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Abstract

Forest stock volume (FSV) stands as an important indicator in evaluating the potential for carbon sequestration. It is crucial for forest
resource management at local, regional, and national scales. In order to achieve an accurate estimation of FSV, this article takes
Mengyin County, Shandong Province, China as the research area, builds a random forest (RF) model for four tree species based on
airborne Lidar data, and forms a monitoring system of "individual tree - grid - county" granularities. The results demonstrated that all
four models exhibited excellent generalization capabilities, with no signs of overfitting. In the test phase, the R=of the poplar and pine
models exceeded 0.9, while the R=f the cypress model was 0.81, and the rRMSE was controlled within 20%, indicating that the fitting
effect of the three tree species models was better; the accuracy of the robinia pseudoacacia model was relatively poor, with R=0f 0.60
and rRMSE of 20.60%. This study provides a feasible method for estimating forest stock volume within the county, which provides
strong technical support for forest resource management and planning, and helps promote sustainable forestry development.

1. Introduction

Forests are the mainstay of terrestrial ecosystems, their annual
carbon sequestration accounts for about 2/3 of the entire
terrestrial ecosystem (Post et al. 1982; He et al. 2022). They play
an irreplaceable role in regulating global carbon balance,
mitigating the greenhouse effect and tackling climate warming
(Doelman et al. 2019). Accurately estimating the carbon
sequestration potential of forests has important guiding
significance for formulating action plans for addressing global
climate change, increasing sequestration and reducing emissions
under the carbon neutral target.

FSV is one of the most important indicators for assessing carbon
sequestration potential (Hu et al. 2020). Traditional methods for
calculating above-ground forest stock volume mainly rely on
field survey data, which have high reliability (Liu et al. 2018).
However, with these methods, it is cumbersome and difficult to
implement dynamic monitoring of forest carbon stocks on a large
regional scale. This kind of tasks is suitable for methods based
on remote sensing data, which has the advantages of large scale,
non-contact, multi-temporal, and high spatial resolution.

Traditional optical remote sensing techniques have certain
limitations in monitoring forest resources. They mostly only
provide texture and spectral information of the upper canopy of
forests, and there exists a problem of easy saturation of spectral
signals (Duncanson et al. 2010; Lu et al. 2012).The emergence of
Lidar technology has effectively alleviated this issue. In
particular, LIiDAR data has a certain penetration ability for forests
and can accurately describe the three-dimensional structure of the
forest canopy (Nelson et al. 1984; Wilkes et al. 2018). Lidar data
has been extensively utilized in research on the inversion of FSV.
Yuan et al. (2021) combined airborne laser point cloud data with
800 ground sample plots to establish a stock volume model for
these four coniferous forests using stepwise regression and partial
least squares regression. The results showed that partial least
squares regression was superior to stepwise regression.
McRoberts et al. (2012) assessed the utility of lidar-based
stratifications for mean growing stock volume per unit area. The

results indicated that the stratifications based on nonlinear
logistic regression model predictions of volume obtained from
lidar data reduced variances of mean growing stock volume
estimates. Liu et al. (2023) used a multiple linear to explore the
relationship between forest stock volume and multi-source
remote sensing features. This study explored an effective LIDAR
sample collection scheme for estimating forest stock and can
provide a reference for future LIiDAR sample collection.
However, the majority of these studies tend to rely on either
multiple linear regression models or nonlinear regression models.

RF algorithm does not require statistical assumptions or
predetermined model parameters. This algorithm can effectively
handle nonlinear, interactive and collinear problems, while
effectively avoiding overfitting (Sun et al. 2021). At present, RF
has been applied in forest growth and forest carbon storage
prediction (Mina et al. 2018; JevSenak and Skudnik 2021; Tian
etal. 2022). But, there are relatively few studies on the prediction
of FSV using RF models for large-scale and multi-factor effects.

Mengyin County is located in southeast central Shandong
Province, China. With a high forest coverage rate, complex
terrain and large carbon sequestration potential, it is a
representative and suitable region for forestry carbon
sequestration monitoring researches using remote sensing
technology. Therefore, this article takes Mengyin County as the
research area, conducts an airborne Lidar data FSV inversion
experiment based on the RF model, and evaluates the
applicability and possibility of this technology in the inversion of
forest stock volume in Shandong Province. It provides a
reference for the application of new technologies in forest
resource survey in the future.

2. Study area and Data used

2.1 Study area

The study is situated in the Yimeng Mountain Area in southeast
part of Shandong Province, in Mengyin County, in the
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coordinates 117°45'-118°15'E and 35 °27'-36°02'N (Mengyin
County Bureau of Statistics, 2023). The total area of Mengyin
County is 1,601.6 kmz2, characterized by high-altitude terrain in
the north and south and low-altitude terrain in the middle. The
area has a warm temperate continental monsoon climate with
four distinct seasons. The mean annual temperature is 14.4°C,
and the mean annual precipitation is 813.8mm.

The main dominant tree species in Mengyin County are poplar,
pine, cypress, and robinia pseudoacacia, accounting for more
than 95% of the county's forest area. The location of the study
area and the distribution of main dominant tree species can be
found in Figure 1.
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Figure 1. Location and the main dominant tree species in the
study area.

2.2 Data Source

2.2.1 Lidar data

The airborne Lidar data mainly comes from the Shandong
Provincial 14th Five-Year Basic Surveying and Mapping
Planning project, with a point density of 1pts/m= The sensor

system is CityMapper-2L and the laser model is Hyperion2. The
data's currency spans from April to June 2023.

2.2.2 In situ sample plot data

The sample data was obtained by measuring the tree height,
diameter at breast height (DBH) and location of the trees, taking
into full consideration the information such as tree species, age
group, and topography.

This study measured 71 plots with an area ranging from 1000 to
1500 square meters. The tree species in the plots are four
dominant tree species, containing more than 8,800 trees.

2.2.3 Map of forest resources inventory data

Map of forest resources inventory data comes from forestry
departments. The data is current as of 2021. Based on this data,
the vegetation coverage and types of tree species can be derived.

3. Methods
3.1 calculation of sample plot FSV

In this research, a 20*20meter grid system is selected as the
unified analytical units. The stock volume of each tree was
calculated based on the "Timber Volume Table of Major Tree
Species in Shandong Province". Based on the DBH of each tree,
the corresponding volume values can be found in the table
according to the DBH classification and different tree species.
Then, the total volume of all trees contained within the standard
grid range is calculated. Finally, 163 standard grid samples with
FSV parameters were formed, including 36 poplars, 43 pines, 49
cypresses, and 35 robinia pseudoacacia trees.

3.2 Forest characteristic parameters extraction

After point cloud rough classification, noise removal and
vegetation reclassification, original Lidar data are ultimately
transformed to normalized point cloud data. Among them, the
high-vegetation points after vegetation reclassification are
considered as trees.

Based on normalized point cloud data, forest characteristic
parameters are calculated according to a 20*20meter grid, mainly
including height variables, density variables and vertical
structure variables (Table 1). This article extracts totally 34 forest
characteristic parameters.

Variable type Characteristic variable |

description | formula

H_max
H_min
H_mean
H_stdv
H_var
hp (hp25, hp50, hp75,
hp95)
H_range
H cv

height variables

H_skew

H_Kurt

H_iqgr

The maximum high-vegetation height
The minimum of high-vegetation height
The average of high-vegetation height
The standard deviation of high-vegetation height
The variance of high-vegetation height

Range of height distribution
coefficient of variation

Refer to Li et al. (2023)
H_max-H_min
H_std/H_mean

™ (H; — H_mean)3
(n — 1)H_stdv?
™ (H; — H_mean)*
(n — 1)H_stdv*
hp_75-hp_25

height percentage

skewness

kurtosis

interquartile range

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI11-1-2024-535-2024 | © Author(s) 2024. CC BY 4.0 License. 536



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1-2024
ISPRS TC | Mid-term Symposium “Intelligent Sensing and Remote Sensing Application”, 13-17 May 2024, Changsha, China

H_crr

Average_second_pow

Average_third_pow

dq (dp_25, dp_50, dp_75,
dp_95)

density variables cc

hvp

LIR

LAI_total

vertical structure

variables LAI_mean,LAI_stdv,LAI_

cv

LAD_mean,LAD_stdv,LA

high vegetation proportion

Light Interception Rate

Mean, standard deviation, and coefficient of
variation of leaf area index. Note that the leaf
area index in this row is different from the
LAI_total in the previous row, and is obtained
after slicing at a certain height.

Mean, standard deviation, and coefficient of

D_cv variation of leaf area density al. (2013)
VFP_mean,VFP_std, Mean, standard deviation, and coefficient of Refer to Knapp et al.
VFP_cv variation of the vertical foliage profile (2019)

(H_mean-
H_min)/H_range

2| X (H)?
n

3| e (Hp)?
n

Refer to Li et al. (2023)

Total number of first

return high-vegetation

points/total number of
returns points

density quantile

canopy density

1- (total number of
ground points/total
number of points)
Total number of high-
vegetation points/total
number of first return
points

Leaf area index

Refer to Hopkinson et
al. (2013)

Refer to Hopkinson et

Table 1. Forest characteristic parameters (Remark: where n is the high-vegetation numbers in each grid, H; refers to the height of the
i-th high vegetation point in the grid)

3.3 Model construction

The regression model is create using RF here in this paper, a
popular machine learning method. The RF model is an ensemble
learning method based on decision trees. It constructs a series of
base learners through resampling, combines the prediction results
of these base learners, and outputs the final prediction (Zhou
2016). It has the ability to solve both regression and classification
problems. The prediction formula for the RF regression model
can be expressed as follows:

GX) = 2XE{g(x, 00),t = 1,2, T} €

Where g(x, 0;) represents the t-th decision tree model, 6, is a
random variable that follows an independent distribution, X is the
independent variable, and T is the number of decision trees.

The main works of volume modelling are: (1) choosing
characteristic variables. Pearson's correlation analysis is
conducted between 30 forest characteristic variables and stock
volume, and the parameters with higher correlation index (=0.6)
are selected as the characteristic variables of the random forest
model. (2) creating training set and test set. The sample data are
randomly divided into training set and testing set, 80% of them
belong to the former and 20% belong to the latter. (3) the optimal
combination of hyperparameters of the random forest model is
determined by grid searching strategy. (4) building the models.
Considering the heterogeneity of different tree species, this paper

establishes models for the four dominant tree species respectively.

3.4 Model assessment method

Two statistical indicators, the coefficient of determination(R%
and the relative root mean square error(rRMSE), were chosen to
assess the performance of the RF model. The formula is as
follows.
XL 09

2?:1(%_37)2 (2)

1
22 i—9)?
rRMSE = —} ®)

Where y; represents the measured FSV, y is the mean measured
FSV, y; is the predicted FSV, i is the same index, and n is the
grid sample plots number.

R?2=1

4, Result and Discussion
4.1 Model assessment results

In this paper, the fitting quality of the models was tested by the
R=and rRMSE. The results (Table 2) shown that the four models
had good generalization ability and there’s no overfitting. In the
training phase, the pine model had the best performance with the
highest R=0.97 and smallest rRMSE=10.26%. The poplar model
was second with an R=Z0.95 and rRMSE=11.19%. This model
was followed by the cypress model with an R=0.88 and
rRMSE=13.81%. The robinia pseudoacacia model had the worst
performance with the smallest R=0.61 and highest
rRMSE=19.36%. In the test phase, it was clear that the pine
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model also performed the best among the four models (R=0.94,
rRMSE=18.10%); the next best was the poplar model, with an
R=20.91 and rRMSE=15.25%; the cypress was third with an
R=0.81 and rRMSE=18.30%; the robinia pseudoacacia model
performed the worst, with the smallest R=0.60 and highest
rRMSE=20.60%.

Tree species Training set accuracy |  Test set accuracy
R2 rRMSE R= rRMSE
poplar 0.95 11.19% 0.91 15.25%
cypress 0.88 13.81% 0.81 18.30%
pine 0.97 10.26% 0.94 18.10%
robinia 1569 | 1936% | 060 | 2060%
pseudoacacia

Table 2. Accuracy assessment of four dominant tree species
models.

4.2 Map of the FSV estimation

Through the map of forest resources inventory data, the forest
area of Mengyin County was extracted, with a total of 592,169
20*20m grids data. According to the experimental results, the
stock volume in Mengyin County was mainly distributed in the
southwest and northeast regions. The major types of landforms
of the two regions were low mountains and hills. The Figure 2
shown that the FSV in Mengyin County ranged from 0.97m?3 to
10.21m3. Among the tree species, poplar had the largest total
stock volume, accounting for 44% of the total; pine was second,
accounting for 40%; cypress accounted for 10%; and robinia
pseudoacacia accounted for 6%.

FSV(m?)
o ligh: 1021

e Low : 0.97

01.753.5 7 105 14
Kilometers

Figure 2. Map of the FSV estimation in Mengyin County

4.3 Spatial pattern analysis of FSV

After the entire FSV in Mengyin County was estimated, its

spatial pattern was analyzed. The distribution of the stock volume,

including its direction and range, was described using the
standard deviation ellipse, and its spatial autocorrelation was
described using Moran's I.

The standard deviation ellipse is a spatial statistical technique for
measuring the distribution pattern of geographical elements (Liu
et al. 2021). It can be used to analyze the spatial distribution
characteristics of FSV in through parameters of standard
deviation. The Figure 3 illustrated that the ellipse centered at
118.0086 E, 35.6976 N, with a major axis of 24.4km and a minor
axis of 13.6km, can cover about 60% of FSV in Mengyin County.
The direction of the principal axis of the standard deviation
ellipse for FSV in Mengyin County was oriented at 14 “north by
east, suggesting a primary concentration of storage volume
within the county towards the southwest-northeast axis.

I:l Standard Deviation Ellipse

@  Ellipse Center Point

(118.0086°K, 35.6976°N

DEM Value
High
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01.753.5 7 105 14
Kilometers

Figure 3. The distribution of standard deviation ellipse of FSV

Global Moran’s T of FSV in Mengyin County was calculated
using ArcGIS’s toolbox. The global Moran’s I value stood at 0.77,
with a p value below 0.01 and a Z score significantly exceeding
1.65, strongly suggesting that there was a notable autocorrelation
present in the FSV of Mengyin County. In order to more
intuitively analyze the spatial distribution pattern of the FSV, the
local Moran's | was calculated in the experiment; the clusters
were shown in Figure 4.

The high-high values were mainly distributed in the southern
mountainous areas, forming distinct contiguous zones; the low-
low values were distributed in the northern, central, and
southwestern regions, forming distinct surface agglomerations
locally. The distribution of low-high values and high-low values
failed to exhibit any distinct clustering, instead, it was solely
scattered around the peripheries of regions dominated by high-
high values and low-low values.
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Figure 4. Cluster types of estimated FSV
4.3 Limitations and future work

The next step in this paper's research involves several crucial
aspects. Firstly, during the field survey, the sample plots
collected were mostly high-accumulation plots, and there were
few samples with low accumulation. Therefore, the minimum
estimated accumulation was relatively high. So we plan to
expand the dataset by collecting more representative samples,
especially for poplars and robinia pseudoacacia. This
enhancement will ensure a more comprehensive and robust result
for FSV. Secondly, while the current study focuses on evaluating
the model's inherent accuracy, it lacks validation against third-
party data. As a result, we intend to conduct a comparative
analysis with external datasets to assess the model's reliability.
This step is crucial for validating the model's performance in real-
world scenarios. Additionally, we will explore potential
improvements to the model's architecture and hyperparameters to
further enhance its accuracy and efficiency. Overall, these works
aim to strengthen the reliability and applicability of our model for
estimating FSV in Mengyin County.

5. Conclusion

This study introduced a method for estimating FSV which jointly
used low-density point cloud data and the random forest
modelling algorithm. This method can greatly save manpower
and material costs compared to traditional forestry estimation
methods. Establishing models for individual tree species made
the models more targeted and applicable, laying a solid
foundation for calculating biomass and carbon storage in the next
work.
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