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Abstract 

Building collapse is a major cause of casualties after an earthquake, so accurately extracting building damage information is critical 

for post-earthquake assessment and rescue. Currently, most deep learning methods focus on the end-to-end detection of building 

collapse. However, in real-world earthquake scenarios, the end-to-end computational process often lacks flexibility and struggles to 

meet the requirements of rapid emergency response. To address this issue, this paper proposes a cascaded framework that combines 

pre-earthquake building extraction and post-earthquake building damage classification. The proposed framework includes two sections: 

(1) Progressive building semantic segmentation model in the joint frequency domain. This model is designed to accurately extract

buildings prior to an earthquake, with the goal of minimizing error propagation throughout the cascading process. The model addresses

the spatial similarity of buildings under complicated backgrounds, as well as the high internal heterogeneity of buildings, by utilizing

frequency domain techniques. It compensates for the shortcomings of traditional models in terms of incomplete information extraction

through the effective integration of global and local information. Finally, the model employs edge priors for edge regularization. (2)

Rapid building damage classification process. Based on the accurate building extraction results, a fast and efficient classification

process is developed. This process uses a simple and lightweight classification network to effectively extract building damage

information caused by the earthquake. The superiority of the proposed framework is validated through comparison with traditional

cascading architectures and end-to-end models. The results show that the cascading framework not only provides accurate pre-

earthquake building extraction, but also enables efficient and accurate post-earthquake damage classification, which meets the

requirements of rapid post-earthquake emergency response. This balance of accuracy and speed is essential for effective disaster

management and recovery.

1. Introduction

Earthquakes are among the world's most dangerous natural 

disasters, and building collapse has been identified as one of the 

most emblematic forms of seismic damage, leading directly to 

human casualties and significant property loss(Qu et al., 2023). 

Rapid assessment of earthquake-induced building damage is 

critical for effective emergency response and pre-rescue 

operations. The post-earthquake geological environment often 

presents significant hazards, making on-site investigations 

impractical. Therefore, the use of remote sensing data 

technology facilitates the rapid, efficient, and safe acquisition of 

information about post-earthquake building collapse(Xie et al., 

2023). The use of automated and intelligent data mining and 

analysis increases the speed of disaster response and the 

efficiency of post-earthquake damage assessment, thereby 

reducing economic losses(Zhang et al., 2023). 

In recent years, many researchers have explored the use of 

centimeter-level drone data for building damage detection. The 

ultra-high resolution of these data allows for a more detailed 

representation of building damage and provides high extraction 

accuracy. However, drone operators are often unable to reach 

hard-hit areas immediately after an earthquake, and some 

locations may be completely inaccessible. In addition, drones are 

limited in their ability to rapidly cover large areas, making them 

less effective for extensive data collection in disaster zones. As 

a result, sub-meter satellite imagery remains critical for rapid 

assessment of building collapse after an earthquake(Burke et al., 

2019). 

With the advancement of deep learning in computer vision, 

extensive applications in remote sensing building damage 

detection have emerged. Architecturally, building damage 

detection is mainly divided into end-to-end and cascaded 

frameworks. The end-to-end architecture typically employs 

Siamese-network structures that merge localization and 

classification tasks while sharing knowledge. The researchers 

used siamese networks to detect building damage(Sun et al., 

2022; Chen et al., 2022; Seyed et al., 2024). However, current 

siamese networks are difficult to train due to the large amount of 

data, require precise image registration, and lack the flexibility 

of cascaded networks that allow for pre-earthquake building 

localization and rapid post-earthquake classification. 

Cascaded architectures predominantly use object-based image 

analysis (OBIA) for segmentation. Patch-based CNNs integrated 

with OBIA primarily use superpixel segmentation to generate 

objects that are non-semantic with irregular geometric 

shapes(Zhang et al., 2018). However, semantic inconsistencies 

in building damage assessment occur in semantic and regularly 

shaped building objects, rendering traditional OBIA methods 

inapplicable. The crux lies in the fact that current OBIA only 

integrates process level with deep learning, lacking feature level 

interaction. Therefore, some researchers use used a fully 

convolutional network (FCN) for building localization (Gupta et 

al., 2019)and a patch-based CNN for damage classification 

(Qing et al., 2022a), but the limited parameterization of these 

methods fails to accurately represent building features, resulting 

in suboptimal accuracy in subsequent damage classification. All 

above, the paper presents the following innovations: 

(1) To address the issues of lacking feature-level knowledge

interaction and multi-target misclassification in OBIA cascade

networks, a framework for building collapse detection is

proposed, which utilizes the fusion of spatial and frequency

domain features. This architecture generates objects with

practical significance and refines the minimum unit of collapse

detection.

(2) To improve the pre-earthquake building extraction and

boundary accuracy, an advanced building semantic segmentation

model combining spatial and frequency domain features is

introduced. It includes the organic integration of global and local

features and a building edge regularization module to better align

segmentation results with actual building boundaries, thereby

reducing error propagation in cascaded structures.
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(3) To accurately classify building collapses after earthquakes, a 

simple and fast extraction method is proposed. The use of 

buffering strategies effectively reduces classification errors 

caused by registration issues. Simultaneously, to rapidly and 

effectively extract inter-channel deformation features, a 

lightweight, spatial-domain feature-enhanced deformable 

convolutional neural network is designed. 

2. Method 

A cascaded architecture for building collapse detection has been 

proposed, which decouples the task into pre-earthquake building 

localization and post-earthquake building collapse detection. 

This method utilizes domain feature enhancement to facilitate 

knowledge interaction between the two tasks, enabling more 

precise detection of building collapse information, and making 

the framework process more flexible The main workflow is 

illustrated in Figure 1. 

 

 
Figure 1. Overview of building collapse detection framework 

 

2.1. Building collapse detection framework 

The paper proposes a cascaded building collapse detection 

framework designed to flexibly extract building damage 

information after an earthquake. The process includes several 

key steps: 

(1) Collection of pre-earthquake remote sensing images. The 

framework starts by collecting pre-earthquake remote sensing 

images of the affected area. To ensure accurate detection of 

buildings, these images typically require sub-meter spatial 

resolution. (2) Effective preprocessing methods. Research 

suggests that overlapping cropping and sample augmentation are 

effective preprocessing methods. These techniques prepare 

images for further processing and analysis. (3) Building 

Segmentation Using spatial and frequency domain feature-

integrated building extraction Network (SFFNet). The pre-

processed samples are then fed into SFFNet, a neural network, 

to obtain accurate building segmentation results. SFFNet is 

designed to effectively segment buildings from the remote 

sensing images. (4) Post-processing through connectivity 

analysis and regularization (Wei et al., 2020). After 

segmentation, the framework applies connectivity analysis and 

regularization to post-process the building detection results. This 

step refines the segmentation and isolates individual buildings. 

(5) Establishment of individual building buffer zones. Using the 

identified building vector positions, the framework creates 

buffer zones around individual buildings. These buffer zones are 

critical for isolating each building and its immediate 

environment for detailed analysis. (6) Creation of Multi-Channel 

Damage Detection Matrix Blocks. The buffer zones are then 

used to overlay pre-earthquake and post-earthquake images and 

pre- and post-earthquake Local Binary Pattern (LBP) (Ojala et 

al., 1994) texture features. This overlay creates multi-channel 

matrix blocks for damage detection, integrating different types 

of information for each building. (7) Classification with 

Lightweight fast network (LFnet). Finally, these multi-channel 

matrix blocks are fed into LFnet for classification. LFnet 

classifies the blocks and determines the extent of damage to each 

building. 

2.2. Spatial and frequency domain feature-integrated 

building extraction network 

Building vectors are critical for post-earthquake building 

damage detection. Due to variations in building materials, scale, 

and illumination, buildings exhibit significant differences in 

remote sensing imagery. Non-building structures such as parking 

lots and roads often appear similar to buildings, resulting in low 

inter-class variance and high intra-class variance in optical 

remote sensing imagery. Accurately and efficiently extracting 

building footprints from complex scenes remains a challenge, 

mainly due to insufficient feature extraction and inaccurate, 

irregular building boundary localization in semantic 

segmentation results. Therefore, in this paper, we propose an 

edge-prior-based progressive feature fusion network, as shown 

in Figure 2. In the network, we use U2net (Qin et al., 2020) as 

the backbone and design a progressive space and frequency 

domain feature fusion block (PSFF Block). Specifically, based 

on the local detail information provided by spatial features, the 

Frequency Domain Global Information Extraction Module 

(FGIE Module) utilizes transformer in the frequency domain to 

obtain its global semantic information, and ultimately, the 

Adaptive Feature Fusion Module (AFF Module) performs 

feature fusion. In particular, by incorporating edge priors in the 

second layer, we enhance the extraction of regularized edge 

features of buildings, thereby improving segmentation accuracy 

and regularizing building boundaries. 

 

 
Figure 2. Spatial and frequency domain feature-integrated 

building extraction network 

 

2.2.1 Progressive spatial and frequency domain feature 

fusion block 

In order to solve the first problem, we adopt a progressive 

approach to semantic fusion as shown in Figure 3. As shown in 

Figure 3(a), the U2net unit is used to extract local feature 

representations of buildings in the spatial domain of the image. 

GFIE module is then used to capture global features in the 

frequency domain. Finally, an adaptive feature fusion module is 

used for layer-by-layer feature fusion to enrich the information 

content of the features. Based on the property that shallow 

features of CNNs are sensitive to high-frequency information, 

while deep features are sensitive to low-frequency features, we 

choose to supplement shallow layers of CNNs with high-
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frequency global information and deep layers with low-

frequency global information, similar to the layer-by-layer 

feature extraction of CNNs. We perform truncation processing 

on frequency domain information at different levels to enable 

full integration of information. The GFIE module is shown in 

Figure 3(b). The use of DCT for frequency domain 

transformation is mainly based on considerations of 

computational efficiency and suitability for real signals, as 

shown in Formula (1)-(3). 
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where M and N represents the width and height of the image, 

F(U,V) is the frequency coefficient in the two-dimensional 

frequency domain, f(x,y)is the pixel value of the original image 

in the spatial domain, U and V is the coordinate in the frequency 

domain, C(U) and C(V) is the DCT transformation coefficient. 

After the DCT transformation, the energy percentage method is 

constructed to gradually remove high-frequency information, as 

shown in Figure 3(c). 

 

 
Figure 3. Progressive spatial and frequency domain feature 

fusion module 

 

The energy percentage method calculates the total energy by 

constructing the energy of each coefficient in the frequency 

domain, and designs a truncation percentage to obtain the target 

energy for truncation. Then, all energy values are sorted in 

descending order and their cumulative sum is calculated. When 

the cumulative sum reaches the coefficient energy required for 

the target energy, the threshold for frequency domain truncation 

is obtained. This method has a certain adaptability compared to 

the traditional filter design, and uses this method to truncate 

high-frequency information by 2%, 4%, 6%, and 8%, as shown 

in in Figure 4. 

 

 
(a) (b) (c) (d)   (e) 

Figure 4. Images and visual frequency domain graphs under 

different high frequency truncation. (a) original image. (b) 2% 

truncation. (c) 4% truncation. (d) 6% truncation. (e) 8% truncation. 

After feature extraction using the U2net unit and the global 

information unit, the feature information is stored in multiple 

channels, which is not conducive to facilitating the distinction 

between buildings and background areas. Therefore, we use 

convolution operations to combine all the channel features into 

a single channel. For effective fusion of the extracted local and 

global information, a sigmoid function-guided feature fusion 

method is proposed. This method can effectively distinguish 

between buildings and non-buildings, which helps to guide the 

feature selection. The formula can be expressed as Formula (4): 

 

𝐹𝐶 = 𝐹𝑃 × 𝑆𝑃 + (1 − 𝑆𝑃) × 𝐹𝐺 (4) 

 

where FC represents fusion features, FP represents local 

information extracted by u2net, FG represents global features 

extracted in frequency domain, and SP represents the use of 

sigmoid to predict probability. 

2.2.2  Edge control strategy 

Considering that buildings, as man-made structures, have 

distinct geometric features, an edge-prior-based adaptive 

regularization method for building edges is proposed to address 

inaccuracies and irregularities often found in building semantic 

segmentation results. Deep networks, which focus on abstract 

semantic features, tend to miss finer details, while initial shallow 

layers retain excessive details, leading to noise. To address this, 

the planar semantic information of the second layer is converted 

to edge semantic information, guided by edges extracted from 

building labels. This improves the network's ability to extract 

building edge features. When extracting edge information from 

labels, a broadened label edge strategy is used because of the 

difficulty in training networks with too fine edges. In addition, a 

weighted loss function is used to balance the samples for edge 

learning. The edge loss function for the second layer is as follows: 

 

𝑊𝑒𝑖𝑔ℎ𝑡𝑁 =  
𝑁𝑢𝑚(𝑃𝑖𝑥𝑒𝑙𝑁)

𝑁𝑢𝑚(𝑃𝑖𝑥𝑒𝑙𝑁) + 𝑁𝑢𝑚(𝑃𝑖𝑥𝑒𝑙𝑝)
 (5) 

𝑊𝑒𝑖𝑔ℎ𝑡𝑃 =  
𝑁𝑢𝑚(𝑃𝑖𝑥𝑒𝑙𝑃)

𝑁𝑢𝑚(𝑃𝑖𝑥𝑒𝑙𝑁) + 𝑁𝑢𝑚(𝑃𝑖𝑥𝑒𝑙𝑝)
 (6) 

𝑙𝑜𝑠𝑠2  = 𝐿𝑏𝑐𝑒(𝑋2𝑝, 𝑋𝑒𝑑𝑔𝑒) ×𝑊𝑒𝑖𝑔ℎ𝑡𝑁 

              +𝐿𝑏𝑐𝑒(𝑋2𝑁, 𝑋𝑒𝑑𝑔𝑒) ×𝑊𝑒𝑖𝑔ℎ𝑡𝑝 
(7) 

 

where loss2 represents the second layer loss function, Lbce 

represents the use of the binary cross-entropy loss, WeightN 

represents the background weight, WeightP represents the target 

weight, and Num represents the total number of pixels.  

The overall network loss function is as follows: 

 

𝑙𝑜𝑠𝑠𝑓𝑢𝑠𝑒𝑑 = 𝐿𝑏𝑐𝑒(𝑋1, 𝑋𝑔𝑡) + 𝐿𝑆𝑆𝐼𝑀(𝑋1, 𝑋𝑔𝑡) 

       +𝑙𝑜𝑠𝑠2 + ∑ 𝐿𝑏𝑐𝑒(𝑋𝑖 , 𝑋𝑔𝑡)
6
𝑖=3  

(8) 

 

where Xi represents the result of the i-th layer, Xgt represents the 

ground truth, Lbce represents the use of the binary cross-entropy 
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loss, and LSSIM is structural similarity loss. 

2.3. Post-earthquake building collapse detection 

Traditional change detection typically involves three main tasks: 

(1) detecting the transition of buildings from intact to damaged, 

(2) assessing whether buildings that were intact before the 

earthquake remained mostly intact after the earthquake, and (3) 

detecting irrelevant background. However, the collapse of 

buildings after an earthquake is often irregular in extent, which 

may lead to background changes unrelated to building damage, 

thereby reducing the accuracy of building damage detection. 

In response to this problem, this paper takes a novel approach by 

focusing on individual buildings rather than background changes. 

By using the pre-earthquake detection results of individual 

buildings, this paper simplifies the aforementioned tasks into 

two more specific objectives: (1) identifying buildings that have 

transitioned from an intact state to a damaged state, and (2) 

determining which buildings that were intact before the 

earthquake have remained largely intact. The advantage of this 

approach is that by focusing on the state changes of individual 

buildings, it effectively avoids misjudgments caused by changes 

in the background, thus improving the accuracy of building 

damage detection. In addition, this method makes the detection 

tasks more precise and focused, helping to improve the overall 

performance of change detection.  

 

 
Figure 5. Schematic diagram of LBP changes 

 

As shown in Figure 5, given the difficulty of perfectly aligning 

pre-earthquake and post-earthquake images and the distinct 

contextual features of collapsed buildings, a buffering strategy is 

used to ensure the integrity of buildings in the samples and to 

capture more features of collapsed structures. Since the most 

obvious post-collapse features are building boundary and texture, 

Local Binary Patterns (LBP) images of buildings are used to 

enhance bands in pre-earthquake and post-earthquake images 

and guide the classification network to learn texture features. 

Notably, the proposed LFNet is simple, fast, and has high 

classification accuracy. Among them, Resnet is mainly used as 

the basic network, and deformable convolution (Dai et al.,2017) 

is added to each layer of Resnet to adapt to the changes between 

channels. Therefore, a building earthquake damage detection 

process is constructed, as shown in Figure 6. 

 

 

Figure 6. Building fall damage detection process 

 

3. Experiments and Results 

3.1. Study area data 

The study area is located in Guangjie Town, Yushu City, Qinghai 

Province, China, as shown in Figure 7. A magnitude 7.1 

earthquake occurred here on April 14, 2010, resulting in 

extensive structural damage, 2,220 deaths, and thousands of 

injuries. The experimental data are from Google Earth imagery 

with a spatial resolution of 0.6 meters (panchromatic and 

multispectral fusion imagery) and an image size of 20,000 pixels 

× 12,000 pixels. Details of the image data are shown in Table 1. 

 
Figure 7. Study area, Yushu City 

 
Test 

area 

Type Acquisition 

time 

Source Spatial 

resolution 

Yushu 

Pre-
earthquake 

Image 

2008.12.08 Google 
earth 

0.6m 

Post-
earthquake 

Image 

2010.4.17 Google 
earth 

0.6m 

Table 1. Description of the data used in the study 

 

3.2. Evaluation metrics 

In terms of evaluation metrics, the system commonly used in 

semantic segmentation - Precision, Recall, F1 and IoU - has been 

adopted. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (9) 

           FNTP

TP
Recall

+
=  (10) 

Recallprecision

Recallprecision
2ScoreF1

+


=−  (11) 

       FNFPTP

TP
IoU

++
=  (12) 

where TP is the number of pixels correctly extracted as buildings, 

FP is the number of other object pixels extracted as buildings, 

and FN is the number of building pixels extracted as other 

objects. 

 

3.3. Pre-earthquake building extraction result analysis 

This section reports experiments conducted on two datasets. In 

order to ensure fairness, the experimental data set was cropped 

to the same size and the same method of data enhancement was 

used. Our model was thoroughly compared with state-of-the-art 
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methods(Chen et al., 2021; Li et al., 2022; Wang et al., 2022b; 

Zhou et al., 2022) to demonstrate the segmentation quality and 

to assess the capabilities of our model. 

3.3.1 Experimental detail  

In the experiment, the sample was cropped to 384*384. During 

training, the Adam optimizer was used with default parameters 

(initial learning rate = 1e-4, betas = (0.9, 0.999), eps = 1e-8, 

weight decay = 0). The network was trained with a batch size of 

4 and a termination iteration of about 300 epochs. The training 

process was performed on a platform with an I7-10700 CPU and 

3090 GPU, with 24G of memory. 

In the Yushu dataset, building detection is challenging due to the 

complex background and dense urban areas with shadows from 

buildings and trees, as well as significant size variations among 

buildings, making small structures difficult to extract. As shown 

in Figure 8, where TP (white) means the number of pixels 

correctly extracted as buildings, FP (blue) means the number of 

other object pixels extracted as buildings, and FN (red) means 

the number of building pixels extracted as other objects. The first 

two rows depict images of urban areas in Yushu City, where 

buildings are prominent against the city background with orderly 

arrangements. From the five contrast results, it can be observed 

that our method achieves higher precision in extracting building 

edges. The latter three rows show images of rural areas, where 

building layouts are less organized. This leads to issues of 

missed and false detections due to minimal differences between 

buildings and background, as well as challenges in accurately 

segmenting tightly spaced buildings. Based on these 

experimental results, compared to using spatial-domain deep 

learning methods alone, our approach utilizes the Discrete 

Cosine Transform (DCT) to transform spatial-domain signals 

into the frequency domain. This enables the exploration of 

building features in complex backgrounds, reducing missed and 

false detections. Furthermore, by selecting high-frequency and 

low-frequency features, we address the segmentation challenges 

posed by adjacent buildings. 

 

 
(a)   (b) (c) (d) (e) (f)        (g) 

Figure 8. Building extraction results. (a) original image. (b) 

Ground Truth. (c) MANet. (d) SGCN. (e) TransUnet. (f) 

UNetFormer. (g) Ours. 

The accuracy results of the five sets of experiments are shown in 

Table 2. Although our proposed method did not perform as well 

as other methods in terms of accuracy, it achieved a more 

balanced recall rate, indicating a better restriction of false 

extractions, resulting in better F1 and IoU scores. Specifically, 

compared to MANet, our method improved IoU and F1 by 1.58% 

and 2.28%, respectively, indicating the effectiveness of our 

network. Compared to SGCN, there was an increase of 3.04% 

and 4.32%, respectively, showing better overall performance. 

Compared to TransUnet, the increases were 4.01% and 5.66%, 

and compared to UNetFormer, there were improvements of 2.02% 

and 2.90%, respectively. This suggests that using transformers to 

find features in the frequency domain is more accurate than 

direct extraction in the image domain. 

 

Method Precision

（%） 

recall

（%） 

F1

（%） 

IoU

（%） 

MANet 80.27 82.21 81.23 68.39 

SGCN 73.43 87.32 79.77 66.35 

TransUnet 82.68 75.26 78.80 65.01 

UNetFormr 79.96 81.63 80.79 67.77 

Ours 82.34 83.30 82.81 70.67 

Table 2. Quantitative evaluation of different methods. 

3.3.2 Ablation study 

In this section, separate ablation studies are performed on two 

datasets to assess the effectiveness of each critical component of 

the model. The U2net is used as a baseline, and additional 

modules are progressively integrated. We focus on the 

visualization of the penultimate layer in the decoder, as shown 

in Figure 9. It can be seen that as the number of components 

increases, there is a tendency for more buildings to be identified 

in the feature map. After integrating the GFIE, but opting for 

Concatenation Fusion instead of the AFF module, there is a 

noticeable improvement in the detection efficiency of small 

target buildings. However, this approach also results in a higher 

false positive rate for building detection. The use of the AFF 

module allows effective control over global and local feature 

fusion, which helps to reduce some false detections. Finally, the 

implementation of edge priors helps to refine building 

boundaries, thereby improving accuracy. 

 

 
 (a) (b) (c) (d) (e)   (f)  

Figure 9. The visualization of ablation study. (a) Original 

image. (b) U2net. (c) U2net+ GFIE. (d) U2net+ GFIE+AFF. (e) 

U2net+ GFIE+AFF+ Edge Prior. (f) Ground Truth. 

 

As shown as Table 3, compared to the U2net, the inclusion of 

GFIE results in a slight increase in both F1 score and IoU. There 

is an increase of 0.76% in F1 score and 0.32% in IoU. These 

improvements demonstrate the effectiveness of using the 

frequency domain to extract global information. With the 

addition of AFFM, which allows for a more effective fusion of 

global and local information, there is a significant improvement 

in both F1 score and IoU. The F1 score and IoU increase by 1.22% 

and 1.29%. Finally, the implementation of edge priors further 

improves the overall building segmentation accuracy. These 

metrics show the cumulative benefits of each component in 

improving the model's performance for building segmentation 

tasks. 

 

 U2net GFIE AFFM Edge Prior F1(%) IoU(%) 

(a) √ × × × 79.96 68.83 

(b) √ √ × × 80.72 69.15 

(c) √ √ √ × 81.94 70.44 

(d) √ √ √ √ 82.81 70.67 

Table 3. Quantitative evaluation of ablation study. 
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3.4. Post-earthquake building extraction result analysis 

To validate the effectiveness of the building damage extraction 

framework proposed in this paper, we selected two types of 

cascaded building damage information extraction 

frameworks(Chen and Liu, 2021; Qing et al., 2022b) and two 

end-to-end building damage information extraction methods for 

comparison(Caye Daudt et al., 2018; Yan et al., 2022). 

During training, the Adam optimizer was used with default 

parameters (initial learning rate lr = 5e-4, weight decay = 5e-2). 

LFnet was trained with a batch size of 32 and a termination 

iteration of about 100 epochs. The training process was 

performed on a platform with an I7-10700 CPU and 3090 GPU, 

with 24G of memory. 

Using LFnet to classify building collapses in the Yushu area after 

the earthquake, the precision for collapsed building detection is 

91.24%, the recall is 90.52%, and the F1 score is 90.88%. Figure 

10 shows the assessment results of building damage after the 

earthquake, where red represents collapsed buildings, blue 

indicates intact buildings, and white represents the background. 

 

 
(a) (b) (c) (d) (e) (f) (g) (h) 

Figure 10. Building Collapse Detection results for Yushu Dataset. 

(a) Pre-earthquake image. (b) Post-earthquake image. (c) Ground 

Truth. (d) SLIC +SVM. (e) SLIC +CNN. (f) EF. (g) FTN. (h)Ours. 

The first two groups of images are from the Yushu urban area, 

where relatively few buildings are damaged, while the last three 

groups are from the urban-rural interface and villages, where 

more buildings are damaged. It can be seen from the images that 

the object-based segmentation performance is poor in the two 

groups. This is mainly because the superpixel segmentation used 

in these experiments did not incorporate semantic information 

from the images during segmentation, resulting in fragmented 

buildings and inaccurate boundary positioning. As a result, 

buildings tend to stick together during the post-classification 

clustering process. Furthermore, in the first set of experiments, 

classification was based on representing an area with a single 

point, and the representativeness of this point is key to 

classification accuracy. However, a single point lacks semantic 

relationships with its surroundings and similarly categorized 

pixels, and it cannot effectively address issues such as small 

variance between background and damaged buildings. Therefore, 

in areas with more damaged buildings, the number of false 

detections increases significantly. In the second set of 

experiments, the classification involved cropping small patches 

within a spot and using a deep learning network to determine the 

category of these small patches, incorporating some semantic 

information between categories. However, these small patches 

also have errors, as each patch can contain more than one 

category (ground, damaged building, intact building). As a result, 

while the accuracy of this experiment is significantly better than 

that of the first group, it still does not solve the problems of 

buildings sticking together and false detections. The third and 

fourth groups use an end-to-end classification method. It is 

obvious that the main factor affecting the accuracy of end-to-end 

methods is the accuracy of the building extraction by the main 

network. If the accuracy of building extraction is low, the results 

tend to be poor. The accuracy rating, as shown in Table 4, 

includes C1 for background, C2 for intact buildings, and C3 for 

damaged buildings. 

 
Method SLIC 

+SVM 

SLIC+CN

N 

EF FTN Ours 

Precision 

(%) 

C1 88.36 93.94 97.99 94.74 94.60 

C2 21.00 21.99 40.61 55.63 69.38 

C3 21.78 29.28 35.48 66.05 74.24 

Recall 

(%) 

C1 68.70 72.40 74.71 95.07 95.72 

C2 23.49 30.71 82.79 68.07 69.44 

C3 26.23 29.08 79.34 56.61 68.16 

F1 

(%) 

C1 77.30 81.78 84.78 94.90 95.16 

C2 22.18 25.63 54.49 61.22 69.40 

C3 23.80 29.18 49.03 60.97 71.07 

IoU 

(%) 

C1 63.00 69.17 73.58  90.30 90.72 

C2 12.47 14.70 37.45 44.13 53.15 

C3 13.51 17.08 32.48 43.85 55.12 

Table 4. Quantitative evaluation of Building Collapse 

Detection results. 

 

4. Conclusions 

In this study, a cascaded architecture for building collapse 

detection, which integrates spatial and frequency domain target 

feature knowledge interaction, has been proposed. Based on 

experimental results and analysis, the conclusions can be drawn 

as follows.  

(1) Compared to end-to-end direct damage detection networks, 

the cascade framework clarifies the tasks and overcomes the 

training and transfer difficulties of direct detection networks, 

resulting in a more flexible overall process. Compared to 

traditional OBIA cascade networks, our method fully extracts 

semantic information at each stage, forming feature-level 

knowledge interaction, generating objects with practical 

significance, and improving the detection rate of building 

damage. 

(2) Accurate building detection is the foundation of this 

framework because it can reduce loss propagation within the 

framework. The building detection method introduced in this 

paper validates that the effective combination of spatial and 

frequency domains in complex backgrounds can improve the 

accuracy of building extraction. This method addresses the 

problem of high heterogeneity leading to small inter-class 

variance and large intra-class variance and utilizes adaptive 

feature selection of global and local information to address the 

challenge of inferring image content from distant context. 

Additionally, the edge verification module can further improve 

the accuracy of boundary detection. 

(3) Building on accurate building extraction, a fast and simple 

method for building collapse classification is proposed. By 

utilizing a buffering strategy to reduce errors caused by 

registration, and constructing a multi-channel classification 

network based on texture priors, rapid detection of building 

collapses is achieved. 

In summary, the newly proposed cascaded building collapse 

detection framework is a workflow with clear tasks, flexible 

processes, and high detection accuracy, which can better serve 

the emergency management domain. Moreover, the building 

extraction network as the core method of the workflow can also 

be introduced to other areas of geoscience applications, such as 

the semantic segmentation of other land cover features (roads, 

farmlands, etc.). 
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However, due to the limited resolution and vertical field of view 

of remote sensing, it is not possible to observe the lateral damage 

of building walls, which leads to the omission of intermediate 

levels of damage in our damage detection. This is a key issue 

that requires further research. 
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