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Abstract 

 

Forest stock volume (FSV) stands as an important indicator in evaluating the potential for carbon sequestration. It is crucial for forest 

resource management at local, regional, and national scales. In order to achieve an accurate estimation of FSV, this article takes 

Mengyin County, Shandong Province, China as the research area, builds a random forest (RF) model for four tree species based on 

airborne Lidar data, and forms a monitoring system of "individual tree - grid - county" granularities. The results demonstrated that all 

four models exhibited excellent generalization capabilities, with no signs of overfitting. In the test phase, the R² of the poplar and pine 

models exceeded 0.9, while the R² of the cypress model was 0.81, and the rRMSE was controlled within 20%, indicating that the fitting 

effect of the three tree species models was better; the accuracy of the robinia pseudoacacia model was relatively poor, with R² of 0.60 

and rRMSE of 20.60%. This study provides a feasible method for estimating forest stock volume within the county, which provides 

strong technical support for forest resource management and planning, and helps promote sustainable forestry development. 

 

 

1. Introduction 

Forests are the mainstay of terrestrial ecosystems, their annual 

carbon sequestration accounts for about 2/3 of the entire 

terrestrial ecosystem (Post et al. 1982; He et al. 2022). They play 

an irreplaceable role in regulating global carbon balance, 

mitigating the greenhouse effect and tackling climate warming 

(Doelman et al. 2019). Accurately estimating the carbon 

sequestration potential of forests has important guiding 

significance for formulating action plans for addressing global 

climate change, increasing sequestration and reducing emissions 

under the carbon neutral target. 

 

FSV is one of the most important indicators for assessing carbon 

sequestration potential (Hu et al. 2020). Traditional methods for 

calculating above-ground forest stock volume mainly rely on 

field survey data, which have high reliability (Liu et al. 2018). 

However, with these methods, it is cumbersome and difficult to 

implement dynamic monitoring of forest carbon stocks on a large 

regional scale. This kind of tasks is suitable for methods based 

on remote sensing data, which has the advantages of large scale, 

non-contact, multi-temporal, and high spatial resolution.  

 

Traditional optical remote sensing techniques have certain 

limitations in monitoring forest resources. They mostly only 

provide texture and spectral information of the upper canopy of 

forests, and there exists a problem of easy saturation of spectral 

signals (Duncanson et al. 2010; Lu et al. 2012).The emergence of 

Lidar technology has effectively alleviated this issue. In 

particular, LiDAR data has a certain penetration ability for forests 

and can accurately describe the three-dimensional structure of the 

forest canopy (Nelson et al. 1984; Wilkes et al. 2018). Lidar data 

has been extensively utilized in research on the inversion of FSV. 

Yuan et al. (2021) combined airborne laser point cloud data with 

800 ground sample plots to establish a stock volume model for 

these four coniferous forests using stepwise regression and partial 

least squares regression. The results showed that partial least 

squares regression was superior to stepwise regression. 

McRoberts et al. (2012) assessed the utility of lidar-based 

stratifications for mean growing stock volume per unit area. The 

results indicated that the stratifications based on nonlinear 

logistic regression model predictions of volume obtained from 

lidar data reduced variances of mean growing stock volume 

estimates. Liu et al. (2023) used a multiple linear to explore the 

relationship between forest stock volume and multi-source 

remote sensing features. This study explored an effective LiDAR 

sample collection scheme for estimating forest stock and can 

provide a reference for future LiDAR sample collection. 

However, the majority of these studies tend to rely on either 

multiple linear regression models or nonlinear regression models. 

 

RF algorithm does not require statistical assumptions or 

predetermined model parameters. This algorithm can effectively 

handle nonlinear, interactive and collinear problems, while 

effectively avoiding overfitting (Sun et al. 2021). At present, RF 

has been applied in forest growth and forest carbon storage 

prediction (Mina et al. 2018; Jevšenak and Skudnik 2021; Tian 

et al. 2022). But, there are relatively few studies on the prediction 

of FSV using RF models for large-scale and multi-factor effects. 

 

Mengyin County is located in southeast central Shandong 

Province, China. With a high forest coverage rate, complex 

terrain and large carbon sequestration potential, it is a 

representative and suitable region for forestry carbon 

sequestration monitoring researches using remote sensing 

technology. Therefore, this article takes Mengyin County as the 

research area, conducts an airborne Lidar data FSV inversion 

experiment based on the RF model, and evaluates the 

applicability and possibility of this technology in the inversion of 

forest stock volume in Shandong Province. It provides a 

reference for the application of new technologies in forest 

resource survey in the future. 

 

2. Study area and Data used 

 

2.1 Study area 

The study is situated in the Yimeng Mountain Area in southeast 

part of Shandong Province, in Mengyin County, in the 
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coordinates 117°45′-118°15′E and 35 °27′-36°02′N (Mengyin 

County Bureau of Statistics, 2023). The total area of Mengyin 

County is 1,601.6 km², characterized by high-altitude terrain in 

the north and south and low-altitude terrain in the middle. The 

area has a warm temperate continental monsoon climate with 

four distinct seasons. The mean annual temperature is 14.4℃, 

and the mean annual precipitation is 813.8mm. 

 

The main dominant tree species in Mengyin County are poplar, 

pine, cypress, and robinia pseudoacacia, accounting for more 

than 95% of the county's forest area. The location of the study 

area and the distribution of main dominant tree species can be 

found in Figure 1. 

 

 

Figure 1. Location and the main dominant tree species in the 

study area. 

 

2.2 Data Source 

2.2.1 Lidar data 

 

The airborne Lidar data mainly comes from the Shandong 

Provincial 14th Five-Year Basic Surveying and Mapping 

Planning project, with a point density of 1pts/m². The sensor 

system is CityMapper-2L and the laser model is Hyperion2. The 

data's currency spans from April to June 2023. 

 

2.2.2 In situ sample plot data 

 

The sample data was obtained by measuring the tree height, 

diameter at breast height (DBH) and location of the trees, taking 

into full consideration the information such as tree species, age 

group, and topography.  

 

This study measured 71 plots with an area ranging from 1000 to 

1500 square meters. The tree species in the plots are four 

dominant tree species, containing more than 8,800 trees. 

 

2.2.3 Map of forest resources inventory data 

 

Map of forest resources inventory data comes from forestry 

departments. The data is current as of 2021. Based on this data, 

the vegetation coverage and types of tree species can be derived. 

 

3. Methods 

3.1 calculation of sample plot FSV 

In this research, a 20*20meter grid system is selected as the 

unified analytical units. The stock volume of each tree was 

calculated based on the "Timber Volume Table of Major Tree 

Species in Shandong Province". Based on the DBH of each tree, 

the corresponding volume values can be found in the table 

according to the DBH classification and different tree species. 

Then, the total volume of all trees contained within the standard 

grid range is calculated. Finally, 163 standard grid samples with 

FSV parameters were formed, including 36 poplars, 43 pines, 49 

cypresses, and 35 robinia pseudoacacia trees. 

 

3.2 Forest characteristic parameters extraction 

After point cloud rough classification, noise removal and 

vegetation reclassification, original Lidar data are ultimately 

transformed to normalized point cloud data. Among them, the 

high-vegetation points after vegetation reclassification are 

considered as trees. 

Based on normalized point cloud data, forest characteristic 

parameters are calculated according to a 20*20meter grid, mainly 

including height variables, density variables and vertical 

structure variables (Table 1). This article extracts totally 34 forest 

characteristic parameters. 

 

  

Variable type Characteristic variable  description formula 

height variables 

 

H_max The maximum high-vegetation height  

H_min The minimum of high-vegetation height  

H_mean The average of high-vegetation height  

H_stdv The standard deviation of high-vegetation height  

H_var The variance of high-vegetation height  

hp (hp25, hp50, hp75, 

hp95) 
height percentage Refer to Li et al. (2023) 

H_range Range of height distribution H_max-H_min 

H_cv coefficient of variation H_std/H_mean 

H_skew skewness 
∑ (𝐻𝑖 − H_mean)3𝑛

𝑖=1

(𝑛 − 1)H_stdv3  

H_Kurt kurtosis 
∑ (𝐻𝑖 − H_mean)4𝑛

𝑖=1

(𝑛 − 1)H_stdv4  

H_iqr interquartile range hp_75-hp_25 
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H_crr  
(H_mean-

H_min)/H_range 

Average_second_pow  √ 
∑ (𝐻𝑖)2𝑛

𝑖=1

𝑛

2

 

Average_third_pow  √ 
∑ (𝐻𝑖)3𝑛

𝑖=1

𝑛

3

 

density variables 

dq (dp_25, dp_50, dp_75, 

dp_95) 
density quantile Refer to Li et al. (2023) 

CC canopy density 

Total number of first 

return high-vegetation 

points/total number of 

returns points 

hvp high vegetation proportion  

vertical structure 

variables 

LIR Light Interception Rate 

1- (total number of 

ground points/total 

number of points) 

LAI_total Leaf area index 

Total number of high-

vegetation points/total 

number of first return 

points 

LAI_mean,LAI_stdv,LAI_

cv 

Mean, standard deviation, and coefficient of 

variation of leaf area index. Note that the leaf 

area index in this row is different from the 

LAI_total in the previous row, and is obtained 

after slicing at a certain height. 

Refer to Hopkinson et 

al. (2013) 

LAD_mean,LAD_stdv,LA

D_cv 

Mean, standard deviation, and coefficient of 

variation of leaf area density 

Refer to Hopkinson et 

al. (2013) 

VFP_mean,VFP_std, 

VFP_cv 

Mean, standard deviation, and coefficient of 

variation of the vertical foliage profile 

Refer to Knapp et al. 

(2019) 

Table 1. Forest characteristic parameters (Remark: where n is the high-vegetation numbers in each grid, 𝐻𝑖 refers to the height of the 

i-th high vegetation point in the grid)

3.3 Model construction 

The regression model is create using RF here in this paper, a 

popular machine learning method. The RF model is an ensemble 

learning method based on decision trees. It constructs a series of 

base learners through resampling, combines the prediction results 

of these base learners, and outputs the final prediction (Zhou 

2016). It has the ability to solve both regression and classification 

problems. The prediction formula for the RF regression model 

can be expressed as follows: 

 

�̅�(𝑋) =
1

𝑇
∑ {𝑔(𝑥, 𝜃𝑡), 𝑡 = 1,2, ⋯ , 𝑇}𝑡

𝑖=1               (1) 

 

Where 𝑔(𝑥, 𝜃𝑡) represents the t-th decision tree model, 𝜃𝑡  is a 

random variable that follows an independent distribution, x is the 

independent variable, and T is the number of decision trees. 

 

The main works of volume modelling are: (1) choosing 

characteristic variables. Pearson's correlation analysis is 

conducted between 30 forest characteristic variables and stock 

volume, and the parameters with higher correlation index (≥0.6) 

are selected as the characteristic variables of the random forest 

model. (2) creating training set and test set. The sample data are 

randomly divided into training set and testing set, 80% of them 

belong to the former and 20% belong to the latter. (3) the optimal 

combination of hyperparameters of the random forest model is 

determined by grid searching strategy. (4) building the models. 

Considering the heterogeneity of different tree species, this paper 

establishes models for the four dominant tree species respectively.  

 

3.4 Model assessment method 

Two statistical indicators, the coefficient of determination(R²) 

and the relative root mean square error(rRMSE), were chosen to 

assess the performance of the RF model. The formula is as 

follows. 

𝑅2 = 1 −
∑ (𝑦𝑖−�̂�𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−�̅�)2𝑛
𝑖=1

                                      (2) 

 

𝑟𝑅𝑀𝑆𝐸 =
√

1

𝑛
∑ (𝑦𝑖−�̂�𝑖)2𝑛

𝑖=1

�̅�
                                      (3) 

 

Where 𝑦𝑖  represents the measured FSV, y̅ is the mean measured 

FSV, �̂�𝑖 is the predicted FSV, i is the same index, and n is the 

grid sample plots number. 

 

4. Result and Discussion 

4.1 Model assessment results 

 

In this paper, the fitting quality of the models was tested by the 

R² and rRMSE. The results (Table 2) shown that the four models 

had good generalization ability and there’s no overfitting. In the 

training phase, the pine model had the best performance with the 

highest R²=0.97 and smallest rRMSE=10.26%. The poplar model 

was second with an R²=0.95 and rRMSE=11.19%. This model 

was followed by the cypress model with an R²=0.88 and 

rRMSE=13.81%. The robinia pseudoacacia model had the worst 

performance with the smallest R²=0.61 and highest 

rRMSE=19.36%. In the test phase, it was clear that the pine 
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model also performed the best among the four models (R²=0.94, 

rRMSE=18.10%); the next best was the poplar model, with an 

R²=0.91 and rRMSE=15.25%; the cypress was third with an 

R²=0.81 and rRMSE=18.30%; the robinia pseudoacacia model 

performed the worst, with the smallest R²=0.60 and highest 

rRMSE=20.60%. 

 

Tree species 
Training set accuracy Test set accuracy 

R² rRMSE R² rRMSE 

poplar 0.95 11.19% 0.91 15.25% 

cypress 0.88 13.81% 0.81 18.30% 

pine 0.97 10.26% 0.94 18.10% 

robinia 

pseudoacacia 
0.61 19.36% 0.60 20.60% 

Table 2. Accuracy assessment of four dominant tree species 

models. 

 

4.2 Map of the FSV estimation 

 

Through the map of forest resources inventory data, the forest 

area of Mengyin County was extracted, with a total of 592,169 

20*20m grids data. According to the experimental results, the 

stock volume in Mengyin County was mainly distributed in the 

southwest and northeast regions. The major types of landforms 

of the two regions were low mountains and hills. The Figure 2 

shown that the FSV in Mengyin County ranged from 0.97m3 to 

10.21m3. Among the tree species, poplar had the largest total 

stock volume, accounting for 44% of the total; pine was second, 

accounting for 40%; cypress accounted for 10%; and robinia 

pseudoacacia accounted for 6%.  

 

 
Figure 2. Map of the FSV estimation in Mengyin County 

 

4.3 Spatial pattern analysis of FSV 

 

After the entire FSV in Mengyin County was estimated, its 

spatial pattern was analyzed. The distribution of the stock volume, 

including its direction and range, was described using the 

standard deviation ellipse, and its spatial autocorrelation was 

described using Moran's I. 

 

The standard deviation ellipse is a spatial statistical technique for 

measuring the distribution pattern of geographical elements (Liu 

et al. 2021). It can be used to analyze the spatial distribution 

characteristics of FSV in through parameters of standard 

deviation. The Figure 3 illustrated that the ellipse centered at 

118.0086°E, 35.6976°N, with a major axis of 24.4km and a minor 

axis of 13.6km, can cover about 60% of FSV in Mengyin County. 

The direction of the principal axis of the standard deviation 

ellipse for FSV in Mengyin County was oriented at 14° north by 

east, suggesting a primary concentration of storage volume 

within the county towards the southwest-northeast axis. 

 

 
Figure 3. The distribution of standard deviation ellipse of FSV 

 

Global Moran’s I of FSV in Mengyin County was calculated 

using ArcGIS’s toolbox. The global Moran’s I value stood at 0.77, 

with a p value below 0.01 and a Z score significantly exceeding 

1.65, strongly suggesting that there was a notable autocorrelation 

present in the FSV of Mengyin County. In order to more 

intuitively analyze the spatial distribution pattern of the FSV, the 

local Moran's I was calculated in the experiment; the clusters 

were shown in Figure 4.  

 

The high-high values were mainly distributed in the southern 

mountainous areas, forming distinct contiguous zones; the low-

low values were distributed in the northern, central, and 

southwestern regions, forming distinct surface agglomerations 

locally. The distribution of low-high values and high-low values 

failed to exhibit any distinct clustering, instead, it was solely 

scattered around the peripheries of regions dominated by high-

high values and low-low values. 
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Figure 4. Cluster types of estimated FSV 

 

4.3 Limitations and future work 

 

The next step in this paper's research involves several crucial 

aspects. Firstly, during the field survey, the sample plots 

collected were mostly high-accumulation plots, and there were 

few samples with low accumulation. Therefore, the minimum 

estimated accumulation was relatively high. So we plan to 

expand the dataset by collecting more representative samples, 

especially for poplars and robinia pseudoacacia. This 

enhancement will ensure a more comprehensive and robust result 

for FSV. Secondly, while the current study focuses on evaluating 

the model's inherent accuracy, it lacks validation against third-

party data. As a result, we intend to conduct a comparative 

analysis with external datasets to assess the model's reliability. 

This step is crucial for validating the model's performance in real-

world scenarios. Additionally, we will explore potential 

improvements to the model's architecture and hyperparameters to 

further enhance its accuracy and efficiency. Overall, these works 

aim to strengthen the reliability and applicability of our model for 

estimating FSV in Mengyin County. 

 

5. Conclusion 

This study introduced a method for estimating FSV which jointly 

used low-density point cloud data and the random forest 

modelling algorithm. This method can greatly save manpower 

and material costs compared to traditional forestry estimation 

methods. Establishing models for individual tree species made 

the models more targeted and applicable, laying a solid 

foundation for calculating biomass and carbon storage in the next 

work. 
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