials from panorama images to perform an 

automated building object reconstruction. However, this method 

fell short when reconstructing the structural building elements. 

Furthermore, consideration of the orientation of indoor objects is 

not included. Moreover, it is hard to differentiate between 

independent objects and consider different shapes of the same 

class. The research of (Mahmoud et al., 2024) proposed a system 

for reconstructing indoor point clouds and creating automatic 

BIM models for structured and unstructured features. However, 

their solution has limitations regarding its ability to handle 

unstructured features. It is based on bounding box modeling from 

density clustering, which struggles with connected clusters. 

Furthermore, their solution ignores objects of the same class with 

different shapes and requires user intervention to modify element 

orientations in BIM models. 

 

This research introduces an innovative scan-to-BIM 

reconstruction framework based on deep learning to address the 

mentioned limitations. The proposed framework enables the 

automatic generation of 3D models for structured and 

unstructured indoor elements, offering parametric 3D BIM 

models of indoor scenes. 

 

3. Methodology 

The proposed overall 3D reconstruction framework, illustrated in 

Figure 1, comprises three primary stages: point cloud 

segmentation, structured element reconstruction, and 

unstructured element reconstruction. The following subsections 

elaborate on these three stages. 

 
Figure 1. The proposed 3D reconstruction framework. 

 

3.1 Point Clouds Segmentation 

Point clouds undergo preprocessing and semantic segmentation 

in the outlined framework's first phase. 

 

3.1.1 Preprocessing of Input Point Clouds: Building point 

clouds are often dense and extensive, making direct use of raw 

data impractical due to computational errors and time constraints. 

Subsampling and filtering of point clouds are essential to address 

these challenges. The linear distribution of plane projections 

within the building remains unaffected by subsampling, 

enhancing computational performance. Each voxel, produced by 

dividing the domain into equal segments with a fixed grid 

spacing, calculates the mean of all the points. A statistical 

filtering algorithm is applied to deal with outliers, eliminating 

points deviating farther from their neighbors than the point 

cloud's average ("Outlier removal," 2023). 
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3.1.2 Semantic Segmentation-Based Deep Learning 

Model: Semantic segmentation for 3D point clouds is essential 

for reconstructing parametric indoor environments because it 

assigns semantic names to components inside the point clouds. 

In (Hu et al., 2021), a neural network with an encoding-decoding 

technique serves as the basis for a large-scale semantic 

segmentation model. This model uses the S3DIS dataset 
("S3DIS," 2023), which has 13 semantic classes, including 

space-forming (wall, ceiling, floor, column, beam, door, and 

window), space-occupying (table, chair, sofa, bookshelf, board), 

and clutter classes. The segmentation results help to implement 

the succeeding steps of the reconstruction framework. 

 

3.2 Workflow of Structured Elements Reconstruction 

The second stage proficiently identifies structured components 

within indoor buildings through point cloud analysis, as shown 

in Figure 1. Subsequent sections detail the steps for 

reconstructing these structured elements in 3D. 

 

3.2.1    Room Boundary Segment Detection: This work detects 

Room boundary segments using subsampled points from the wall 

and column classes. The robust Random Sampling and 

Consensus (RANSAC) algorithm is used for this task. It 

iteratively estimates each detected surface's inliers, outliers, and 

plane parameters based on an input of predetermined 

thresholds. Additional steps employ the principal component 

analysis algorithm to separate inlier points and list line segments. 

Figure 2 shows an example of room line segment detection. 

 
3.2.2 Segments Feature Extraction: Finding intersecting 

points that form the walls for modeling is the process of line 

feature extraction. On the other hand, it is not always accurate to 

sort detected lines according to their orientation or angle, which 

can result in inaccurate corner points. We introduce a novel line-

sorting strategy for different layouts to address this issue. There 

are further steps in this process. It starts with the detected lines' 

endpoints and concludes that the lowest left line is the first line. 

Following that, parallel lines are removed, and the distances 

between the centers of intersecting lines and the current line are 

calculated. The line with the shortest distance is then picked as 

the following line, which is removed from the list, and the 

procedure is continued until all lines have been handled. This 

systematic approach groups lines based on spatial relationships 

and lengths, allowing for accurate room corner detection. This 

method facilitates the extraction of corner locations where lines 

consecutive intersect, as illustrated in Figure 2. 

 
Figure 2. An illustration for wall segment detection with 

feature extraction 

 

3.2.3 Wall Opening Detection: Our four-step approach 

reliably detects and localizes building openings using 3D point 

clouds. Firstly, the density-based spatial clustering of 

applications with noise (DBSCAN) algorithm is used to extract 

and cluster door and window classes. Erroneous segmented 

clusters are eliminated using statistical analysis. Next, possible 

opening clusters are found by applying certain conditions. Next, 

using point cloud coordinates, the line identification technique 

retrieves critical characteristics for each cluster, such as its 

height, length, and center. This information is essential for the 

last stage, when opening points are fine-tuned to guarantee 

precise alignment with the underlying wall segment lines. The 

steps involved in refining are finding the closest line, projecting 

the opening points onto it, and exporting projected coordinates 

for modeling. In BIM technology, this refinement is vital for 

considering the spatial relationship of these elements. 

 

3.2.4 Automatic 3D Modeling of Structured Elements: 

Parametric models for 3D BIM representations are generated by 

the automatic 3D modeling of structural elements. Information 

regarding opening points and room corners is exported for 

automated modeling. In Revit, dynamic visual programming 

replaces manual element manufacturing and streamlines the 

process while increasing efficiency. This algorithm's workflow is 

composed of groups, links, and nodes. In order to automatically 

create the wall, floor, ceiling, and opening components, input 

data is taken from a file, assigned to distinct coordinates, and 

utilized. Suitable creator nodes and Python scripts are then 

applied to model and edit structured elements. An important 

aspect missing from many earlier modeling approaches is the 

algorithm's ability to modify element dimensions based on 

processed dimensions for structured and unstructured elements. 

The results section presents the 3D BIM models of all aspects for 

different datasets.  

 

3.3 Workflow of Unstructured Elements Reconstruction 

In the third stage of the proposed framework, unstructured 

components within indoor buildings are reconstructed using 

point cloud analysis.  

 

Extracting and Clustering of Indoor Classes: Indoor classes 

are retrieved and clustered for the individual item modeling in 

indoor unstructured element modeling. Based on our semantic 

segmentation results from the S3DIS dataset, these classes 

include bookcases, boards, sofas, tables, and chairs. A 

density clustering technique of DBSCAN has been attempted; 

however, it suffers from related items and needs parameter 

changes. In order to solve this, we propose applying the TR3D 

object detection deep learning network (Rukhovich et al., 2023). 

This network produces reliable results by giving indoor items' 

bounding box dimensions, which are then used to extract 

the point clouds. 

 

3.3.2    Point Cloud Completion and Bounding Boxes 

Creation: Point cloud completion fills in the empty regions or 

gaps in a 3D point cloud that are brought about by occlusions, 

random features, and sensor limitations to produce a better and 

complete representation of an object or scene. In order to 

overcome this issue in point clouds, we used Snowflake-Net 

(Xiang et al., 2023), which enhances the incomplete point clouds 

by encoding and decoding layer structures. This neural network 

makes use of a transformer architecture, which is renowned for 

its capacity to use self-attention techniques to identify 

complicated patterns in sequential input. The three primary 

sections are feature extraction, seed generation, and point 

creation modules. For the creation of 3D models, obtaining the 
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object positions and dimensions from the point cloud clusters is 

crucial. This can be achieved by using the orthogonal bounding 

boxes to the three principal axes. Spatial relationships and 

element connections provide essential benefits in BIM 

technology. Modeled window and door elements are connected 

to the wall element through Revit modeling, and walls are 

attached to floors and ceilings. Maintaining spatial connections 

with chairs, sofas, bookcases, and tables, the floor cluster serves 

as the host element. Precise bounding box measurements are 

required for indoor elements modeling. For further analysis, 

these bounding boxes establish each cluster's location and 

measurements (height, width, and length). 

 

3.3.1 Point Cloud Set of Shape Functions: Semantic 

labeling quickly identifies the model type, but within the same 

class, such as tables, there are various shape variations, like 

dining tables or office tables. Feature matching compares distinct 

features from point clouds to determine the most similar indoor 

point cloud object. The set of shape function (SSF) descriptor is 

adequate for this, capturing unique shape characteristics. It 

comprises ten sets of 64-dimensional shape-function histograms 

(total dimensionality: 640) (Wohlkinger and Vincze, 2011), 

analyzing shape characteristics like angles, areas, and distances. 

Where S is the similarity, N is the number of dimensions, Cik is 

the target point cloud SSF histogram values, and Cjk is the model 

point cloud SSF histogram values.  

 

 
Figure 3. Set of shape function histograms for target and 

model point clouds. 
 

This step aims to find the most similar indoor object point cloud 

for each cluster target file. We have created a model library using 

the Model-Net dataset (Wu et al., 2015) to categorize each point 

cloud cluster type, aligning with those from the S3DIS dataset in 

our framework. This library contains various shapes representing 

indoor classes, such as tables, sofas, chairs, and bookcases. Each 

indoor class includes tens of point cloud shapes, which are 

subsampled before calculating SSF histogram descriptors for 

comparison with the new target point cloud to determine its type. 

Figure 3 shows differences in SSF descriptor histograms 

between model and target point clouds. Various similarity 

metrics distinguish between the target and models, extracting the 

most similar model for each target point cloud. We used the 

Euclidean distance metric to compute the similarity between the 

histograms of the target and each library chair model. The most 

similar model is the one with the smallest Euclidean distance. 

Equation 1 measures the similarity index between target and 

library point cloud models of the same class. 

 

3.3.2 Point Cloud Matching: Point cloud matching aligns 

two-point clouds in 3D space to find the optimal transformation 

for alignment. The target point cloud is registered to the model 

most similar to the previous step. For each target and its 

corresponding model, a five-step matching algorithm determines 

their orientation. Subsampling is the first step in this approach, 

which lowers processing costs and preserves essential points in 

both the target and model point clouds. Scale adjustment is then 

performed by computing size ratios along the bounding box's 

principal directions to align the model with the target. Then, to 

streamline the registration procedure, the translation is computed 

to align the centers of the target and model point clouds.  

 

The following steps involve applying initial and final matching. 

The RANSAC technique is used for robust estimation, coarsely 

registering based on priors, and choosing the candidate with the 

lowest registration error. The fast Point Feature Histogram 

(FPFH) algorithm defines local point cloud shapes for initial 

matching. Using the iterative closest point (ICP) approach, we 

ensure fine registration in the final matching step by fine-tuning 

the coarse registration produced by initial matching. For 

vertically oriented indoor furniture alignment, the matching is 

limited to revolve mainly around the Z-axis. ICP reduces the sum 

of squared alignment errors between corresponding points (target 

(Q) and model (P)) using translation and rotation matrices 

described in Equations 2. 

Where RMSE is the matching room mean squared error, pi is the 

reference point cloud, qi is the corresponding target point cloud, 

t is the translation vector, R is the rotation matrix, and Np is the 

number of points. 

 

3.3.3 Automatic 3D Modeling of Unstructured Elements: 

We combine information from previous steps: point cloud 

coordinates, dimensions, model type, and orientation for each 

object to perform automatic parametric modeling of indoor point 

cloud data. For 3D BIM modeling, we have established a BIM 

object library to enhance indoor scene representation. We then 

align these BIM files' characteristics for accuracy with the point 

cloud files in the SSF library. A Dynamo algorithm is 

implemented during the development of the BIM model. The 

process involves importing three-dimensional input data and 

assigning coordinates, dimensions, types, and orientations. 

Standardized items from the BIM library are then fitted to model 

unstructured components, with dimensions and orientation 

automatically modified to achieve the desired outcome. 

 

4. Results And Discussion 

4.1 Experimental Dataset 

Two datasets—locally acquired and publicly accessible—were 

used to assess the effectiveness and precision of the suggested 

framework. These datasets showcase a variety of furniture 

configurations and different room layouts. The research dataset 

("UZH," 2023) is the source of the publicly accessible datasets, 

as depicted in Figure 4 (a). Using the Nav-Vis M6 mobile 3D 

scanner, the locally collected dataset was observed on the campus 

of Hong Kong Polytechnic University. This dataset represents a 

lecture room, as shown in Figure 4 (b). 

𝑆(𝐶𝑖 , 𝐶𝑗) = √∑(𝐶𝑖𝑘 − 𝐶𝑗𝑘)
2

𝑁

𝐾=1

 (1)  

𝑅𝑀𝑆𝐸(𝑡, 𝑅) = √
1

𝑁𝑝
∗ ∑‖𝑝𝑖 − (𝑅 ∗ 𝑞𝑖

 + 𝑡)‖
2

𝑁𝑝

𝑖=1

 (2) 
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(a) 

 
(b) 

Figure 4. The datasets utilized to assess our methodology: (a) 

publicly accessible dataset (dataset 1) and (b) locally acquired 

dataset (dataset 2). 

 

4.2 Semantic Segmentation Results 

 
(a) 

 
(b) 

 
Figure 5. The results of the semantic segmentation: (a) dataset 1 

and (b) dataset 2. 

 

The first stage of our methodology is point cloud segmentation, 

which involves preprocessing and semantic segmentation. 

Initially, all data undergoes preprocessing, including filtering 

and down-sampling with specific parameters. RGB values and 

point cloud coordinates serve as input for semantic segmentation. 

Figure 5 displays semantic segmentation outcomes on publicly 

accessible and locally acquired datasets using our encoding-

decoding deep learning model. The segmentation output 

classifies semantic categories into structured (e.g., floor, ceiling, 

wall, beam, column, window, door) and unstructured (e.g., chair, 

bookcase, sofa, table, board) classes, indicating suitability for 

reconstruction purposes in both structured and unstructured 

stages. 

 

4.3 3D models Reconstruction of Structured Elements 

Our framework's second stage involves reconstructing structured 

elements utilizing room boundary segment detection, feature 

extraction, wall surface object detection, and automatic 3D 

modeling. Indoor structured classes are first determined. The 

iterative RANSAC technique is used for line detection and corner 

extraction tasks based on wall and column classes. Our sorting 

algorithm uses detected lines as input, guaranteeing that sets of 

lines are arranged logically for various layouts. The corners of 

the room are defined by subsequent corner point detection. Wall 

surface object recognition is used to identify window and door 

openings, providing dimensions and insertion center locations for 

automatic modeling. Opening refinement addresses missing the 

host element problem in BIM modeling and guarantees accurate 

3D modeling. The excellent accuracy of our opening 

identification method is validated by Figure 7, which shows the 

precise recognition of door and window elements aligned with 

actual numbers for datasets 1 and 2. Information about opening 

elements and detected room corners are gathered and exported 

for 3D modeling of structured elements.  

 

As shown in Figure 7, the last stage of reconstruction entails 

automatic 3D modeling in Revit using our Dynamo method. The 

resultant models accurately depict structural components and 

wall surface objects. Our method accommodates a wide range of 

space configurations, from simple to intricate ones. The 

generated BIM models include walls, floors, ceilings, and wall 

openings; the ceiling has been removed for clarity. These models 

show the high detection accuracy of the structured elements 

compared to real input point clouds. The structured 3D models 

were evaluated using the method outlined by the ISPRS research 

group (Khoshelham et al., 2021), which calculates precision (P) 

and recall (R). These metrics, defined in equations (3–4), provide 

a comprehensive assessment and comparison of the generated 

models against reference models. 

Precision measures the correctness of anticipated model areas by 

calculating the intersection area of accurate and reconstructed 

models over the total reconstructed area. Recall measures 

accuracy by calculating the ratio of the intersection area to the 

total actual area. Table 1 shows a complete evaluation of each 

model, including precision and recall measures. The results show 

high accuracy, precision, and recall levels greater than 98%. This 

implies a high degree of resemblance between the produced 

models and the hand-crafted reference models. 

 

 

Table 1. Evaluation of the reconstructed BIM models based on 

predicted areas. 

𝑃 =
𝐴𝑟𝑒𝑎 𝑝𝑟𝑒𝑑 𝑚𝑜𝑑𝑒𝑙  ⋂  𝐴𝑟𝑒𝑎 𝑟𝑒𝑓 𝑚𝑜𝑑𝑒𝑙

𝐴𝑟𝑒𝑎 𝑝𝑟𝑒𝑑 𝑚𝑜𝑑𝑒𝑙
 (3) 

𝑅 =
𝐴𝑟𝑒𝑎 𝑝𝑟𝑒𝑑 𝑚𝑜𝑑𝑒𝑙  ⋂  𝐴𝑟𝑒𝑎 𝑟𝑒𝑓 𝑚𝑜𝑑𝑒𝑙

𝐴𝑟𝑒𝑎 𝑟𝑒𝑓 𝑚𝑜𝑑𝑒𝑙
 (4) 

Dataset 
Intersection 

area (m2) 

Predicted  

area (m2) 

Reference  

area (m2) 
P  R 

Dataset 1 24.355 24.748 24.498 0.984 0.994 

Dataset 2 42.860 43.245 43.164 0.991 0.993 
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4.4 3D Models Reconstruction of Unstructured Elements 

The third stage involves recreating unstructured parts. This 

comprises clustering indoor classes, completing point clouds, 

generating bounding boxes, applying shape functions, matching 

orientations, and automating 3D modeling. 

 

4.4.1 Indoor Classes Extracting and Clustering Results: 

Indoor classes are extracted for unstructured element 

construction, including sofas, chairs, boards, tables, and 

bookcases. The DBSCAN algorithm is then used to cluster 

objects based on point cloud density. However, accuracy is 

hindered due to interconnected point cloud objects, as illustrated 

in Table 2, which shows the dataset clustering results. The 

detection accuracy of derived indoor classes ranges between 

60% and 100%. We use the TR3D object identification deep 

learning model to address this issue, which achieves 100% 

accuracy when extracting all indoor classes compared to density 

clustering. Applying this method guarantees that the number of 

modeled elements is identical to the actual existing elements. 

 

Table 2. Detection accuracy of extracting indoor classes using 

density clustering method for all datasets. 

 

4.4.2 Point Cloud Completion and Bounding Box 

Creation Results:  Point cloud completion is critical for filling 

in missing components of discovered clusters and introducing 

better representation shapes. Existing reconstruction algorithms 

frequently struggle with incomplete point clouds due to scanning 

obstructions and inherent point cloud features, resulting in the 

loss of crucial indoor scene elements. We use the Snowflake-Net 

deep learning model to address this issue in point cloud 

completion. Figure 6 depicts the completion outcomes for indoor 

classrooms from datasets 1 and 2. These results better affect the 

next steps of type and rotation determination. After identifying 

indoor clusters and completing the point clouds, bounding boxes 

are created to characterize each cluster's position and 

dimensions. The bounding box computations mainly consider 

the floor class to provide correct space modeling and maintain 

spatial relationships among indoor objects. 

 

  
(a) 

 
(b) 

 
Figure 6. Point cloud completion results: (a) dataset 1, and (b) 

dataset 2. 

 

4.4.3 Point Cloud Set of Shape Functions and Matching 

Results: In this stage, we use a feature matching technique, 

specifically the SSF descriptor, because of its ability to capture 

distinct shape characteristics. This approach successfully 

recognizes objects with different geometric patterns by 

generating histograms for each model in the library and target 

point cloud clusters. Using the Euclidean distance metric, we 

compute a similarity index for each cluster, keeping only the 

most similar model types for parametric BIM modeling. These 

results, which include the model type for each cluster and the 

associated selected point clouds, are then applied in the matching 

step.  

 

Each target point cloud is matched with the 

corresponding similar model during the point cloud matching 

procedure. Subsampling reduces costs and identifies significant 

points, followed by scale equivalence and translation to improve 

alignment. The matching algorithm then employs FPFH and ICP 

algorithms to provide reliable results. RMS matching errors are 

determined to assess the alignment between computed 

orientation values and the actual orientation of indoor point 

clouds, which impacts 3D modeling accuracy. 

 

4.4.4 Automatic 3D Modeling Results of Unstructured  

Elements: The final step incorporates the results of the preceding 

stages into the 3D modeling process. Input data comprises 

detected indoor cluster positions, dimensions, model types, and 

orientations. The Dynamo method in Revit is then used to 

perform automatic parametric calculations. This procedure uses 

imported information to reconstruct 3D BIM models for all 

elements, as Figure A1 in Appendix A shows. It shows a 

screenshot of the parametric BIM Dynamo method (left) and the 

automatically generated 3D BIM models (right) in the Revit 

platform, with reconstruction results for datasets 1 and 2. The 

automatically created unstructured 3D BIM models are highly 

accurate in element locations, dimensions, model types, and 

orientations, demonstrating the efficiency of our methodology. 

Tables 3 and 4 measure the determination accuracy of model 

types and orientations, respectively. Table 3 shows that all 

modeled element types were adequately identified, with just one 

chair misclassification in dataset 1. The average accuracy of type 

determination across all datasets is 100% for sofas, bookcases, 

boards, and tables and 90% for chairs. 

Dataset 
Number of extracted objects (Detected/Actual) 

Sofa Bookcase Board Table Chair 

Dataset 1 1/1 3/5 2/2 3/4 4/5 

Dataset 2 - - 1/1 8/8 29/31 
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Furthermore, Table 4 shows that the orientations of most 

modeled components are precisely acquired, resulting in 

excellent modeling accuracy. After modeling, a few items 

needed to be rotated slightly: one chair and one table for datasets 

1 and 2. The average accuracy of orientation determination 

across all datasets is 100% for sofas, bookcases, and boards and 

94% and 90% for tables and chairs, respectively. Figure 7 shows 

the refined 3D BIM models for all datasets. These models were 

slightly refined according to Tables 3 and 4, with small rotations 

and model-type adjustments made using the BIM algorithm. 

These final 3D BIM models demonstrated the high accuracy of 

our proposed reconstruction framework. 

 

 

Table 3. Automatic 3D BIM determination accuracy of object 

model type. 

 

 

Table 4. Automatic 3D BIM determination accuracy of object 

model orientation. 

 

5. Conclusion And Future Work 

BIM models are critical for lowering project execution costs and 

are utilized in planning and renovations. Traditional scan-to-

BIM systems usually employ manual or semi-automatic 

techniques that require significant time and effort. These 

approaches concentrate on modeling key structural objects while 

disregarding other indoor unstructured elements due to 

difficulties in modeling incomplete point clouds and capturing 

detailed indoor scenes. They also lack accuracy, fail to consider 

indoor objects' various shapes and orientations and use erroneous 

clustering approaches. This effort aims to automate the scan-to-

BIM process by reconstructing indoor scenes from input point 

clouds. We present an efficient framework using deep learning 

techniques to produce 3D models of structured and unstructured 

indoor elements. Our method effectively reconstructs precise 3D 

models of structured elements with varied layouts while ensuring 

the correct reconstruction of unstructured elements to preserve 

real-world properties. The proposed framework's efficiency and 

precision were assessed using publicly accessible and locally 

acquired datasets that depicted various furniture arrangements 

and layout difficulties. The results demonstrate the framework's 

ability to reconstruct indoor structured elements with 

completeness and geometric accuracy. Furthermore, the created 

3D models accurately depict real-world elements, including 

geometry, spatial locations, and different shapes for unstructured 

objects. Future work will include growing the BIM model 

library, increasing the point cloud library, and incorporating 

actual dataset samples to improve feature matching, point cloud 

registration, and overall model accuracy. 

 

 
(a) 

 
(b) 

Figure 7. Final Resulted in 3D BIM structured and unstructured 

models: (a) dataset 1 and (b) dataset 2. 
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Appendix A 

 
(a) 

 
(b) 

Figure A1. 3D BIM modeling using Dynamo Revit (left) and 

automatically created obtained models (right): (a) dataset 1 and 

(b) dataset 2. 
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