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Abstract

Enhancing the autonomous landing capability of unmanned aerial vehicles (UAVs) is of great significance for improving their
operational efficiency and field survival capabilities. To this end, we propose a real-time autonomous landing spot detection method
for UAVs. Firstly, the pose of the UAV at any given time and the initial three-dimensional point cloud of the scene are estimated
using simultaneous localization and mapping (SLAM) techniques. Then, since the initial point cloud is sparse and cannot be used
for terrain analysis, we generate a voxel-based elevation map of the scene, which can establish interconnectivity among the points.
Finally, we propose a shift-box strategy to comprehensively analyze various terrain factors in the elevation map, determine the
landing spot for UAVs, and update the landing spot in real time. The UAV flight experiments conducted in the real world have
demonstrated the effectiveness and real-time performance of the proposed method.

1. Introduction and Related Work

Landing spot detection is important for unmanned aerial
vehicles (UAVs) in many applications, such as wilderness res-
cue, reconnaissance, geological exploration, disaster relief, and
environmental monitoring. They need to accurately identify,
approach, and land in safe spots without human intervention.
At present, research on autonomous landing spot detection of
UAVs is very challenging without prior knowledge (Yubo et al.,
2021).

Global Positioning System (GPS) can provide three-
dimensional spatial location parameters for UAVs (Laiacker
et al., 2013). However, relying solely on GPS signals cannot
obtain terrain and obstacle information in the flight area.
Moreover, in environments such as forests, valleys, and areas
with high-density buildings, GPS navigation signals may be
interfered with, leading to inaccuracies in the navigational data
and consequently affecting the reliability of the system.

Lidar can obtain three-dimensional point cloud data of the
scene. By designing a candidate plane extraction algorithm for
point cloud data, flat areas that meet landing requirements can
be selected (Johnson et al., 2002; Scherer et al., 2012; Xing
et al., 2020). However, such sensors are expensive, heavy,
and not suitable for small UAVs. In contrast, optical cameras
have advantages such as being lightweight and low-cost, mak-
ing them suitable as environmental sensors for UAVs (Harshit
et al., 2022; Scaramuzza et al., 2014; Kong et al., 2014). How-
ever, challenges still exist in measuring the position and attitude
of the UAV, as well as determining the landing spot, when ac-
quiring video images through onboard cameras in the absence
of GPS navigation signals.

In the past few years, there have been many studies on vision-
based autonomous landing of UAVs, which can be divided into
three categories based on technical means: methods based on
visual marker recognition, methods based on ground feature

extraction and matching, and methods based on feature-based
visual odometry.

1) Methods based on visual marker recognition. This type of
method utilizes computer vision algorithms to identify specific
landmarks placed on the landing spot and solves the flight pose
parameters of the UAV through feature extraction and matching
operations (Patruno et al., 2019; Cabrera-Ponce and Martinez-
Carranza, 2017; Xin et al., 2022). Chen et al. (2017) used an im-
proved R-CNN neural network to recognize landmarks. How-
ever, the landing spot detection method based on landmarks re-
quires designing different indicator landmarks according to dif-
ferent application scenarios, and the detection algorithm also
needs to be designed based on the geometric characteristics of
the indicator landmarks. Therefore, the UAV can only achieve a
safe landing in a given scenario. This type of algorithm has poor
stability and robustness and is inappropriate for certain scen-
arios, such as post-disaster search and rescue operations, where
it is not feasible to pre-install landmarks. Therefore, UAVs must
have the ability to autonomously analyze the surrounding envir-
onment and select a safe landing spot.

2) Methods based on ground feature extraction and matching.
This method uses the visual system of UAVs to obtain im-
ages of the pre-landing spot, extract ground features (such as
edges, corners, etc.), match them with ground templates or pre-
viously established maps, and then determine the ideal landing
spot based on the matching results (SUO et al., 2020). Miller et
al. (2008) created an image reference database for drone run-
ways. When the drone arrives at the flight area, the flight scene
information is matched with the information collected by the
processor on board the drone to obtain the distance and attitude
angle of the drone relative to the runway. This method does not
require pre-setting indicating landmarks. However, this type of
method requires high accuracy of the ground template. If there
is a significant difference between the ground template and the
actual scene, the matching results may be incorrect, resulting in
the inability to accurately find the ideal landing spot.
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3) Methods based on feature-based visual odometry. This type
of method acquires real-time images of the flight area through
the UAV’s visual system, derives the relative positions and
attitudes between sequence images based on projection geo-
metric relationships, and restores the motion trajectory of the
UAV (Zeng et al., 2022; Engel et al., 2012). Forster et al. (2015)
from the Federal Institute of Technology in Zurich proposed a
multi-rotor UAV landing spot recognition method that utilizes
the elevation map framework (Fankhauser et al., 2014) to es-
tablish an elevation model of the scene. The method uses a
semi-direct visual odometry (SVO) based on a monocular cam-
era to estimate the UAV’s pose.

When dealing with the challenges of safely landing UAVs, not
only should the position and attitude information of UAVs be
considered, but the three-dimensional terrain of the landing spot
is also an important aspect of environmental perception.

Yang et al. (2018) at Northwestern Polytechnical University
conducted research on the landing of UAVs in unknown areas.
They proposed a new map representation method, which com-
bines the three-dimensional features of the unknown area’s
point cloud and uses the region segmentation method to ana-
lyze terrain, achieving recognition of obstacles and flat areas.
Mittal et al. (2019) selected the landing spot for UAVs by es-
tablishing a digital elevation model (DEM) of the scene. This
method relies on the Canny operator for edge extraction and
still has limitations.

In this paper, we propose a real-time autonomous landing spot
detection method for UAVs using a monocular camera, which
does not rely on satellite signals and prior ground knowledge.
The simultaneous localization and mapping (SLAM) technique
is used to construct the initial point cloud of the scene and es-
timate the pose of the UAV in real time. To conduct terrain
analysis, we voxelize the acquired sparse point cloud using an
octree-based method to incrementally build the elevation map
of the scene. Finally, we propose a shift-box strategy to ef-
fectively utilize the elevation map to analyze terrain and com-
prehensively consider various terrain factors to determine and
update the landing spot in real time.

2. System Overview

The workflow of the proposed autonomous landing spot
detection method consists of an elevation mapping module
and a landing spot selection module. An illustration of the
approach is shown in Figure 1.

In the elevation mapping module, we make use of the ORB-
SLAM2 (Mur-Artal and Tardós, 2017) framework to estimate
the pose of the UAV and incrementally construct an initial three-
dimensional point cloud of the scene in real time. This initial
point cloud provides a rough representation of the scene struc-
ture, serving as a data source for the subsequent module. To
address the sparsity of the initial point cloud, we utilize a voxel-
ization method based on octree to generate an elevation map
of the scene, which can establish connectivity among points.
By analyzing the properties and occupancy probability of each
cell in the elevation map, the geometric changes of the three-
dimensional terrain are examined. The elevation map can be
dynamically updated and maintained as the point cloud is in-
crementally constructed.

In the landing spot selection module, firstly, we design a ground
filtering mechanism based on the RANdom SAmple Consensus
(RANSAC) algorithm to extract the horizontal ground surface
in the elevation map. The centers of cells in the elevation map
are used as the input for the RANSAC algorithm, instead of the
original three-dimensional point cloud, which greatly improves
the algorithm’s running speed. Then, we propose a shift-box
algorithm to cover the entire ground surface and determine the
most suitable landing spot for the UAV by calculating the flat-
ness in each box. Furthermore, the landing spot will be dynam-
ically adjusted based on the flight position of the UAV to ensure
that it prioritizes the position closest to the UAV.

3. Methodology

3.1 Elevation Mapping

Once the UAV receives a landing command, it explores the cur-
rent scene. In the first module, the input is real-time images
obtained by the visual sensor on the UAV. The ORB-SLAM2
algorithm is a visual SLAM algorithm based on feature points,
which utilizes the geometric relationships between sequence
images to calculate the position and pose of UAVs, and sim-
ultaneously constructs the three-dimensional point cloud struc-
ture of the current scene. The sparse point cloud obtained by
the ORB-SLAM2 algorithm presents limitations in the task of
landing spot detection, and the storage of point cloud data occu-
pies a large amount of memory. However, for the UAV landing
task, algorithms usually need to have high computational effi-
ciency. Therefore, we adopt a hierarchical data structure based
on octree to voxelize the three-dimensional point cloud in order
to establish a map with connected regions for the subsequent
rapid landing spot detection task.

The octree recursively divides the space into eight equally sized
cubes, each corresponding to a node, and each node can rep-
resent a region, called voxels. If a voxel is occupied in three-
dimensional space, the corresponding node in the octree is ini-
tialized. By using the hierarchical structure of the octree, it is
possible to quickly locate the desired spatial area, reduce search
scope, and improve query efficiency. However, during the flight
of UAVs, the environment below is constantly changing, and
simple discrete occupancy labels usually cannot fully describe
the environmental state, making it difficult to capture the uncer-
tainty and variability of the environment. Therefore, it is ne-
cessary to use probabilistic modeling methods to quantify the
uncertainty of the environment, achieve more precise modeling
of the environmental state, and provide a more reliable basis for
subsequent landing spot selection decisions.

Assuming the observed data at time t1, t2, t3 is z1, z2, z3, the
probability P (n|z1:t) of a leaf node n being occupied is:

P (n|z1:t) = [1 +
1− P (n|zt)
P (n|zt)

1− P (n|z1:t−1)

P (n|z1:t−1)

P (n)

1− P (n)
]−1

(1)

where P (n|z1:t−1) = the observations at previous moments
P (n) = prior probability (typically taking a value of 0.5)

By using the log-odds notation, Equation (1) can be rewritten
as
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Figure 1. Workflow of the autonomous landing spot detection method for UAVs.

L(n|z1:t) = L(n|z1:t−1) + L(n|zt) (2)

with

L(n) = log[
P (n)

1− P (n)
] (3)

If the probability of the current node exceeds 0.5, it is con-
sidered occupied; if it is below 0.5, it is considered idle. The
depth of the octree is set to 16. As can be seen from Equa-
tion (2), we have accumulated the observation data at each mo-
ment, so when the environment changes, the occupancy status
of nodes will also be updated accordingly. Finally, according to
the height data within each voxel, we perform color rendering
to generate an elevation map of the scene.

3.2 Landing Spot Selection

When the UAV receives a landing command, it needs to select
a large enough and flat spot on the ground surface as the pre-
landing spot.

3.2.1 Ground Filtering Mechanism: In the landing spot
selection module, we first utilize the RANdom SAmple Con-
sensus (RANSAC) algorithm to extract planes from the eleva-
tion map. The input of the RANSAC algorithm is the center of
each cell in the elevation map. Since the elevation map is the
result of our voxel resampling of the three-dimensional point
cloud, the data complexity is reduced, resulting in a signific-
ant enhancement in the computational efficiency of RANSAC
in plane extraction. Furthermore, the cell centers within the
elevation map are uniformly arranged, thereby simplifying the
parameter configuration process for the RANSAC algorithm, as
only integer multiples of the elevation map resolution need to
be taken into account when setting the threshold. This makes
the plane extraction more convenient and efficient. Figure 2
shows the voxel resampled regular point cloud and the plane
extraction process.

Then, since each plane has a normal vector, the horizontal
ground surface among these planes can be identified under the
constraint of the direction of the normal vector. We calculate the
angle θi between each plane and the horizontal plane by calcu-
lating the angle between the normal vector n⃗i of each plane and
the unit vector n⃗0 perpendicular to the horizontal plane:

θi = arccos
(n⃗i · n⃗0)

|n⃗i| · |n⃗0|
(4)

When the angle approaches 0, the plane in which the normal
vector n⃗i resides is considered to be the ground surface.

Figure 2. Ground surface extraction.

3.2.2 Landing Spot Selection: To find a large enough and
flat landing spot on the ground surface, we propose a shift-box
strategy to cover the entire ground surface and analyze the flat-
ness of the terrain. This strategy is described in the following.

Firstly, we define a voxel cell G, which is located within the
range of the elevation map and has two-dimensional coordin-
ates (x, y). Let us consider using R as the distance threshold to
form a set of cells T (x0, y0, R) around cell G. Each cell in set
T has a two-dimensional coordinate (x, y) in the elevation map.
Then, we create a box with a specific edge length according to
the following formula:

Sk =
∑

(x,y)∈T (x0,y0,R)

∥x− x0∥2 + ∥y − y0∥2 (5)

As shown in Figure 3, the box shifts across the ground surface
with a certain iteration step size. Sk represents the set of cells
within the box after k movements. In order to guarantee that
the landing spot has a sufficiently large area, the area Ac of the
box determined by the distance threshold R must satisfy the
following criteria:

Ac ≥ 2 ∗Ad (6)
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where Ad represents the area occupied by the UAV on the
ground.

By moving the box on the ground with a certain iteration step
size, we can compute the flatness of all areas in the elevation
map. This is achieved by calculating the sum of squared height
differences for all cells contained in the box after each move.

Let us define the set of cells in the box Sk as B, and the height
value of each cell as Z. We calculate the flatness of the area on
the ground represented by the box according to the following
formula:

Pk =
∑
i∈B

∑
j∈B

∥Zj − Zi∥2 (7)

where Pk denotes the flatness of the area represented by the box
after k movements. A lower flatness value indicates a flatter
area. Finally, the region where the box with the highest flatness
is located is identified as the landing spot. When boxes with the
same flatness appear in the updated elevation map, the landing
spot will be dynamically adjusted to the location of the nearest
box to the UAV. From the construction of the elevation map,
it is likely that there are cells in some boxes that do not have
height values. This situation occurs because the SLAM system
is unable to effectively recover map points in areas lacking tex-
ture. Considering the safety during the landing of the UAV, we
directly set the flatness value within this type of box to Pmax to
ensure that the UAV lands in a spot with clear terrain informa-
tion.

Figure 3. Move the box to cover the entire ground.

4. Experiments

4.1 Experimental Platform

DJI Mini 3 quadcopter drone is used as the platform for data
collection in this paper. It is equipped with a barometer and
a monocular camera sensor with 48 million pixels. The size
of the quadcopter drone after deployment (including blades) is
251mm x 362mm x 72mm.

We configured the experimental environment on a desktop com-
puter equipped with a 12-core 2.50GHz Intel CoreTM i5-12400
CPU and a Linux operating system with 15.0 GB of memory.
Meanwhile, to visualize the experimental results, we conduc-
ted data processing and visualization development in the ROS
operating system.

4.2 Outdoor Flight Experiments

We conducted experiments in two sets of scenarios separately.
In the first set of scenarios, the drone flew at an altitude of
20 meters above ground level, using an elevation map with
a cell resolution of approximately 1 meter. In the second set

of scenarios, the drone flew at an altitude of 60 meters, with
an elevation map resolution of approximately 0.67 meters.
The images of the two scenarios captured by the camera on
the drone are shown respectively in the top row of Figure 4
and Figure 5. The elevation maps and landing spot detection
results at corresponding times are depicted in the second row of
Figure 4 and Figure 5. The position of the landing spot at each
moment corresponds to the location depicted by the red box
in the actual scene. The highlighted spot in the elevation map
represents the landing spot, and the green line and coordinate
axis positioned above the elevation map represent the drone’s
flight trajectory and its current pose, respectively. It can be
seen from the experimental results that the drone accurately
detected a large enough and flat landing spot in both scenarios
and could update the position of the nearest landing spot in
real time. When the drone prepared to land, it approached
a way-point vertically above the detected landing spot and
subsequently slowly descended.

We conducted experimental tests on the accuracy of landing
spot detection in four outdoor scenes listed in Table 1. The
accuracy is the ratio of the number of grid cells detected by our
method that meet the landing standards to the number of grid
cells in the actual flat area. Table 1 reveals that in relatively
simple scenes, our method exhibits a higher accuracy in detect-
ing the landing spot. However, in scenes with higher complex-
ity, where the ground details are more intricate, and the point
cloud recovered by SLAM contains more noise, the detection
accuracy is likely to be affected. In areas with high-density
buildings, there are often many walls, obstacles, and complex
structures, which may lead to more obstruction and affect the
accuracy of the localization and mapping. Meanwhile, the con-
struction of elevation maps in such scenes becomes more com-
plex, consequently diminishing the precision of landing spot
detection. In regions lacking textures, the SLAM system is un-
able to accurately extract features and thus unable to construct
a complete point cloud map, resulting in increased localization
errors and insufficient information within the map, which ul-
timately affects the construction of the elevation map and the
accuracy of landing spot detection.

Experimental scenarios Detection accuracy
Simple scene 95%

Multi-obstacle scene 89%
Scene with high-density buildings 41%

Texture-deficient scene 69%

Table 1. Accuracy of landing spot detection in different
scenarios.

4.3 Runtime and Computational Efficiency

During operation, the elevation mapping module and landing
spot selection module use one processing core. The visual
sensor on the UAV captures scene videos at a frame rate of
30fps. Table 2 lists the timing measurements. On average, it
takes 0.25 seconds to construct an elevation map for a frame
of point cloud, and approximately 0.47 seconds to detect the
landing spot in the current elevation map. However, the time
consumption depends greatly on the scope and complexity of
the scene, as an increase in the scene information will lead to
higher computational costs for both the elevation mapping and
the detection algorithm.

To study the applicability of the SLAM technology in UAV
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Figure 4. Elevation maps and landing spot detection results in scenario 1.

Figure 5. Elevation maps and landing spot detection results in scenario 2.

Stages Time(s)
Elevation map establishment 0.25

Elevation map update 0.22
Landing spot detection 0.47

Landing spot update 0.27

Table 2. Timing measurements.

landing spot detection and the performance of our method in
multiple scenarios, we conducted computational efficiency test-
ing experiments in the four scenarios listed in Table 1. As
shown in Table 3, areas with dense buildings have complex

structures and may contain a large number of feature points,
which increases the computational complexity of feature ex-
traction and matching in SLAM systems, thereby increasing
CPU and memory usage. On the contrary, for areas lacking tex-
ture, the computational burden of feature point extraction and
matching will be reduced, thus requiring fewer computational
resources. For the landing spot detection module, compared
to areas with simple scene structures, areas with dense build-
ings require more grid cells when establishing elevation maps,
which increases the utilization of CPU and memory resources
during elevation mapping and the subsequent selection of the
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Experimental scenarios SLAM Landing spot detection
CPU (%) Mem (%) CPU (%) Mem (%)

Simple scene 11.7 3.9 3.3 0.7
Multi-obstacle scene 11.9 4.0 1.0 0.6

Scene with high-density buildings 12.3 4.2 8.7 0.7
Texture-deficient scene 11.2 3.8 3.7 0.7

Table 3. Computational efficiency in various experimental scenarios

landing spot.

5. Conclusion

In summary, this paper proposes a real-time autonomous
landing spot detection method for UAVs. The novelty of
the method is that the scene is modeled using a voxel-based
probabilistic update approach, which can overcome the prob-
lem of the sparse point cloud and represent changes in the
environment in real time. In addition, a shift-box strategy is
proposed to analyze terrain in the elevation map and identify a
safe landing spot. Experiments show that our method has high
accuracy in multiple scenarios, and possesses high real-time
processing capabilities, thus indicating a significant potential
for applications.
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