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Abstract 

 

This study aims to integrate driver variables with a land use change model (LCM) to explore their impact on the natural environment 

within the context of land-use changes in the Republic of Djibouti, considering possible Business-as-usual scenarios. Secondary data 

from 1990 and 2012 on land use land cover (LULC) were analyzed, with a 2022 map generated by adopting the same method of 

secondary data used (random forest classification in Google Earth Engine (GEE)) for validation. Eight key driver variables were 

utilized to model plausible future land cover (2035) for Djibouti. Statistical outputs and change maps from the LCM were compared 

to gauge historical change estimates and simulated scenarios. Analysis from 1990 to 2022 highlights significant land use and cover 

changes spurred by urbanization, environmental factors, and economic development. Barren land and bushland dominated, while 

built-up areas and water bodies expanded notably. Urbanization, agriculture, and climate change contributed to vegetation 

degradation, with declines in mangroves and increases in built-up areas. Water bodies also expanded during this period. Projections 

from the 2035 LULC map anticipate further urban expansion, underscoring the need for sustainable land management practices. In 

conclusion, comprehensive land-use planning, interdisciplinary approaches, and stakeholder engagement are deemed critical for 

addressing Djibouti's socio-economic and environmental challenges and steering towards a sustainable future. These simulated 

results offer valuable insights for regional governments to frame strategic policies and assess management actions for resource 

utilization amidst urbanization and population growth trends. 

 

 

1. INTRODUCTION 

Land use and land cover change (LULCC) is a complex process 

that involves transforming land from one use or cover type to 

another and has a significant global environmental issue. The 

driving factors for LULCC can be broadly categorized into 

natural and anthropogenic factors. Natural factors include 

climate change and other environmental conditions, while 

anthropogenic factors include economic development, the social 

environment, and population changes. This phenomenon was 

explained in a study by Liu et al. (2010). Among the natural 

factor, climate change plays a vital role in LULCC (Samson and 

Elangovan, 2015), which in turn has been exacerbated by strong 

interaction between anthropogenic activities and the natural 

environment (Wang et al., 2005; Tang et al., 2008). The current 

trend of world population change has resulted in unprecedented 

demographic diversity across regions and countries (Cohen, 

2003), and both the substantial population increase and its 

decline have become serious concerns. There is no doubt the 

current rate of population expansion is placing stress on the 

natural environment due to the extreme resource consumption 

and the earth's surface modifications; on the contrary, 

depopulation in term leads to an underuse of resources—is also 

recognized as a significant threat to biodiversity loss 

(Duraiappah et al., 2012). It can be evident from various 

numbers of existing literature that the former demographic 

change has exerted pressure on the natural systems, often 

leading to a non-linear transformation of its mosaic landscapes 

(Morgado et al., 2014; You et al., 2018) where Africa, Asia, and 

Middle East regions are experiencing these issues (Nelson et al., 

2006) whereas East Asia and Europe are experiencing the latter 

change as the growth has slowed down. In light of this, it is 

important to note that exponential population growth and 

depopulation both have profound implications for land use and 

land cover change. For example, the less human intervention in 

the usage of the socio-ecological landscapes led to the 

deformation of ecosystem characteristics, an increase in soil 

erosion, depreciation in landscape aesthetics, and an increase in 

human-wildlife conflicts (Beilin et al., 2014; Katayama et al., 

2015; Mauerhofer et al., 2018). In such cases, re-establishing 

human-nature relationships by utilizing the country's natural 

capital more can offer one possible direction to reduce the 

impact of population decrease (Hashimoto et al., 2018). 

According to the IPCC (2018), arid and semi-arid regions are 

highly susceptible to extreme weather events like heatwaves (Fu 

and Feng, 2014) and droughts (Greve et al., 2014; Spinoni et al., 

2020). They are also more likely to experience rapid land and 

environmental degradation because they have fewer natural 

water resources (Dregne, 2002; Glantz, 2019). The driving 

factors of LULCC in arid regions are diverse and can be 

classified into two main categories: human and natural factors. 

These driving factors are interrelated and can have cascading 

effects on the environment and human well-being. In a recent 

study, Spinoni et al. (2021) examined how the expansion of arid 

areas will affect croplands, pastures, forests (land use), and 

people. Understanding these factors is crucial for developing 

effective policies and strategies to manage LULCC and promote 

sustainable development in arid regions. Over the years, there 

has been significant progress in quantifying land use land cover 

(LULC) varying from remote sensing, GIS, and traditional 

methods (field data collection) (Li et al., 2004; Turner et al., 

2007), which can be further simulated predicted applying 

various drivers of change, land use policies (Shade and Kremer, 

2019).  

The Land Change Modeler (LCM) is a software developed by 

Clarks Lab, Clark University USA, used for assessing and 
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predicting land cover change (Clark Labs, 2009). It focuses on 

change analysis, transition potential, change prediction, and 

planning actions. LCM also supports REDD projects and 

evaluates future emissions. Transition potentials are generated 

using sub-models with driver variables, which can be static or 

dynamic. Static variables are unchanging over time, while 

dynamic variables are time-dependent and recalculated during 

prediction. LCM includes six model types for prediction: Multi-

Layer Perception (MLP) neural network, Decision Forest 

machine learning, Logistics Regressions, Weighted Normalized 

Likelihood (WNL), Support Vector Machine (SVM), and a 

SimWeight procedure (Clark Labs, 2009).  

During the process, various direct factors that can accelerate the 

changes can be considered depending on the geographical 

nature of the proposed study sites with the inclusion of policy 

interventions (such as land policies or urban expansion policy). 

Depending on how directly these variables would affect any 

future changes—which could be static or dynamic—they could 

be part of the same set or different. Static variables are 

appropriate for the transition under study and remain constant 

throughout time, whereas dynamic variables vary over time and 

are reassessed during the prediction process.  

In this research, we utilize the MPL model mainly because it is 

a robust model that is capable of handling complex non-linear 

relations with the variables (Hashimoto et al., 2018; Mishra et 

al., 2014). This approach of LCM-MPL and remote sensing 

could be beneficial for countries like Djibouti, where the 

geographical position of the country is most sophisticated in the 

world by the state-of-the-art port complexes. As of 2019, 78.2% 

of the people in Djibouti lived in urban areas, making it the 

most urbanized nation in sub-Saharan Africa (Yeboua, 2023). 

From 76% in 1990, this percentage has grown, and it is 

anticipated to do so in the future. However, if this expansion is 

not well controlled, it may result in several problems like 

unemployment, poverty, environmental degradation, ill health, 

and squalor (Yeboua, 2023). Moreover, to achieve the UN 2030 

agenda and the African Union agenda 2063, the country's 

master plan 2024, and its vision 2035 - which aims to boost 

economic transformation and diversification - it is essential to 

conduct comprehensive research, have a clear understanding of 

the challenges that may negatively impact the country's 

geography, and ensure the future sustainability of development 

(World Bank 2014; Yeboua, 2023). In addition to mitigating 

climate change and natural disasters such as flooding, practical 

and good urban planning could contribute to fostering an 

inclusive economy. It is, therefore critical to understand how the 

rising population trend in Djibouti might influence future socio-

ecological landscapes at a regional level for better policy 

interventions at the earliest possible. 

Thus, this study aims to identify the spatio-temporal patterns 

and driving factors of LULCC between 1990 and 2012. The 

primary objective is to predict a business-as-usual future 

scenario of transition between different LULC classes within 

the region, which quantitatively describes the role of natural or 

anthropogenic activities in the major transition processes. It can 

be used as a preliminary step for more advanced LULCC 

analysis and highlights the positive and negative impact of 

government policies that occurred within this time frame.  

 

2. STUDY AREA AND METHODOLOGY 

2.1 Study Area: Djibouti is geographically located on the 

easternmost projection of the African continent within the Horn 

of Africa, uniquely positioned on the southern side of the Gulf 

of Aden (372 km) along the world's busiest shipping routes. Its 

longitudes are between 41°8' and 43°4' E, and its latitudes are 

between 10°9' and 12°7' N, with a total land area of 23,200 km2 

(Fig. 1). The country shares its borders with Eritrea to the north, 

Ethiopia to the west and south, and Somalia to the southeast. 

Djibouti is located in the Horn of Africa. The terrain is mostly 

made up of desert-like plains, with some intermediate mountain 

ranges near the eastern border. The country is divided into five 

regions: Ali Sabieh, Dikhil, Obock, Tadjourah, and Arta. The 

capital city, also named Djibouti, holds a special status. 

According to the World Bank, the country's population is 

estimated to be 1.12 million, with a growth rate of 1.4% per 

annum. 

Djibouti has a semi-arid climate, which is characterized 

by high temperatures and high evaporation throughout the year. 

The country experiences two seasons: a dry season from May to 

October and a relatively cool season from November to April. 

The temperatures range from warm during December, January, 

and February (with average temperatures between 23 – 29°C) to 

extremely hot in July (31 – 41°C), with oppressive humidity 

adding to the uncomfortable conditions. Djibouti receives an 

average annual rainfall of approximately 147mm, which occurs 

between November and March. High-elevated coastal areas 

receive higher rainfall (Dabar et al., 2022). 

Djibouti's main natural asset is probably its strategic location, 

which is at the southern entrance to the Red Sea, marking a 

bridge between Africa and the Middle East and adjacent to 

some of the World's busiest shipping lanes (between Asia and 

Europe). As a result, Djibouti hosts a multitude of foreign 

military bases.  

 

2.2 Data Acquired and Land Use Land Cover (LULC)  

 

LULC maps are the essential input data for predicting future 

land-use changes in any region. The spatial data sets of LULC 

generated by SATREPS generated data (Tokyo University of 

Agriculture) for the years 1990 and 2012 were used as the two 

base year maps, while for validation purposes, the 2023 LULC 

map was generated by following a similar process in the Google 

Earth Engine platform using random forest classification 

method. The major classes identified by utilizing Landsat 30m 

resolution images were mangroves, bushes, farmland, built-up 

areas, water bodies, barren land, and salt. The three-year input 

LULC data (1990, 2012, and 2023) were employed for business 

scenarios LULC development.  

Driver variables play a crucial role in the land change modeling 

process within the TerrSet IDRISI software, particularly in the 

Land Change Modeler module. The dataset of eight driver 

variables was used; seven of them were acquired from different 

freely available online sources, whereas one geology map was 

utilized from SATREPS-generated data. The seven driver 

variables were DEM, slope acquired from SRTM 

https://earthexplorer.gov/, the population density was acquired 

from 

https://data.humdata.org/dataset/highresolutionpopulationdensit

ymaps-dji, the annual temperature was acquired from 

https://www.worldclim.org/data/worldclim21.html, annual 

precipitation was acquired from https://chrsdata.eng.uci.edu/, 

distance from river data was acquired from 

https://geoportal.icpac.net/layers/geonode%3Adji_water_lines_

dcw, and distance from roads was acquired from 

https://datacatalog.worldbank.org/search/dataset/0041424/Djibo

uti-Major-Roads. 
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Figure 1. Map showing the study area 

 

2.3 Land Change Model for Scenarios Development 

The Land Change Modeler (LCM) is an integrated software 

developed to project future land-use changes for the Republic of 

Djibouti. In recent years, LCM has gained popularity mainly 

due to the adequate explanation and trial materials offered by 

the developer (Mas et al., 2014; Mirhosseini et al., 2016) and 

combined with IDRISI GIS and Image processing software 

package (Eastman, 2016). The LCM is categorized into five 

main modules: analyzing past land-use change, modeling the 

change (transition potential), predicting future change, assessing 

implications for biodiversity, and planning interventions 

(Cerreta and De. P. 2012). 

To analyze the past land-use change pattern, two time period 

LULC maps of 1990 and 2012 were used in the change analysis 

module. In this panel, the transition of one class to another was 

evaluated by the gain, loss, and unchanged values. Since this 

study considers the possible driver variables as population 

dynamics and geology, our transition of interest was that class 

where humans have a high impact on their change and geology 

affected by human or natural processes (climate change). The 

transition of interest, as mentioned in the statement, focuses on 

areas where human activities have a high impact on land cover 

changes and where geological features are influenced by both 

human and natural processes, such as climate change. By 

examining these specific classes, the study aims to gain insights 

into the complex interactions between human activities, natural 

processes, and land cover dynamics within the study area. Thus, 

the individual transitioning model derived from both variables 

was included for the prediction of the LULC map. 

The second step is to create a transition potential map which 

was changed over those two time periods. LCM offers the 

transition of the model by an inbuilt Multi-Layer Perceptron 

neural network, which develops a multivariate function that 

estimates the transition potential based on the values of input 

driver variables (Shoyama et al., 2018). An evidence likelihood 

raster was also created for each transition that occurred and 

added as a driver variable. These variables represent the factors 

that influence land use and land cover changes, such as 

environmental conditions, socio-economic factors, 

infrastructure developments, topography, and agricultural 

expansion. By incorporating eight driver variables into the 

modeling process, researchers can better understand the 

relationships between these factors and land cover changes, 

allowing for more accurate predictions of future land use 

scenarios, and thus the model structure was executed. For this 

modeling, we choose those transitions that are directly affected 

by human interaction, which means the most transition taking 

into built-ups and farmland. Thus, there were seven transitioned 

models. For every transition selected for this modeling, a 

random sample of cells was generated by the neural network. 

Additionally, it builds a network of weighted neurons. These 

weights are used to determine the training error, modify the 

weight, and raise accuracy. The RMS error drops as the weight 

changes. Approximately 80% is regarded as an acceptable 

accuracy rate (Eastman, 2006). In this study, the MLP has 

finished 10000 iterations (default) of training and testing with 

an accuracy of more than 70% to 95 %. Then, seven transition 

potential maps were obtained, where we changed the training 

parameter's learning rate as recommended in the TerrSet 

manual. 

 

2.4 Markov Chain Modeling 

 

A Markov Chain is a random process that calculates the 

expected land cover transition from a later date to a predicted 

date, using earlier and later land cover maps. This process 

creates a transition probabilities file, a matrix that records the 

probability of each land cover category changing to another. 

Markov Chains produce a transition matrix, transition area 

matrix, and conditional probability image by analyzing 1990 

and 2012 LULC images. The prediction year 2035 was chosen 

with the consideration of vision Djibouti 2035, where the 

government has envisioned an optimistic scenario or reference 

scenario to achieve strong and sustainable growth to increase 

the Gross Domestic Product (GDP) and reduce the 

unemployment rate from 50% to 10% (Republic of Djibouti, 

2015). This prediction is based on the Markov chain analysis 

(Eastman, 2016). The Markovian process is a method in which a 

forecast can be estimated based on the findings of past change 

analysis and transition potential, i.e., how much area would be 

expected to change from 1990 to 2035 based on prior change 

experience. In this process, the manipulation of the transition 

probability matrix can be performed from the edit option 

provided in the change demand modeling panel if you can 

predict each land use class based on any policy intervention. 

However, in our case, we did not make any changes as we did 

not find any supporting national documents that define future 

land use; hence, we opted to use the current trend scenario 

based on historical change periods (1990-2012). 

2.5 LCM Model Validation 

Model validation is considered one of the crucial steps as it 

gives the accuracy of the stimulated map against the reference 

map. The LULC maps for 1990 and 2012 were utilized to 

stimulate the 2022 LULC map. Then, the comparison of the 

predicted map was done with the actual map using cross-

tabulation in a 3-way comparison between the later land cover 

image (2012), the predicted land cover image (2022) image, and 

the actual land cover map (2023). This module helps 

statistically assess the quality of the predicted 2035 map. 

The result of the modules shows "hits" for accurate prediction, 

"false alarm" where the model predicted change but actually did 

not occur, and "misses" where the model was unable to predict 

it but areas are changing in reality. However, while the kappa 

coefficient is computed between the predicted and actual maps, 

it does not discriminate between the location erroneous and the 

quantification (Leta et al., 2021). The validate module can be 

utilized for this purpose, as it provides dependent K-indices 

such as Kno (Kappa for no information) for the total agreement 

between the predicted and real image, Kappa for location, or 

Klocation; for the spatial accuracy of the overall land 

categories, Kappa for standard, or Kstandard; the ratio of 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1-2024 
ISPRS TC I Mid-term Symposium “Intelligent Sensing and Remote Sensing Application”, 13–17 May 2024, Changsha, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-555-2024 | © Author(s) 2024. CC BY 4.0 License.

 
557



 

incorrectly assigned by chance to correctly assigned, and 

KlocationStrata; an indicator of the spatial accuracy within the 

predefined strata (Eastman, 2020). Additionally, the validate 

module provides several metrics to quantify the strength of the 

agreement between the simulated and reference maps, including 

AgreementQuantity, AgreementChance, AgreementGridCell, 

DisagreementGridCell, and DisagreementQuantity.  

2.6 Analysis of Land Use Land Cover 

 

Using the LCM approach, we calculated the change in LULC 

assessment. The LCM identifies loss and gain, net change, and 

net persistence experienced by each LULC class. The classed 

maps (1990, 2012, and 2022) and predicted LULC (2035) were 

used to depict the pattern of changes. The numerical values 

retrieved from the categorized images were used to examine the 

LULC dynamics throughout each research period. To obtain the 

change pattern, images from consecutive periods were cross-

tabulated and compared. 

Furthermore, the change percentage and rate of change (Arfasa 

et al., 2010) for LULC categories were calculated using 

Equations (1) and (2) to assess the amount of change 

experienced between the periods of the various LULC 

categories. 

Percent of Change = (Ay-Ax)/Ax*100                        (1) 

 

Rate of Change = (Ay-Ax)/T*100                   (2)   

 

where  Ax = the area of LULC (km2) of an earlier LULC map 

 Ay = the area of LULC (km2) of a later LULC map 

 T = Time Interval between Ax and Ay in years 

  

 

3. RESULTS 

3.1 LULC Change of Three Time Periods 

 

The secondary data acquired for the two base years (1990 and 

2012) and the same methodology adopted, the random forest 

classification at the GEE platform for 2022 images were 

evaluated through the gains, losses, and the net change between 

the identified classes for the period 1990, 2012, and 2022 (Figs. 

2 and 3). The kappa statistics and the overall accuracy of 

obtained secondary data were 90% and 0.92, whereas, for the 

year 2022 image, the kappa was 95% and overall accuracy was 

0.91. 

3.2 LULC Change Analysis 

The LULC analysis was conducted to evaluate the gains, net 

changes, and losses experienced by different categories. This 

was achieved through the use of the change analysis tool in 

LCM. Spatial and temporal changes between various classes 

during the period from 1990 to 2012 and 2022 were analyzed 

(Table 1).  

Given the climatic region, the predominant land use and cover 

(LULC) category in Djibouti is barren land, accounting for 

75.2%, 87%, and 80.75% of the total in 1990, 2012, and 2022 

respectively. Following this category is bush, which exhibited a 

declining trend from 1990 to 2012 (23.68%, 11.63%) but 

experienced an increase in 2022 (17.55%). Therefore, 

throughout the study period, the majority of the changes have 

been seen in these two classes (Fig. 2). However, the large area 

of more than 3,214 km2 bushland has been lost for both two 

study periods (1990-2012, 2012-2022) with the net change of -

2,601.28 km2 and -1322.66 km2. Likewise, barren land lost over 

674 km2 between 1990-2012 and more than 2089 km2 between 

the years 2012 and 2022, with a net change of 2547.2 km2 and 

1198 km2. Nonetheless, there has been a notable increase in 

other significant land categories, such as built-up and 

water bodies, which account for less than 1% of the total land 

area (21.90 to 66.6 km2, 156.86 to 242.8 km2). The result shows 

that the built-ups have gained nearly 30 km2 and 47 km2 in these 

two time periods, while water bodies have gained nearly 50 km2 

and 103 km2 in between 1990-2012- and 2012-2022-time frame.  

On the other hand, a modest reduction in the area used for 

farming and salt deposition was noted (11.15 to 10.6 km2, 52.03 

to 51.7 km2), where the loss of farmland accounts for the nearly 

7.5 km2 between 1990-2012 and 9 km2 between 2012-2022 with 

the net change higher in between earlier time frame of -3.5 km2. 

 

Figure 2. Gain and loss area of the LULC between 1990-2012 

and 2012-2022 
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Figure 3. Net change and net persistence area of LULC class 

between 1990-2012 and 2012-2022 

 

Furthermore, the rate of change (Table 1) for the two-time 

frame depicts that 119.57 km2/yr barren land has increased 

while 122.1 km2 area of bush cover was lost per year between 

1990 and 2012. Similarly, from 2012 to 2022, the increment 

rate for the same categories was found to be 139.29 km2/yr and 

132.09 km2/yr. Likewise, the built-up area has increased at a 

rate of 1.20 km2/yr (between 1990-2012), while nearly 2 

km2/yr was increased from 2012-2022. On the contrary, 

farmland was found to decrease with the change rate of 0.16 and 

0.31 km2/yr for the two different periods. Surprisingly, the 

water body was also observed to be increased for three 

consecutive years, where the rate of change was found to be 

32.05 km2/yr and 5.39 km2/yr between 1990-2012 and 2012-

2022. 

Overall, between 1990 and 2022, the areas covered by bush and 

farmland have decreased at a rate of 42.67 and 0.0016 km2 per 

year, respectively. On the other hand, the built-up areas, water 

bodies, and barren land have increased at rates of 1.4, 2.69, and 

38.68 km2 per year, respectively. Additionally, mangroves and 

salt areas have also decreased at a small noticeable rate. 

 

 
Table 1 The area of LULC, percent, and rate of change in 

Djibouti between 1990-2022 

 

3.3 The transition probability matrix of LULC change 

between 1990-2022 and the driver variables used 

 
The transition matrix (Table 2) shows the changes in land use 

and land cover (LULC) types from 1990 to 2012 and from 2012 

to 2022 for Djibouti. The column represents the LULC types in 

the initial year, and the row represents the LULC types in the 

final year. The diagonal elements of the matrix represent the 

areas that remained unchanged in each LULC type, while the 

off-diagonal elements represent the areas that changed from one 

LULC type to another in km2. 

From 1990 to 2012, the total area of mangroves decreased 

from 7.10 km2 to 6.00 km2, mainly due to conversion to barren 

lands (0.73 km2). The total area of bushes decreased from 

5279.30 km2 to 2592.78 km2, mainly due to conversion to 

barren lands (625.78 km2). The total area of farmlands 

decreased from 11.15 km2 to 7.53 km2, mainly due to 

conversion to bushes (4.87 km2). The total area of builtups 

increased from 21.90 km2 to 48.27 km2, mainly due to the 

conversion from barren areas and bushes (24.37 km2, 4.47 km2). 

The total area of water bodies increased from 156.81 km2 to 

188.69 km2, indicating a possible rise in sea level or erosion of 

land. The total area of barren lands increased from 16764.22 

km2 to 19394.29 km2, mainly due to conversion from bushes 

(3304.48 km2). The total area of salt increased from 52.03 km2 

to 54.13 km2, mainly due to expansion within the same LULC 

type (50.44 km2). 

Likewise, from 2012 to 2022, the total area of mangroves 

increased from 6.00 km2 to 6.97 km2, mainly due to conversion 

from water bodies (1.23 km2). The total area of bushes 

increased from 2592.78 km2 to 3913.13 km2, mainly due to 

conversion from barren lands (2502.38 km2). The total area of 

farmlands increased from 7.53 km2 to 10.64 km2, mainly due to 

conversion from bushes (4.19 km2). The total area of builtups 

increased from 48.27 km2 to 66.50 km2, mainly due to 

expansion within the barren and bush LULC type (21.43 km2 

and 5.68 km2). The total area of water bodies increased from 

188.69 km2 to 242.02 km2, mainly due to expansion within the 

same LULC type (177.84 km2). The total area of barren lands 

decreased from 19394.29 km2 to 18000.78 km2, mainly due to 

conversion to bushes (1164.61 km2). The total area of salt 

decreased from 54.13 km2 to 51.67 km2, indicating the recovery 

from bushland (1164.61 km2). 

 

 
Table 2. Transition area (km2) between 1990-2012 and 2012-

2022 

3.4 Validation of the Model 

 

The Validation Module used to assess the agreement between 

the two categorical maps that we used in our study was the 

predicted land cover map generated by the model, and the other 

map was the actual land cover map obtained from satellite 

imagery (2022). Validation is a crucial step to check the 

accuracy of the model and to determine how well it reflects 

reality. The largest difference is observed for bushes, which 

increased, while the smallest difference is observed for 
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mangroves. Table 3 below provides the summary of the result 

for the reference image and the predicted image. The table 

provides a useful comparison of the land cover changes for the 

validation module used. 

 

 
Table 3 Validation of the Model 

 

The results of the validation process are summarized in Table 4, 

which shows the achieved k-indices. A k-index greater than 

82% indicates good agreement between the projected and actual 

LULC map, indicating a good overall agreement and projection 

ability of the model. 

 

 

 

 

 

 

 

 

 

Table 4 K-indices values of the stimulated LULC map of 2022 

 

The validation result analysis shows the agreement and 

disagreement component values for the LCM process, as shown 

in Table 5 below. The agreement chance value of 0.125 

indicates that there is a low probability of random agreement 

between the observed and simulated land cover maps. The 

agreement quantity value of 0.296 implies that the overall 

quantity of each land cover class is well simulated by the LCM 

model. The agreement gridcell value of 0.475 suggests that the 

LCM model can capture the spatial distribution of land cover 

classes at the gridcell level. The disagree gridcell value of 0.066 

represents the proportion of gridcells that have different land 

cover classes in the observed and simulated maps. The disagree 

strata value of 0.000 indicates that there is no disagreement 

between the observed and simulated maps at the strata level. 

The disagree quantity value of 0.038 reflects the difference in 

the quantity of each land cover class between the observed and 

simulated maps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 The Validation Result Analysis 

(Agreement/Disagreement component values) 

 

 

3.5 Future LULC Prediction 

 

The future changes in land use and land cover (LULC) have 

been predicted for the year 2035. A transition probabilities 

matrix was used to analyze the probability percentages of 

changes in LULC between the periods of 2022-2035. The 

Markov chain provides the quantity of change, while the MLP 

neural network helps determine the spatial distribution, which 

together provide the LULC prediction in LCM. The simulated 

future LULC images of the country can be seen in Figure 4, and 

Table 6 provides the area coverage. The changes in LULC 

increase or decrease have been represented in Figure 6. 

Based on the result obtained, the Land Cover Mapping (LCM) 

process for the prediction of Land Use and Land Cover (LULC) 

for Djibouti from 2022 to 2035 indicates several changes. The 

area of mangroves is predicted to decrease from 7 km2 in 2022 

to 5.9 km2 in 2035. Similarly, the area of bushes is expected to 

decrease from 3913.1 km2 in 2022 to 2589.9 in 2035 km2. The 

farmlands also show a slight decrease from 10.6 km2 in 2022 to 

8.18 in 2035 km2. In contrast, the area of built-ups is projected 

to increase from 66.5 km2 in 2022 to 72.24 km2 in 2035. The 

area of waterbodies shows a decrease from 242.02 km2 in 2022 

to 187.18 km2 in 2035. The largest land cover, barren lands, is 

expected to increase slightly from 18001.8 km2 in 2022 to 

19374.7 km2 in 2035. The area of salt also increases from 51.7 

km2 in 2022 to 54.13 km2 in 2035. 

 

Table 6. Area of predicted LULC and its comparison with the 

previous study period 

 
Figure 4: LULC maps of Djibouti; (a) for 1990, (b) for 2012, 

(c) for 2022, and (d) for 2035 

Land 

covers/Years 1990 2012 2022 2035 

Mangroves 7.13 6.01 6.97 5.98 

Bushes 5279.22 2592.85 3913.13 2589.97 

Farmlands 11.15 7.53 10.64 8.18 

Builtups 21.90 48.28 66.50 72.24 

Waterbodies 156.86 188.92 242.02 187.18 

Barren lands 16764 19394.84 18000.78 19374.64 

Salt 52.03 54.13 51.67 54.13 

Total 22292 22292 22292 22292 
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Figure. 6. Land use land cover change from 1990-2035 

 

4. DISCUSSIONS 

4.1 Land use land cover analysis and simulation 

 
The results obtained from the random forest classification and 

the LCM change analysis showed that Djibouti experienced 

significant changes in its LULC patterns from 1990 to 2022; 

specifically, barren land and bushland were the most prevalent 

and dynamic classes, while built-up and water bodies increased 

their area significantly, although they were still minor classes. 

The data provides quantitative information on the gains, losses, 

and net changes of different land cover categories over time and 

space.  

In the first time period, the most noticeable changes were the 

decrease of bushes and the increase of barren lands. This 

indicates a large-scale degradation of vegetation cover due to 

various factors such as urbanization, agriculture, and climate 

change. The area of mangroves also decreased by 0.1 km2, 

which may have negative impacts on biodiversity and coastal 

protection, whereas the area of builtups increased by 17.36 km2, 

reflecting the expansion of human settlements and 

infrastructure. The area of water bodies increased by 31.88 km2, 

mainly due to the increase of salt by 1.38 km2 and the 

conversion of barren lands to water bodies by 41.03 km2. 

From 2012 to 2022, the trends of LULC changes were similar to 

the previous period but with some differences. The area of 

bushes continued to decrease by 679.65 km2 but at a lower rate 

than before. The area of barren lands also increased by 1393.51 

km2 but at a higher rate than before. The area of mangroves 

increased by 0.97 km2, which may indicate some recovery of 

this ecosystem. The area of builtups increased by 18.23 km2, 

showing a faster growth of urbanization. The area of water 

bodies increased by 53.33 km2, mainly due to the increase of 

salt by 3.73 km2 and the conversion of barren lands to water 

bodies by 50.08 km2. 

Based on the historic LULC changes, the predicted 2035 land 

cover map showed the most significant changes are expected to 

occur. The bushes will decline by 32.78%, from 3913.8 km2 to 

2589.97 km2, due to overgrazing, deforestation, and drought. 

The waterbodies will shrink by 22.88%, from 242.8 km2 to 

187.18 km2, as a possible result of reduced rainfall, increased 

evaporation, and water diversion (World Bank, 2021). The 

builtups will expand by 8.47%, from 66.6 km2 to 72.24 km2, 

reflecting the rapid urbanization and population growth in the 

country. However, this percentage is likely to increase due to 

ongoing projects and government development strategies. The 

barren lands will increase by 7.63%, from 18000.9 km2 to 

19374.64 km2, indicating the loss of soil fertility and 

vegetation cover. The mangroves, farmlands, and 
salt will have minor fluctuations but will remain relatively 

stable. The mangroves will decrease by 1.12%, from 7.1 km2 to 

5.98 km2, due to coastal erosion and human disturbance. The 

farmlands will decrease by 2.42%, from 10.6 km2 to 8.18 km2, 

due to land degradation and urban encroachment. The salt will 

increase by 4.69%, from 51.7 km2 to 54.13 km2, due to 

increased salinization of soils and water sources. These changes 

reflect the impacts of urbanization, desertification, and climate 

change on the natural and human systems of the country. The 

LCM process provides a useful tool for planning and 

management of land resources, as well as for assessing the 

environmental and socio-economic implications of land cover 

changes. 

Also, the overlaid maps of the predicted LULC and 

geology shape file revealed that the builtup areas are suitable 

under the middle-aged basalt new era rock types, followed by a 

sedimentary rock before sinking, volcanic rock basalt while for 

farmland, middle-aged basalt is suitable occupies a maximum of 

the areas (CERD, 2015). 

 

4.2 Comparison with similar studies and validation 

 

In contrast to tropical and subtropical regions, comparatively 

few previous investigations have been carried out in semi-arid 

regions. Nonetheless, our analysis of changes in land cover and 

land use in the Republic of Djibouti is consistent with findings 

from a number of other recent studies carried out in comparable 

environments utilizing RF modeling and Landsat data. A study 

conducted by Amini et al. (2022) in Isfahan, Iran; Sexana et al. 

(2024), in Rajasthan, India; Keshavarzi et al. (2022), in 

northeastern Iran; Kadri et al. (2023) in Tunisia; and Abubakar 

et al. (2023) in northern Nigeria have shown strong performance 

of the RF classifier in Google Earth Engine, achieving over 

90% overall classification accuracy for different land use 

categories and crop types. Another study conducted by Rash et 

al. (2023) showed that the RF algorithm produced the most 

accurate maps for the three-decadal study period, acquiring a 

high kappa coefficient (0.93–0.97) compared with the SVM, 

ANN, KNN, and XGBoost algorithms in Iraq. In contrast, 

research by Rozentein and Karnieli (2011) and Li et al. (2018) 

discovered that combining supervised and unsupervised 

algorithms can improve performance even with limited training 

data and the capacity to apply across a large territory. 

In recent years, LCMs have been widely employed in diverse 

geographical contexts to assess the impacts of human activities, 

climate change, and policy interventions on landscapes due to 

their robust capabilities in spatial modeling and analysis. 

However, there has been limited research exploring the 

potential of this model in semi-arid regions. Appiagyei et al. 

(2023) stimulated the possible LULC scenarios (2029 and 2039) 

for Northwest Algeria and obtained the simulation at a skill 

measure of > 0.50. Likewise, a study conducted in the Nashe 

watershed area of Ethiopia, which is a neighboring country of 

Djibouti, showed a good agreement measure between the actual 

map and the predicted (92.81%) and concluded the result shows 

the model has a higher ability to predict the LULC changes in 

location than in quantity. (Leta et al., 2021). Comparably, the 

study carried out in Iran produced results that were comparable 

to ours, with an average accuracy of 84.89% (Shafie et al., 

2023); in fact, our results were superior to theirs. Another study 

in Saudi Arabia, which utilized the LCM MLP-NN algorithm to 

predict LULC for 2040, resulted in an overall accuracy of 88% 

(Alqadhi et al., 2021). The other research conducted by 

Ghonchepour et al. (2023) in the Gorganrud River basin, Iran, 

obtained higher validation results for the 2040 LULC map and 

correlated with the predicted population as a main driving force 

in such changes. They further concluded that other driver 

variables should be considered to identify the driving forces 
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behind such a transition so that effective management strategies 

can be utilized. 

 

4.3 An Amplification of the Findings 

 

The changes that have occurred, as shown in this study, have 

many implications, both complex and manifold. On one hand, 

the increase in mangroves and salt may have a positive effect on 

biodiversity, ecosystem services, and coastal protection. 

Conversely, the decrease in bushes and farmlands may have 

negative impacts on food security, livelihoods, and carbon 

sequestration. Furthermore, the increase in water bodies may 

pose challenges for adaptation and resilience to climate change, 

particularly in coastal areas, as well as for water quality and 

availability. Compared with some of the existing reports and 

research, the increase in barren land could be possibly due to the 

degradation of vegetation cover caused by drought (World 

Bank, 2021) and overgrazing (Shimada et al., 2019). The 

increase in built-up areas was mainly due to the urbanization 

and development of infrastructure in the country.  

During the transition from the 1990s to the 2000s, Djibouti's 

construction sector emerged as a significant instrument for 

leveraging its geographic and economic strengths. Significant 

initiatives, ranging from urban regeneration projects to the 

building of new transportation networks, energy infrastructure, 

and water facilities, have been supported by various private 

enterprises, non-governmental organizations, China, and the 

US. (GFDRR, 2011; Republic of Djibouti, 2015; JICA, 2014). 

Furthermore, the government of Djibouti's policy for the year 

2035 focuses on these industries, with a major focus on 

boosting GDP development and increasing job prospects (the 

Republic of Djibouti, 2015). These changes have important 

implications for the environmental and socio-economic 

conditions of Djibouti, as they affect the ecosystem services, 

biodiversity, and livelihoods of the local population. However, 

the increase in builtups may entail trade-offs between economic 

growth and environmental sustainability, as well as social issues 

such as inequality, congestion, and pollution. Nonetheless, to 

mitigate urbanization's impact on biodiversity sustainably, the 

comprehensive land-use planning of green spaces within urban 

zones, incorporating green infrastructure elements, collaborative 

governance, green transportation, and community engagement 

is crucial. 

The study also discussed the implications of these changes for 

the socio-economic and ecological well-being of Djibouti. For 

example, the loss of bushes could affect the livelihoods of 

pastoralists and farmers who depend on them for fodder and 

fuelwood. The USAID report shows that nearly 20% 

(USAID/OFDA, 2004) of Djibouti's population depends on 

pastoralism. In the region of Djibouti, it is recommended that 

agro-pastoralism be adopted as a viable means of livelihood, 

particularly in light of the diverse climatic phenomena that have 

impacted the area. Agro-pastoralism refers to a mixed farming 

system that combines crop cultivation with livestock raising. 

This system is particularly beneficial for rural communities that 

have access to water for irrigation or seasonal rainfall that is 

adequate for crop cultivation. By adopting agro-pastoralism, 

communities in Djibouti can develop a sustainable and 

diversified livelihood strategy that is resilient to the challenges 

posed by the region's climatic conditions. 

For the validation of our predicted map, we obtained 0.82 

Kappa statistics, which is acceptable for remote sensing 

applications. However, the TerraSet developers suggest one 

should focus on the MLP statistics output, which includes very 

important information about the explanatory power of the 

independent variables such as skill measure (a Pierce Skill 

Score) rather than a % accuracy. A skill score accounts for 

chance agreement and provides you with a baseline. A skill 

score would assess the level of random chance to be a skill of 0, 

with the range going from -1 to +1. A reasonable skill level 

would be 0.5, which should be achievable. In this research, we 

obtained a 0.01 to 1 score for the seven transitions model 

(mainly for Builtups and farmlands conversions). The low skill 

score of the selected transitions model could be recognized as a 

very difficult process at a pixel level. At the pixel level, there 

are an enormous number of factors over which one has no 

control or proper information. For example, you have no way to 

know that a particular farm changed land cover because it was 

sold in a particular year. This is the phenomenon of 

indeterminacy, so one should carry out the assessment at a 

coarser scale. 

Similarly, the pixel level agreement was 47.5%, whereas the 

chance agreement was 12.5% (Table 5). It appears to be a better 

outcome, given indeterminacy. However, taking into account 

this shift in the agreement value also implies that it may be too 

much to include seven transitions modeling at once. 

Nevertheless, from this study, we recommend two points. First, 

to increase the skill score, modeling a single transition at a time 

or concentrating just on the most significant transitions that are 

relevant is highly recommended. Multiple transitions are 

difficult for even the most advanced machine learning 

processes. Second, the number of explanatory variables is also 

important while running the MLP. One should remember that 

more explanatory variables are not always better than fewer. If 

the model consists of a lot of variables, it again makes the 

modeling challenging. However, it's often the case that with 

many variables, there is multicollinearity (correlations between 

variables). That leads to redundancy, unintended weighting of 

correlated variables, and confusing relationships. If you really 

want to consider many variables, use Principal Component 

Analysis (PCA) to remove collinearity. The use of a 

Standardized PCA will allow us to check inter-correlations. The 

resulting components are left to be independent, where the 

%Variance is well explained by keeping only the lowest PCAs 

that account for the majority of variance and discarding the rest. 

However, our hypothesis considering the most possible driver 

variables, such as population dynamics and geology, which can 

be affected by climate change in the future, are reasonably 

proven to be justified. 

These findings suggest that the LCM model accurately 

replicates the process of land cover change, but it needs to 

improve in capturing the heterogeneity and variability of land 

cover classes at smaller scales. 

 

5. CONCLUSION 

This study aimed to analyze the past and projected land use and 

land cover patterns in the period between 1990 and 2035. An 

integrated method that utilized remote sensing, GIS, and a 

system assimilated with MLP and CA-Markov chain model in 

LCM was used to comprehend the spatiotemporal dynamics of 

LULC and predict future changes in LULC in the Republic of 

Djibouti.  

The analysis of Djibouti's land use and land cover changes 

spanning from 1990 to 2022 reveals a dynamic landscape 

shaped by urbanization and environmental factors. Notably, 

barren land and bushland have undergone significant alterations, 

reflecting the consequences of urban expansion, agricultural 

practices, and climate change. Concurrently, built-up areas and 

water bodies have experienced noticeable growth, albeit still 

representing minor land cover classes. These transformations 

carry profound implications for biodiversity, food security, and 

livelihoods in Djibouti. The decline in bushland, for instance, 

affects pastoralists and farmers who rely on it for fodder and 
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fuelwood, underscoring the importance of agro-pastoralism in 

rural communities. Additionally, the expansion of urban areas 

and water bodies may exacerbate challenges related to 

urbanization, such as infrastructure strain and environmental 

degradation. Addressing these complexities requires a multi-

faceted approach, including sustainable land use planning, 

investment in green infrastructure, and active community 

engagement. Moreover, refining modeling techniques by 

employing skill measures like the Pierce Skill Score and 

simplifying the analysis process can enhance accuracy and 

inform more effective decision-making. Looking ahead to 2035, 

projected changes suggest the continued dominance of 

urbanization and its associated impacts, emphasizing the 

urgency of adopting sustainable land management practices to 

ensure the resilience and well-being of Djibouti's ecosystems 

and population. 
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