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Abstract

The creation of highly accurate and collaborative mapping algorithms is crucial for the progress of SLAM technology, as it greatly
improve the efficiency of building detailed maps. In the area of mapping based on single moving trajectory, DROID-SLAM
(Differentiable Recurrent Optimization-Inspired Design) by (Teed and Deng, 2021) stands out as an innovative method based on
deep learning, providing a visual-only solution that works with various types of camera, such as monocular, stereo, and RGB-D.
Its ability to create maps with excellent accuracy makes it superior to well-known methods like ORB-SLAM3 by (Campos et al.,
2021). Despite its impressive individual mapping performance, DROID-SLAM does not account for scenarios involving multi-
session data or the collaborative map creation by multiple agents. To address this problem, we propose two collaborative map
construction algorithms built upon DROID-SLAM. Compared to prior methods that compute explicit relative transformations for
loop closures, our algorithm leverages the power of deep learning-based bundle adjustment, using dense per-pixel correspondence,
to merge into a globally consistent state. These algorithms have been thoroughly tested with stereo and RGB-D models. we
validated the effectiveness of our proposed algorithms on both public and self-collected datasets, showing higher accuracy than
prior methods. By leveraging the strengths of DROID-SLAM while addressing its limitations with our novel algorithms, we extend
the application scenarios of this method and provide a new way of thinking about collaborative mapping.

1. Introduction

Simultaneous Localization and Mapping (SLAM) is crucial for
robotics and augmented reality, enabling devices to map their
environment and locate themselves within it. Among the vari-
ous approaches in SLAM, Visual SLAM and LiDAR SLAM
stand out as prominent options. Visual SLAM is more cost-
effective and has become widely adopted. However, it presents
challenges, as depth is inferred rather than directly measured,
unlike in LiDAR SLAM, where depth measurement is direct
and precise. Despite this, Visual SLAM captures rich visual in-
formation, offering valuable data that LiDAR SLAM does not.
In our research, we focus on employing dense Visual SLAM
as our foundational technique. This choice allows us to lever-
age the comprehensive visual information it provides. Recent
advancements focus on expanding SLAM’s capabilities for lar-
ger, more complex areas through multi-session and collaborat-
ive mapping. Multi-session SLAM merges maps from separate
sessions into one, ideal for large areas or when single-session
mapping is limited by factors like time or battery life. Col-
laborative SLAM, involving multiple agents mapping together,
accelerates the process and improves map quality, requiring ad-
vanced coordination and data sharing.

Collaborative mapping relies on the foundation of single tra-
jectory mapping, making the choice of a precise algorithm es-
sential. ORB-SLAM3, by extracting and tracking ORB fea-
tures from image sequences, estimates camera motion and op-
timizes mapping, yet struggles in environments lacking distinct
textures. SVO by (Forster et al., 2017), employing direct pixel
intensity for tracking and optimizing camera motion, faces ac-
curacy issues in feature-sparse scenes. LSD-SLAM by (Engel
et al., 2014) adopts a direct approach, using pixel intensities for
mapping and motion estimation without feature point extrac-
tion, but as a monocular system, it struggles with scale consist-
ency over time due to its inability to gauge absolute scale from

a single image.

DROID-SLAM enhances visual SLAM with deep learning, en-
abling robust camera pose tracking through advanced feature
extraction from entire images, which proves effective even in
environments lacking texture, can well address these shortcom-
ings. The system supports a variety of camera types for versat-
ile application. Deep neural networks are integrated to predict
dense optical flow correspondences. Representative keyframes
with sufficient baseline margins are selected for algorithm ef-
ficiency based on average flow distance. Additionally, the net-
work predicts per-pixel uncertainty metrics to mitigate the im-
pact of outlier correspondences. These metrics are further util-
ized by our collaborative mapping algorithm to identify confid-
ent overlapped areas between submaps.

Despite its advantages, the original DROID-SLAM lacked col-
laborative mapping capabilities. Building on its foundation and
leveraging its strengths, we introduce two collaborative map-
ping methods integrated into our novel ”Micro DROID Loop”
concept. Each method, known for its efficiency and robust-
ness, can be chosen based on the extent of the common viewing
areas. We’ve expanded the original algorithm, previously lim-
ited to single trajectory mapping, to support collaborative map-
ping. This enhancement allows our collaborative mapping to
surpass even more robust and precise multi-sensor fusion col-
laborative mapping algorithms in performance and also offers
a new approach for high-precision collaborative mapping in the
vision domain. Specifically, there are the following:

• The Micro DROID Loop concept is introduced as a fun-
damental unit in which two segments of keyframes within
a common visibility area are interconnected. First these
two sequences are connected in an optimal way. Then the
poses of the reference keyframes are fixed in their own
local coordinate system, while the poses of the keyframes
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to be aligned are set as unknown. Subsequently, by execut-
ing the DROID-SLAM algorithm within this connected se-
quence of keyframes, the new poses of the keyframes to
be aligned are determined. This process results in the key-
frames to be aligned having two sets of poses: the poses
in their own local coordinate system and new poses that
are aligned with the reference keyframes within the same
coordinate system.

• When there is a substantial overlap between maps, we em-
ploy the more time-efficient Method 1 within the Micro
DROID Loop unit. This simply requires calculating the
transformation matrix between the own local coordinate
system and new poses of the keyframes to be aligned in
the overlapping area, and then applying this transforma-
tion matrix to all keyframes to be aligned throughout the
entire area. Due to the use of a deep learning-based camera
relocation coordinate calculation method, the accuracy of
the relocation coordinates for the new poses is improved,
so the obtained transformation results are more stable.

• When the overlapping area between maps is small, focus-
ing solely on high time-efficiency local pose transforma-
tions can lead to local optimizations that fail globally, res-
ulting in alignment failure between maps. Therefore, we
propose the more robust but less time-efficient Method 2.
In the Micro DROID Loop, we innovatively use the deep
learning-based optical flow from the DROID-SLAM fron-
tend to introduce a method for calculating new poses by
directly stitching two segments of keyframes together, en-
tirely eliminating the need for calculating transformation
matrices. Finally, we perform a backend optimization of
DROID-SLAM on the stitched sequence of keyframes to
be aligned.

To delve deeper into the two new collaborative mapping meth-
ods proposed for DROID-SLAM in this paper, we will first
briefly introduce related works. This includes the process of
single trajectory mapping with DROID-SLAM, as understand-
ing this process is crucial since collaborative mapping builds
upon it. To efficiently connect all sub-maps two by two, we will
introduce Prim’s algorithm by by (Prim, 1990). We also cover
image matching algorithms used in the collaborative mapping
process, as quickly and efficiently identifying shared visibility
areas is essential. Additionally, we discuss multi-sensor fusion
collaborative mapping algorithms to compare their results with
our visual collaborative mapping outcomes, demonstrating the
superiority of our approach. Next, we will meticulously out-
line the entire collaborative algorithm process, with a focus on
maximizing the advantages of the original DROID-SLAM al-
gorithm. Finally, we will conduct two experiments to validate
our proposed methods: one based on a public dataset assess-
ing the overall pose sequence of the camera, and another using
a self-collected dataset to evaluate the precision of the point
clouds generated by collaborative mapping.

2. Related Works

Using DROID-SLAM, high-precision construction of sub-maps
for single trajectories can be achieved. During the process of
submap construction, video streams are utilized as input for
real-time reconstruction and localization. The frontend handles
frames, extracts features based on deep learning with optical
flow, selects keyframes, and performs local bundle adjustment,
while the backend conducts global bundle adjustment on the

history of keyframes. Within the frontend process, upon ini-
tialization completion, a frame graph with edges between ini-
tialized keyframes within 3 adjacent frames is established. The
frontend directly operates on the video stream, maintaining key-
frames and a frame graph with visually connected keyframe
edges. The poses and depths of keyframes are actively optim-
ized. The backend utilizes the distance matrix between key-
frames formed by optical flow based on deep learning to con-
duct global bundle adjustment and indirectly realizing the func-
tionality of loop detection. So we have obtained the coordinates
of each sub-map within its own local coordinate system before
doing the collaborative map building.

The order of connecting sub-maps pairwise is crucial, as a
greater overlap area implies higher precision achievable in col-
laborative mapping. To address this sequencing challenge, we
employ Prim’s algorithm, a method for finding the minimum
spanning tree in a weighted undirected graph. A minimum
spanning tree is a tree structure that includes all the vertices
of the graph, with the sum of the weights of its edges being
the smallest possible. The core idea behind Prim’s algorithm is
to start from a random vertex and progressively add edges and
vertices to the tree until it encompasses all vertices in the graph.
We can abstract the initial reference map as a starting random
point, the other sub-maps to be aligned as additional vertices,
and the degree of overlap between maps as the weight. The
higher the overlap, the lower the weight.

To expedite the identification of approximate common view-
ing areas between keyframe sequences of different sub-maps,
we prioritize time efficiency over high precision in matching.
This approach allows for the initial detection of common view-
ing areas, which, upon confirmation, are meticulously connec-
ted through our proposed collaborative mapping algorithm. We
utilize the FBOW (Fast Bag of Words) by part of (Muñoz-
Salinas and Medina-Carnicer, 2020) algorithm, an advanced it-
eration of the conventional Bag of Words model by (Zhang et
al., 2010), designed for faster processing and reduced memory
usage while maintaining effective matching capabilities. In
contrast, while high-precision image matching algorithms like
FV(Fisher Vectors) by (Klein et al., 2015) offer greater com-
putational complexity and accuracy, their extensive processing
time makes them less suitable for the preliminary phase of com-
mon viewing area detection.

By comparing the accuracy of our visual collaborative mapping
approach with those based on multi-sensor fusion, we demon-
strate its superiority even with fewer sensors. We examine
three representative multi-sensor fusion collaborative mapping
algorithms: ORB-SLAM3 integrates IMU and traditional cam-
era setups for robust pose estimation and higher map precision
in collaborative settings; COVINS by (Schmuck et al., 2021)
focuses on visual-inertial collaboration, excelling in processing
data from cameras and IMU across networked scenes with effi-
cient data sharing and optimization for scalable, accurate map-
ping; and MAPLAB 2.0 by (Cramariuc et al., 2022), which,
besides cameras and IMU, incorporates LiDAR data for en-
hanced environmental modeling and navigation solutions cru-
cial in complex mapping tasks. Despite their integration of mul-
tiple sensors for high mapping accuracy, our experiments show
that our camera-only collaborative mapping surpasses them.

3. Methodology

In this section, we will first provide an overview to our collabor-
ative mapping process in Section 3.1, followed by a detailed ex-
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Figure 1. Flowchart of the collaborative mapping process.The entire flowchart begins with keyframe extraction in the top left corner.
The red box represents the area extended in the reverse direction and the gray arrow represents the possible direction of the forward
extension. In method 2, the yellow and purple line segments represent the two keyframe sequences that were recombined, and the green
represents the part that needs local backend optimization later.

planation of the submap linking algorithm in Section 3.2, which
identifies overlap keyframes for linking submaps. Next, in Sec-
tion 3.3 and Section 3.4, we validate linked candidates before
passing them to the core of our algorithms for submap merging,
as outlined in Section 3.5. Finally, in Section 3.6, we utilize
global backend optimization to refine overall consistency.

3.1 Overview

In Figure 1, the stages of the collaborative map building process
are depicted, starting with the extraction of keyframes from im-
age sequences.This step is crucial as it significantly reduces the
data volume for collaborative mapping while ensuring its qual-
ity, by focusing solely on keyframes. Leveraging the consider-
able advantages of DROID-SLAM’s use of deep learning-based
optical flow for keyframe selection, we can minimize the key-
frames that require processing to the greatest extent.

After extracting keyframes, using Prim’s algorithm and FBOW
algorithm to connect the sub-maps sequentially based on the
degree of similarity between them. For each two submaps to
be aligned together, extracting common viewing within them.
Then the merging strategy is determined based on the overlap-
ping ratio between submaps. Specifically, if the overlap exceeds
half of their area, the process employs method 1, as shown in
the upper half of the Micro DROID Loop unit in figure 1. This
method calculates the pose transformation matrix, which is then
applied to all keyframes of the submap to be aligned, aligning
it with the other reference submap. If the overlap is less than
half, method 2 is applied instead. Illustrated in the lower half of
figure 1, this method directly calculates the new poses for the

submap to be aligned in the reference coordinate system of ref-
erence submap, bypassing the need for a transformation matrix.
But this method needs to do the local backend optimisation later
for the whole submap to be aligned with new poses. This ap-
proach is generally used when the spatial relationship between
the submaps is less direct.

After choosing the appropriate method, global backend optim-
ization which is the same as the backend process using DROID-
SLAM method in two submaps construction plays a crucial
role. This optimization process fine-tunes the merged map, en-
suring that it is both coherent and accurate. It adjusts the poses
of two submaps based on the overall structure, reducing errors
and discrepancies. The iterative nature of this process means
that after each pair of submaps is merged and optimized, the
system checks if there are still unmerged submaps remaining.
The procedure repeats, merging submaps and optimizing the
global structure, until all have been integrated into a unified
map.

The above describes the whole process of collaborative map-
ping, the following will delve deeper into the details of collab-
orative mapping.

3.2 Submap Links Sequences

To efficiently link submaps in a mapping system, we employ
Prim’s algorithm with a unique approach, where each submap,
represented by its keyframes, is considered a node. The process
begins by selecting a base submap as the initial node, setting
the stage for the linkage of subsequent submaps. Central to
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this approach is the use of FBOW algorithm to detect overlaps
between pairs of submaps. By calculating the overlap ratio, we
assess the degree of visual similarity between submaps. This
ratio is instrumental in identifying which submaps share signi-
ficant portions of their views. We then use the reciprocal of this
overlap ratio as the weight for the links between nodes. This
method ensures that connections between submaps with higher
visual similarities are prioritized, leading to a more intuitive
linking strategy. Through Prim’s algorithm, we construct a min-
imum spanning tree from the base submap, linking all submaps
in a way that minimizes the overall connection weight. This
strategy achieves an effective and efficient linkage of submaps,
ensuring that those with greater visual overlaps are closely con-
nected. By implementing this method, we ensure a streamlined
process for integrating submaps, resulting in a detailed and ac-
curate map. At the same time, we can re-use the results of the
FBOW algorithm in the later overlapping views matching.

3.3 Micro DROID Loop

The Micro DROID Loop refers to a sequence of reference key-
frames and a sequence of to-be-aligned keyframes within the
overlapping views, where the poses of the reference keyframes
are known and initialized, and the poses of the to-be-aligned
keyframe sequence are unknown. Since the algorithm starts
from the reference keyframe sequence, in order to ensure that
the poses of the to-be-aligned keyframe sequence is computed
stably, we need to increase the number of reference keyframes
inversely, in addition to the keyframes of the overlapping view,
until the total number of reference keyframes in the Micro
DROID Loop reaches a threshold of 20 (shown with reverse
extension area in figure 1). If there are not enough reference
keyframes then this overlapping view is discarded.

Direction of camera movement

Baseline keyframes sequence

Keyframes sequence to be aligned

Overlapping Views

i

j k

Comparison of similarity scores

Figure 2. Principle of linking two sub-sequence keyframes

Because we need to combine two keyframes sequences, the way
the two keyframe sequences are linked is very important, as
shown in Figure 2. In any overlapping view of the two key-
frame sequences, the last keyframe i of the reference keyframe
sequence is picked, and also the first keyframe j and the last
keyframe k of the to-be-aligned keyframe sequence are picked.
the group with a higher score is selected by calculating the sim-
ilarity scores of i-j, i-k using FBOW, and then the direction of
advancement is decided by the picked j or k. The higher the
score, the thicker the corresponding connecting line segment
shown in Figure 2. Along this direction, we can somewhat in-
crease the number of keyframes to be aligned without overlap-
ping views (shown with Forward extension arrow direction in
figure 1) to ensure that the backend process of this mini-loop is
more stable.

3.4 Connection validity determination

Weight 1

Weight 2

Weight 3

Confidence 1

Confidence 2

Confidence 3

Threshold

Figure 3. Compare the mean of three confidences with the
threshold

Given that we determine camera poses using an optical flow
method based on deep learning, the success certainty of the op-
tical flow method is critical. After completing the link in each
region with overlapping views, we need to judge whether the
optical flow method at the link of two keyframe sequences is
successful. The error function of DROID-SLAM is defined by
minimizing the reprojection error among multiple pairs of key-
frames within a frame window and assigns a suitable confidence
to each pair of keyframes through deep learning. We use this
confidence to determine the success of the optical flow method
at the link part. As shown in Figure 3, if the average confidence
of the last three frames of the reference keyframe sequence and
the first frame of the to-be-aligned keyframe sequence exceeds
a certain threshold, then the optical flow method is deemed to
be successful, meaning the link is successful. Such a success
signifies not only the effectiveness of the optical flow in this
context but also ensures the integrity and reliability of the con-
nection established between these overlapping views.

3.5 Two Collaborative mapping methods

In order to clearly state our algorithm, we list the pseudo-code
of the algorithm 1. We then describe the algorithmic process
and explain the superiority of our algorithm in a textual manner
with figure 1.

The upper half of Micro DROID Loop unit in Figure 1 de-
scribes the principle of the first method of collaborative map-
ping, which is particularly effective for submaps with a high
number of overlapping view regions. For two submaps com-
posed of sequences of keyframes that need to be aligned, the
results of FBOW algorithm is utilized to identify all overlapping
view regions. For each of these regions, the connection and ex-
tension methods described in the previous section are applied,
followed by a determination of the connection’s success. If
the connection proves successful, which means the optical flow
method is effective, the poses of the keyframes to be aligned
are treated as unknowns, while the poses of the reference key-
frames are considered known quantities. These known poses
are derived from the original locations obtained after mapping
the submaps independently. However, if the reference map has
previously been transformed into another coordinate system to
ensure consistency, the coordinates of the transformed coordin-
ate system are used instead. Subsequently, a localized recon-
struction of each successfully connected overlapping view re-
gion is performed. This process enables the sequence of key-
frames within the overlapping region that awaits alignment to
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Algorithm 1 Collaborative mapping medthods
1: S1: submap with reference keyframes
2: S2: submap with to-be-aligned keyframes
3: MDL: Micro DROID Loop
4: TRS: Transformation matrix calculation process
5: Ω, r = FINDOVERLAPSUSEFBOW(S1, S2)
6: if r > overlapThres then
7: Method 1:
8: Toverlaps = {}
9: for each oi ∈ Ω do

10: oexi = EXTEND(oi)
11: c = COMPUTECONFIDENCE(oexi )
12: if c > confidenceThres then
13: newSex

2 = MDL(oexi )
14: Ti = TRS(newSex

2 , Sex
2 )

15: Toverlaps = Toverlaps ∪ Ti

16: end if
17: end for
18: Tbest = QUARTILECALCULATION(Toverlaps)
19: Saligned

2 = TRANSFORMATION(Tbest, S2)
20: else
21: Method 2:
22: obest = CONFIDENCESELECT(Ω)
23: oexbest = EXTEND(obest)
24: Spart1

2 ∪ Spart2
2 ← S2

25: newSeq1 ← oexbest[S1] ∪ Spart1
2

26: newSeq2 ← oexbest[S1] ∪ Spart2
2

27: newSpart1
2 = MDL(newSeq1)

28: newSpart2
2 = MDL(newSeq2)

29: newS2 ← newSpart1
2 ∪ newSpart2

2

30: Saligned
2 = LOCALBACKEND(newS2)

31: end if
32: GLOBALBACKEND(S1, S

aligned
2 )

acquire coordinates under the new coordinate system. These
coordinates, along with the original coordinates obtained from
independent mapping, are then used to calculate the transforma-
tion matrix. Finally, applying the derived transformation matrix
to all the keyframe sequences that need to be aligned accom-
plishes the preliminary alignment. This method only requires
consideration of coordinate transformations within overlapping
view regions, making it highly time efficient. However, if there
are only a few overlapping view regions between two submaps,
this approach may not yield good alignment results. This is be-
cause it can only ensure that the local map alignment is optim-
ized. Even minor changes to the transformation matrix can lead
to significant errors in the camera poses far from the connec-
tion points. These substantial errors cannot be resolved through
simple backend optimization, rendering this method less robust.
However, between submaps with high overlapping areas, this
method is very time efficient, which is the biggest advantage of
this method.

With fewer overlapping ratio, we have proposed a second al-
gorithm that is significantly more robust, as illustrated in the
lower half of Micro DROID Loop unit in Figure 1. However,
compared to the first method, this approach is not as time effi-
cient because it involves considering all keyframes of the map
to be aligned and it needs backend optimisation one more time.
Initially, we select the segment with the best optical flow con-
nection effect among all overlapping view regions, specifically
the overlapping region in the reference keyframe sequence with
the highest average confidence for the last three keyframes.
Next, after determining the direction of the connection as de-
scribed in sec 3.3, we create two new sequences as shown in
the lower half of the Micro DROID Loop unit in Figure 1 with
yellow and purple lines. One new sequence includes the refer-

ence keyframe containing the common-view region extended in
the reverse direction with the keyframes to be aligned along the
connection direction up to the first or last sheet of the entire seg-
ment of keyframes to be aligned; the other new sequence like-
wise includes the reference keyframe containing the common-
view region extended in the reverse direction with the remain-
ing keyframes to be aligned up to the last or first sheet of the
keyframes to be aligned. The poses of the reference keyframes
are given initial values, while the poses of the keyframes to be
aligned are set as unknowns. Through the reconstruction of
these two keyframe sequences into submaps, we can obtain the
coordinates of all keyframes to be aligned in the new coordin-
ate system without the need for coordinate transformation. Fi-
nally, local backend optimisation is performed on all keyframes
where the new pose is obtained (shown in Figure 1 with the
green line). This method significantly enhances the robustness
of the alignment process by leveraging the optical flow connec-
tions with the highest effectiveness and extending the keyframe
sequences in a manner that ensures a comprehensive and accur-
ate alignment.

3.6 Global backend optimisation

Global backend optimisation: We integrate the two keyframe
sequences for a comprehensive backend optimization. Through
the previous steps, the initial poses of these two keyframe se-
quences are unified within the same coordinate system. The
process of whole optimization directly employs the backend
component utilized during the independent mapping phase. By
leveraging the backend optimization processes established in
the initial mapping, we are able to refine the alignment and
poses of the keyframes, addressing potential inconsistencies
and improving the precision of the reconstructed environment.
This methodological continuity reinforces the integrity of the
mapping process, enabling a more seamless and accurate integ-
ration of keyframe sequences into the comprehensive environ-
mental model.

4. Experiment

We begin by validating the complementary nature of our two
proposed collaborative mapping methods (Sec 4.2), followed
by quantitative evaluations of camera pose accuracy using the
public EuRoC dataset (Sec 4.3). We then conclude with the
evaluation of the merged dense point cloud map using our self-
collected dataset (Sec 4.4).

Laser scanning backpackRGB-D camera

Figure 4. Personal dataset collection devices

4.1 Datasets preparation

To assess two collaborative mapping algorithms, we tested them
with the EuRoC MAV Dataset ((Burri et al., 2016)) for public
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data, focusing on its Stereo mode, and a self-collected data-
set using Azure Kinect DK and Heron’s LiDAR for personal
data. The public dataset’s diverse conditions and provided
ground truths allowed for precise algorithm evaluation. For the
personal dataset, we compared LiDAR’s detailed point clouds
against the camera-generated RGB point clouds, overcoming
the challenge of obtaining accurate camera poses. This dual-
dataset approach effectively demonstrates the algorithms’ ro-
bustness and accuracy. The deviced used for our dataset is
shown in the figure 4.

4.2 Complementary nature of two methods

In the first experiment, designed to validate the necessity of two
distinct collaborative mapping methods, we exclusively em-
ployed the Machine Hall sequences from the EuRoC dataset
for our evaluations. The Machine Hall dataset consists of five
sequential image sets, labeled MH01 through MH05. Utilizing
Fast Bag of Words (FBOW) for keyframe matching, we identi-
fied considerable overlapping areas between sequences MH01-
MH03 and between MH04-MH05, while the overlap between
MH03 and MH04 was notably very minimal, falling below our
overlap threshold.

By comparing these calculated poses with the ground-truth data
provided within the public dataset, we were able to compute
the Root Mean Square Absolute Trajectory Error (RMS ATE)
for both segments of the trajectories, serving as a measure of
alignment accuracy.

To underscore the necessity and effectiveness of the two col-
laborative mapping methodologies, we executed collaborative
mapping on various subsequence combinations, the results of
which, including time efficiency and precision metrics, are de-
tailed in Table 1.

Room Machine Hall

Sequences MH01-MH03 MH01-MH05

Evaluation Indicators RMS ATE (cm) Time Consuming (s) RMS ATE (cm) Time Consuming (s)

Method 1 1.7 62 55 131
Method 2 1.8 161 3.6 340

Table 1. Comparison of the performance of the two collaborative
mapping methods on EuRoC dataset

From the data presented in Table 1, it’s evident that the localiza-
tion accuracies of the collaborative mapping methods applied to
MH01-MH03, areas with more significant overlap, are compar-
able. Nevertheless, Method 1 distinguishes itself with markedly
higher time efficiency. This observation leads us to conclude
that in situations where there is a high degree of map overlap,
concentrating exclusively on the coordinate system transform-
ations of these overlapping areas is not only logical but also
markedly efficient.

However, when our analysis encompasses the entire sequence
range of MH01-MH05, the accuracy dynamics undergo a sig-
nificant shift. The sequences MH04 and MH05 demonstrate a
substantially reduced overlap with the initial three sequences,
leading to notable inaccuracies when solely relying on the co-
ordinate system transformations of the overlapping areas. To
counteract this, we employed the second approach to collabor-
ative mapping, which involves integrating calculations for both
overlapping and non-overlapping areas. This methodology not
only achieved accuracy comparable to that of the MH01-MH03
sequences using either method but also proved to be more ro-
bust.

Yet, this robustness comes at a cost: the approach necessitates
a near threefold increase in the time required for processing.
This substantial increase in time expenditure is attributed to the
need to incorporate a greater number of keyframes and to con-
duct an additional backend optimization process for each map

Figure 5. EuRoC dataset sub-maps collaborative mapping results. The different sequences of camera trajectories in the aligned map
are represented by different coloured breakpoints
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pairing. This finding indicates that while the inclusion of non-
overlapping areas into the mapping process improves accuracy,
it does so at the expense of significantly higher computational
time and resources, highlighting a critical trade-off between ac-
curacy and efficiency in collaborative mapping strategies.

4.3 Camera poses accuracy evaluation

In the second experiment, we evaluated the algorithmic accur-
acy of two methods by judging the poses accuracy of the cam-
era during motion on the whole EuRoC dataset and compared
it with the accuracy of other representative algorithms.

In assessing algorithmic accuracy, we first observe the results
of map merging after applying appropriate methods, as shown
in Figure 5. From left to right in Figure 5, the sub-map recon-
struction results of the Machine Hall from different perspectives
are initially presented, followed by the collaborative mapping
reconstruction results for MH01-MH03 and the collaborative
mapping reconstruction results from different perspectives for
MH01-MH05. Finally, the collaborative mapping reconstruc-
tion results for two Vicon Rooms are shown. In all collaborat-
ive mapping reconstruction results, the continuous color break-
points represent the camera trajectories of different sequences.

Subsequently, we quantitatively evaluated the accuracy of the
algorithm. This was done by comparing the Root Mean Square
Absolute Trajectory Error (RMS ATE) between the trajector-
ies post-collaborative mapping and the ground-truth trajector-
ies. We also compared these results with various outstanding
algorithms, as shown in Table 2.

In our comparative analysis between our algorithm and other
prominent algorithms such as COVINS, which integrates Iner-
tial Measurement Units (IMUs) for enhanced tracking accur-
acy, the multi-sensor integrated platform Maplab 2.0 known for

Room Machine Hall Vicon 1 Vicon 2

Sequences MH01-03 MH01-05 V101-103 V201-203

ORB-SLAM3 Stereo RMS ATE(cm) 2.8 4 2.7 16.3

COVINS RMS ATE(cm) 2.4 3.6 4.2 -

Maplab 2.0 RMS ATE(cm) 4.3 (On average)

Our Methods Method 1 Method 2 Method 1 Method 1

Our Stereo RMS ATE(cm) 1.7 3.6 3.1 1.6

Table 2. Comparison of the accuracy of various collaborative
mapping algorithms on EuRoC dataset

its versatility in handling various sensor inputs, and the well-
regarded ORB-SLAM3 algorithm that is a benchmark in sim-
ultaneous localization and mapping (SLAM) technology, our
findings indicate a significant improvement. Specifically, by
relying exclusively on camera inputs, our algorithm demon-
strates a universally higher precision in tracking and localiza-
tion throughout the camera’s motion. This not only underlines
the effectiveness of our approach but also highlights its superi-
ority in scenarios where only camera data is available, proving
its robustness and advanced capabilities in visual-based navig-
ation and mapping tasks.

4.4 Dense point cloud accuracy evaluation

The third experiment was designed to validate the accuracy of
the dense point cloud after reconstruction. We utilized self-
collected dataset, initially capturing images of a room divided
into two areas with an RGB-D camera. As illustrated in Figures
6’s Area 1 and Area 2, these two areas are roughly separated by
a bookshelf, with the shared view consisting of a portion of
the wall’s clock as highlighted in Figure 6. It’s noticeable that
these areas have limited shared views, allowing for the adop-
tion of the second collaborative mapping approach for recon-
struction. Subsequently, we employed a high-precision LiDAR
integrated with a camera and IMU device to model the entire
room, obtaining LiDAR point cloud data as shown in the lower

Area 1
Area 2

Collaborative Mapping with RGB-D Camera

Laser Mapping For Area 1 and Area 2

Comparison of RGB dense point cloud
and laser point cloud

Common viewing

C2C absolute 
distances (meters)

Count

Figure 6. Comparison of the accuracy of collaborative mapping dense point cloud and laser point cloud with schematic and histogram.
The schematic is in the top right corner and the histogram is in the bottom right corner, and the colours are shared between them.
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part of Figure 6. Finally, we imported the point cloud data from
the collaborative mapping and the LiDAR point cloud data into
CloudCompare software. By manually selecting identical fea-
ture points for point cloud alignment and calculating the differ-
ence between the two sets of point cloud data, we obtained the
results displayed in the right half of Figure 6.

From the analysis of the point cloud comparison depicted and
histogram in the right half of Figure 6 , we observe a predomin-
antly blue coloration in the point cloud generated through col-
laborative mapping. This blue hue signifies that the absolute
distance discrepancy between the two compared point clouds is
less than 5 centimeters, indicating a high degree of alignment
between the point cloud produced by collaborative mapping and
the one obtained from LiDAR scanning. Such a close match
validates the efficiency of our reconstruction process, confirm-
ing that the collaborative mapping approach is not only viable
but also effective in generating accurate spatial data.

Moreover, an interesting observation can be made regarding the
point cloud representation of the door area, where a signific-
ant error is evident through the appearance of red points. This
stark contrast arises due to the differing conditions under which
the data was collected: the LiDAR scan was performed with
the door open, whereas the RGB-D scan captured the door in a
closed state. This discrepancy highlights the challenges faced
in dynamic environments where changes in the scene between
different scans can lead to substantial differences in the result-
ing data.

Further insights can be gleaned by examining the relationship
between point cloud errors and their distance from the common
viewing area. As the distance from this common viewpoint in-
creases, the accuracy of the point cloud tends to decrease, lead-
ing to larger errors. This phenomenon is partly due to the inher-
ent limitations in the precision of projecting 2D pixels onto a
3D space, which can introduce discrepancies of approximately
10 centimeters. Despite these challenges, the observed errors
fall within a tolerable range, underscoring the robustness and
practical applicability of our method.

5. Conclusion

In this paper, we introduce two collaborative mapping ap-
proaches tailored for visual SLAM, especially addressing scen-
arios with limited common viewing areas by proposing a vi-
able solution. These methods have been rigorously validated
through extensive experiments, proving to be both necessary
and effective. Remarkably, even in scenarios reliant solely on
camera inputs, our approaches achieve a higher collaborative
mapping precision compared to other algorithms that integrate
multiple sensors. This advancement underscores our methods’
efficiency in leveraging visual data, setting a new benchmark
for accuracy in the realm of collaborative visual SLAM.
In the future, we plan to incorporate the two proposed collab-
orative mapping algorithms into a deep learning framework,
aiming for an end-to-end solution. This effort will poten-
tially enhance mapping efficiency, paving the way for advanced
autonomous systems and multi-robotics applications.
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