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Abstract: 

 

Epipolar images can reduce conjugate points searching from a two-dimensional to a one-dimensional space, which significantly 

improves the robustness and efficiency of dense matching. However, two images matched the lack of redundancy and suffered from 

occlusions. The third image could introduce two more stereos and improve the accuracy and completeness of the three-dimension 

reconstruction, which were adopted by spaceborne three linear cameras (TLCs), the ALOS PRSIM and ZY-3. In this study, we 

propose a new triplet epipolar images generation method for spaceborne TLCs. Triplet epipolar images were defined as any two of 

the three epipolar image pairs. The triplet epipolar geometry requires the imaging rays of any conjugate point to be coplanar. For 

high-resolution satellite images, parallel projection can be used to approximate the imaging geometry of satellite images. Therefore, 

a coplanar principal optical axis is a fundamental requirement for spaceborne TLCs. We propose a general workflow to generate 

triplet epipolar images (TEIs), which includes free-net bundle adjustment of TLCs, building a triplet epipolar geometry, correcting 

the y-parallaxes, and generating a rational function model (RFM) for TEIs. The ZY3-02 satellite images were used to validate the 

proposed method. The root means square error (RMSEs) of the free-net bundle adjustment in the image space was 0.185 pixels, 

which proved the fine intrinsic accuracy. After compensation, the RMSEs of the y parallaxes of the three epipolar image pairs were 

0.295, 0.310, and 0.370 pixels. Owing to the simple geometry of the TEIs, the RMSEs of the RFM replacements were within 0.001 

pixels.  

 

 

1. Introduction 

Epipolar images create all conjugate points of two images in the 

same row, which are generated after relative orientation or 

bundle adjustment. Hence, epipolar images can reduce the two-

dimensional correlation to one dimension along the epipolar 

line for three-dimensional (3D) reconstruction with two images, 

which was adopted in photogrammetry 50 decades ago (Helava 

and Chapelle, 1972). Correlation methods have evolved from 

normalised cross-correlation (NCC) to semiglobal matching 

(SGM) (Hirschmuller, 2008) and machine learning (Poggi et al., 

2022). However, epipolar images play a vital role in 3D 

reconstruction. Moreover, the reliability of the dense matching 

between the two images is weak because of the lack of 

redundant observations. Triplet stereo images from three linear 

cameras (TLCs) and agile satellites (Loghin et al., 2020) were 

used for 3D reconstruction (Raggam, 2006).  

 

Epipolar linear push-broom cameras have been studied since 

SPOT-1 (Otto, 1988; Zhang and Zhou, 1989). Epipolar 

geometry depends on the sensor models of high-resolution 

satellite images (HRSIs). Gupta and Hartley (1997) and Habib 

et al. (2005) studied the epipolar geometry of linear push-broom 

cameras under a line-central projection with constant velocity 

and attitude. In such cases, the epipolar lines are hyperbolic. 

Ono (1999) proved that the epipolar line is straight when the 

affine model is used as a sensor model for HRSIs. Kim (2000) 

derived hyperbola-like curves using rigorous sensor models. 

The absence of physical meaning makes epipolar geometry of 

rational function model (RFM) complex. Ye et al. (2009) 

derived a hyperbolic epipolar geometry with zero elevation and 

calculated the coefficients using RPCs. In general, the epipolar 

curve of a push-broom camera is hyperbolic, whereas a straight 

line can be used in some cases. It is difficult to derive the 

epipolar curves for HRSIs using geometric sensor models. 

 

Several quasi-epipolar image-resampling methods have been 

proposed for HRSIs. These methods can be categorised into two 

types: object space and image space. In the case of an object, 

the epipolar direction in the object space is determined using a 

geometric sensor model, and both images are rectified with a 

reference elevation along the epipolar direction (Wang et al., 

2011). This method is based on the affine model, in which the 

epipolar lines are straight and parallel. However, HRSIs are 

line-centred projections. Hence, a vertical parallax exists for the 

entire image. In the image space, the epipolar curves are 

determined by fitting the conjugate or projected points. Zhang 

and Zhou (1989) used the left scanning line as the epipolar line, 

as suggested by Dowman (Dowman, 1984). Moreover, they 

estimated the polynomials of the right epipolar line using 

conjugate points. Kim (2000) derived a local epipolar line using 

the projected points. Pan et al. (2011) extended the endpoints to 

obtain global epipolar lines and reconstructed RFMs for 

epipolar images. A similar approach has been developed 

independently (Oh et al., 2010).  

 

The geometric constraints of the three images were recognised 

by Mikhail (Mikhail, 1962). Yang et al. (2023) proposed a 

minimum parameter solution for the trifocal tensors of HRSIs in 

an affine geometry. These studies demonstrate the general 

constraints for the three images. Some photogrammetrists have 

noticed that the epipolar image pair can be extended to the third 

image of TLCs (Bhalerao et al., 2013; Yue and Tang, 2022). 

This is because the epipolar planes of TLC images are coplanar 

(Pan, 2017). However, the triplet epipolar geometry remains 

unknown. 

 

In this study, we present a general case of triplet epipolar 

imaging. Subsequently, workflows for the generation of triplet 

epipolar images (TEIs) are proposed, including the relative 

orientation, building triplet epipolar geometry, parallax 

compensation for perspective approximation, and RFM 
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generation. The TLC images were used to validate the proposed 

method. 

 

2. Triplet Epipolar Geometry 

2.1 Triplet Epipolar Images 

Point P was observed by three cameras, C1, C2, and C3, and 

there were three image points, p1, p2, and p3. According to the 

epipolar geometry, two of the three cameras can generate an 

epipolar plane that intersects two image planes with epipolar 

line pairs. If the three epipolar planes are coplanar, there are 

triplet epipolar lines, any two of which are epipolar line pairs. In 

general, there is a single set of triplet epipolar lines when object 

P is in the trifocal plane, which is determined by the three 

perspective centres.  

 

 

Figure 1. Triplet epipolar geometry of three perspective images. 

 

The same rows of the triplet epipolar images are triplet epipolar 

lines. In this case, the two conjugate epipolar lines induced by 

any image point p are the conjugate epipolar lines. Given all 

epipolar lines passing epipole, any points in one image should 

be collinear with the two epipoles corresponding to other two 

images. Therefore, the collinearity of the three projection 

centres is a necessary and sufficient condition. 

 

As a special case of weak-perspective geometry, the triplet 

epipolar geometry of a parallel projection requires all rays of the 

same object to be coplanar. Because of its very narrow field of 

view, an affine model has been developed for high-resolution 

satellite images (Fraser and Yamakawa, 2004; Okamoto et al., 

1999). As proven in previous studies, the affine model is 

insufficient for the sensor orientation of HRSIs (Jacobsen, 

2007), and a central perspective-to-affine conversion is required 

(Zhang and Zhang, 2002). A parallel projection can be used for 

the subimages of the HRSIs. However, the TLCs from the same 

orbit cannot guarantee the coplanarity of the three views, which 

would be three lines on an elliptical cone if the roll angles are 

not zero.  

 

2.2 Triplet Epipolar Images Generation 

The fundamental requirement of the triplet epipolar geometry is 

that all conjugate rays are coplanar. Therefore, the relative 

orientation should be the first step in making all corresponding 

points intersect with each other. The triplet epipolar geometry 

was examined. With parallel projections, the epipolar curves 

were straight lines. Subsequently, the conjugate points were 

used to correct the y-parallax, which was introduced using the 

parallel projection approximation. The RFMs were then 

regenerated for the TEIs.  

 

(1) Relative Orientation of TLCs 

 

Currently, the rational function model is used as a geometric 

sensor model for high-resolution satellite images and is defined 

as  
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where (R, C) are the normalised image coordinates, (P, L, H) 

are the normalised object coordinates, and , , ,ijk ijk ijk ijka b c d  

represent the coefficients of the cubic polynomials. 

 

Relative orientation generally estimates the minimised degrees 

of freedom, which depend on the epipolar geometry of the 

HRSIs. For TLC images, the relative orientation adds 

constraints to the sample directions, as illustrated by (Pan, 

2017). In general, free-net bundle adjustment can also cause all 

the corresponding rays to intersect with each other. This is an 

over-parameterisation of the relative orientation. The affine 

compensation model in image space is widely used for HRSIs.  
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where ec0 and er0 are the shift compensation in the sample and 

line directions, respectively. Moreover, er1 and ec1 are the drift 

compensation parameters because the line coordinate r is time-

related. 

 

(2) Building the Triplet Epipolar Geometry. 

 

Figure 2. Geometry of the triplet epipolar images. 

 

The triplet epipolar geometry was estimated through a parallel 

projection in the Cartesian coordinate system. First, the 

overlapping areas between the three images were calculated. 
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The central point P was then determined by minimising height 

hmin. Using this point, the corresponding image points, p1, p2, 

and p3, were calculated. When the maximum height hmax is 

given, the three object points P1, P 2, and P3 can be calculated 

using the RFM, as illustrated in Figure 2. 

 

The basic requirement for the triplet epipolar geometry is that 

the three vectors PP1, PP2, and PP3 are coplanar. Therefore, the 

triplet epipolar plane was estimated using two rays, PP1 and 

PP3. The projection errors for PP2 were calculated. A triplet 

epipolar plane exists if the projection error is within subpixels. 

The height range can be obtained using open-source DEM or 

RFM.  

 

Using the triplet epipolar plane PP1P3, a local coordinate 

system P-XEYEZE can be built. The XE axis was defined as P1P3, 

and the ZE axis was perpendicular to the X-axis in the triplet 

epipolar plane. YE is defined using the right-hand rule. In this 

coordinate system, the y-parallaxes are in the YE direction. With 

this definition, a similar transformation between the Cartesian 

coordinates and triplet epipolar coordinates can be performed as:  
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where 
C

ER  is the rotation matrix from triplet epipolar 

coordinates to Cartesian coordinates and (XC0, YC0, ZC0) is the 

origin of P-XEYEZE. 

  

Therefore, a grid PE in the XEYE plane was established to rectify 

the original images. The grid size was calculated using the 

finest spatial resolution. To correct the tilt of the P-XEYEZE 

coordinates, the image point PE was projected onto the reference 

height. The projected point was then transformed into geodetic 

coordinates and reprojected onto the original image space (r,c).  

 

The algorithm is as follows. 

• Transform the triplet epipolar image point (re, ce) to P-

XEYEZE coordinates (XE, YE, 0) with the grid size and 

origin.  

• Transform the grid point (XE, YE, 0) to Cartesian 

coordinates (XC, YC, ZC) with the similarity transform (3) 

as the origin of a ray. 

• Extraction of the Z-axis of P-XEYEZE in the ray direction 

• Making the ray intersect with the eclipse earth with 

reference height, the intersection corresponds to the 

ground point (X, Y, Z). 

• The Cartesian coordinates (X, Y, Z) were transformed into 

geodetic coordinates (lat, lon, h). 

• Calculate the image coordinates (r,c) using the RFM after 

bundle adjustment. 

 

(3) Correction of the y-parallax 

 

The algorithm above operates when the rays are parallel to the 

affine model. Owing to the central perspective in the sample 

direction, a y-parallax was introduced.  

 

The conjugate points of the TCLs were inversely transformed 

into TEIs using the above algorithm. Subsequently, the 

corresponding points in the TEIs were used to estimate the 

affine compensation model in the y-direction as follows:  
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where (re1,ce1) and (re3,ce3) are the coordinates in the epipolar 

images; 21r and 23r  are the y-parallaxes, which were 

calculated using re1, re2, and re3; and f1, …, f6 are the affine 

parameters. These parameters can be calculated using a least-

squares estimation. Combining the above y-parallax correction 

with algorithm, the triplet epipolar images can be generated.  

 

(4) Rebuilding the RFM for TEIs 

 

The RFM of triplet epipolar images can be reconstructed in a 

terrain-independent manner (Tao and Hu, 2001). To build the 

grids of the control points, several elevation layers were used to 

calculate the ground points (X,Y and Z), as mentioned in the 

algorithm. Checking grids were used to evaluate replacement 

accuracy. 

 

3. Experiments and Discussions 

3.1 Datasets and Experiments 

The ZY3-02 TLCs are forward (FWD), nadir (NAD), and 

backward (BWD) cameras. Furthermore, the ground sample 

distance (GSD) of NAD was 2.1 m, while the GSD of FWD and 

BWD was 2.3 m in sample and 2.5 m in line. The dataset 

covering Changsha obtained on 13 February 2017 was used for 

the experiments. The roll angle of platform was approximately 

−4.05 , and further details are presented in Table 1. The 

elevation ranged from 0 to 681 m. 

 

Cameras FWD NAD BWD 

Image width (pixels) 24513 24513 24513 

Image height (pixels) 19996 23996 19995 

GSD in sample (m) 2.3 2.1 2.3 

GSD in line (m) 2.5 2.1 2.5 

Roll angle (°) -4.05 -4.05 -4.05 

Pitch angle (°) 0.226 0.229 0.233 

Yaw angle (°) -0.010 -0.010 -0.011 

Table 1. The dataset of the experiments. 

 

The zero y-parallaxes are the gold standard for epipolar imaging. 

However, the y-parallaxes were not superior in terms of the 

relative orientation accuracy. Therefore, a free-net bundle 

adjustment with highly accurate tie points was first conducted. 

Subsequently, TEIs were generated with and without the y-

parallax correction. The replacement accuracy of the RFM EPIs 

was verified. Finally, the y-parallaxes were validated using 

highly accurate conjugate points. 

 

3.2 Triplet Epipolar Images of ZY3-02 

Our previous work showed that sparse points were insufficient 

to illustrate intrinsic geometric properties such as distortions 

and attitude jitter(Pan et al., 2021). Therefore, very dense tie 

points (TPs) were extracted for the TLCs, feature tracking was 

performed, and only the tie points in three images were retained. 

Finally, Least Square Matching (LSM) was used to refine the 

TPs, and there were 424, 182 tie points. Owing to their similar 

texture, few TPs existed in the mountainous and downtown 

areas.  
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Figure 3. NAD residuals in the image space after bundle 

adjustment. 

 

The affine compensation model was used for the free-net bundle 

adjustment. The overall root mean square errors (RMSEs) in the 

image space were 0.164, 0.086, and 0.185 pixels in the sample, 

line, and image planes, respectively, proving the excellent 

accuracy of the ZY3-02 TLCs. The NAD residuals are shown in 

Figure 3. In addition, high-frequency attitude errors in the roll 

angle were observed, which may be introduced by the linear 

interpolation of attitude records and attitude noises (Pan et al., 

2016).  

 

The three image rays were almost coplanar. After building the 

triplet epipolar plane with ray PP1 and PP3, the reprojection 

errors of PP2 was 0.05 m, approximately 0.02 pixels, when the 

hmax was 681.7 m and hmin was −-2.4 m. The small projection 

errors might be introduced due to the roll angle. 

 

The TEIs were generated with and without y-parallax 

compensation. Image matching was used to check the y 

parallaxes of the TEIs. Compared with the original image, the 

epipolar image rotated 90in the counterclockwise direction 

because of the major relief displacement in the track direction 

for the TLCs. In this case, the row coordinates of the conjugate 

points must be identical. Therefore, the y-parallaxes were 

calculated using the differences in row coordinates for the three 

image pairs BWD-NAD, NAD-FWD, and FWD-BWD.  

 

Significant y-parallaxes were observed before compensation, as 

shown in Figure 4. To calculate the parallel axes, 330, 347 

conjugate points were extracted. The RMSEs of BWD-NAD, 

NAD-FWD, and FWD-BWD were 0.481, 0.422, and 0.735, 

respectively. The maximum parallaxes were greater than two 

pixels in FWD-BWD. The parallaxes in each row were close 

and varied with the row number. 

 

Figure 4. Y-parallaxes of the ZY3-02 TLCs without 

compensation: (a) BWD-NAD, (b) NAD-FWD, (c) FWD-BWD. 
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Figure 5. Y-parallaxes of the ZY3-02 TLCs with compensation: 

(a) BWD-NAD, (b) NAD-FWD, (c) FWD-BWD. 

 

After compensation, the y-parallaxes are significantly reduced, 

as illustrated in Figure 5. The RMSEs of 327 and 646 conjugate 

points were 0.295, 0.310, and 0.370 pixels, respectively. 

Compared to Figure 3, high-frequency attitude errors cause 

fringes in the column. However, the parallel axes were larger 

than the RMSEs of the orientations. As illustrated in Figure 5(b) 

and (c), nonlinear parallaxes existed with the line and sample 

coordinates, which might be caused by the circular orbit of the 

satellites.  

  

Datasets sample line image space 
RMSEs of FWD GCPs 6.30E-05 1.03E-04 1.21E-04 
RMSEs of NAD GCPs 1.61E-04 2.13E-04 2.67E-04 

RMSEs of BWD GCPs 1.06E-04 1.37E-04 1.73E-04 

RMSEs of FWD CKPs 1.60E-04 2.10E-04 2.64E-04 

RMSEs of NAD CKPs 6.11E-05 1.03E-04 1.20E-04 

RMSEs of BWD CKPs 1.04E-04 1.34E-04 1.70E-04 

Table 2. RMSEs of the RFM replacement (unit: pixels). 

 

Because of the simple geometry of the TEIs, the replacement 

residuals of the RFM were small. As shown in Table 2, the 

RMSEs of RFM replacement were within 3.0E-4 pixels in the 

sample, line, and image planes for all three images. Therefore, 

TEIs with RFMs can be directly used for 3D reconstruction. 

  

4. Conclusions 

Epipolar geometry is a fundamental constraint in stereo images. 

In this study, we demonstrated that TEIs exist if any of the 

conjugate rays are coplanar. Using parallel projection, the triplet 

epipolar geometry of TLCs was studied and a workflow was 

proposed to generate TEIs for TCLs. The workflows consisted 

of free-net bundle adjustment of TLCs, building the triplet 

epipolar geometry of TLCs, correcting the y-parallax, and 

generating RFM for TEIs. The proposed method was validated 

using ZY3-02 TLCs. The RMSEs of the free net bundle 

adjustment was 0.185 pixels, indicating an excellent intrinsic 

accuracy. In addition, y-parallax compensation, which can 

reduce the RMSEs of the y-parallaxes from 0.735 to 0.370 

pixels, is required. The RMSEs of RFM replacement were 

within 0.001 pixels. Dense matching using TEIs will be studied 

in the future.  
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