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Abstract 
 
Due to the limitations of sensor hardware, clouds and fog, and data transmission limitations, it is difficult for the data obtained by 
spaceborne remote sensing imager to achieve high temporal, spatial and spectral resolution at the same time, which limits its 
application in long-time-series high-frequency monitoring. At present, there are several spatio-temporal-spectral algorithms that can 
realize the fusion of temporal, spatial and spectral resolution, but most of them are based on one to two discrete images, and the 
integrated fusion at the multi-dimensional level has not yet been realized. There is currently no research on the spatio-temporal-
spectral fusion method based on LONG-TIME-SERIES multi-scene remote sensing data. Aiming at solving the bottleneck of spatio-
tempora-spectral resolution of remote sensing data, this study proposes a new long-time-series spatio-temporal-spectral fusion 
method based on multi-task learning to realize the multi-dimensional optimization of multi-source remote sensing data resolutions. 
Experiments used simulated and real datasets, both of which contain 4 images of 10m ZY1-02D multispectral data, 7 images of 16m 
GF-6 multispectral data and 4 images of 30m ZY1-02D hyperspectral data, and obtained 7 images of 10m hyperspectral data.  The 
experiments The results show that our method performs the best compared to other methods. This method can provide effective data 
support for applications based on long-time series remote sensing data.  
 
 

1. Introduction 

With the rapid development of remote sensing satellites and 
earth observation technology, earth observation satellites have 
shown an explosive development with an increasing number of 
in-orbit satellites. To this day, humans have obtained a massive 
amount of remote sensing datasets. The accumulation of a large 
amount of historical remote sensing data has made it possible 
for applications related to long-time-series remote sensing data 
monitoring. 
However, the potentials of long-time-series hyperspectral data 
has not been fully tapped. Due to the bottleneck constraints of 
sensors, orbital height and data transmission capability (Wang 
and Wang, 2010), there is currently no spaceborne remote 
sensing satellite that can obtain high temporal, spatial and 
spectral resolution at the same time. Different data has 
advantages in one or two resolutions, but has inferior in other 
indicators, which has become a major limiting factor in the 
application of long-time-series remote sensing data monitoring. 
In practical applications, for the single scene coverage area 
within the research area, the actual temporal resolution often 
differs significantly from the theoretical time resolution 
capability. Due to the fact that the influence of cloud cover, the 
temporal resolution of the dataset is also difficult to reach the 
nominal revisit period. At present, the improvement of temporal 
resolution can be achieved through satellite networking and data 
fusion. However, data obtained from different camera may 
differ in irradiance characterization, and different imaging time 
may bring more deviation. 
Thus, this study aims to solve the bottleneck problem of mutual 
constraints on the temporal-spatial-spectral resolution of 
hyperspectral satellites that hinders the applications of long-
time-series hyperspectral datasets. We proposed a long-time-
series spatio-temporal-spectral fusion method . On the basis of 
constructing discrete multi temporal remote sensing data into 
long-term MDD multidimensional remote sensing data (MDD), 
a multi-task learning model is used to perform joint extraction 
of multidimensional spatio-temporal-spectral information. The 
model contains three branches of convolutional nerual networks 

which extracts mappings of spatio, temporal and spectral 
information seperately, and learns them jointly via multi-task 
structure. This method can achieve multi-dimensional 
integration of spatio-temporal-spectral information and improve 
the resolution of hyperspectral data. 
 
 

2. Related Work 

Spatio-temporal-spectral fusion method can be traced back to 
the work of Huang et al. in 2013. Using the maximum posterior 
probability (MAP) criterion, based on two Landsat and MODIS 
sensors, the authors explored the integrated fusion method on 
multi-temporal spatial-spectral images. By using 19 bands of 
two scenes, MODIS images with 250 m/500 m/100 m spatial 
resolution and 6 bands of one scene Landsat image fusion with 
30m spatial resolution produces a reconstructed image with 
MODIS spectral resolution and Landsat spatial resolution that is 
missing temporally, realizing the combination of spatio-
temporal fusion and spatial spectral fusion (Huang et al., 2013). 
Shen et al. utilized MAP to construct a multi-source sensor 
spatio-temporal-spectral integrated fusion framework (Shen et 
al., 2016), which is commonly used for multi view image spatial 
fusion, spatiotemporal fusion, spatio-temporal fusion, and 
spatio-temporal-spectral fusion. The performance of spatio-
temporal-spectral fusion method was validated using MODIS, 
Landsat, and SPOT satellites. Jiang et al. constructed a 
heterogeneous spatiotemporal spectral integrated fusion 
framework using Deep Residual CycleGAN (Deep Residual 
CycleGAN)(Jiang et al., 2021). Peng et al., based on the semi-
coupled sparse tensor factorization method, and built an 
integrated spatio-temporal-spectral fusion model on the basis of 
four-dimensional tensors. In addition to verifying 
spatiotemporal fusion and spatial-spectrum fusion, they also 
used three groups of Hyperion data to simulate low spaial, low 
temporal, high spectral resolution data and high spatial, high 
tempoal, low spectral resolution data for spatio-temporal-
spectral integration fusion (Peng et al., 2021). Wei et al. 
designed a spatio-temporal-spectral fusion method for serial 
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panchromatic image sharpening and spatiotemporal fusion using 
the same platform camera data of Gaofen-1, aiming to construct 
a 2-meter multispectral image with high temporal resolution. 
The method was experimentally validated using three temporal 
phases of Gaofen-1 panchromatic, multispectral, and wideband 
data, However, the integration of spatio-temporal-spectral has 
not yet been achieved (Wei et al., 2021). 

All of the above achievements have made outstanding 
contributions to the improvement of multi-source remote 
sensing data resolution, but most of them are research oriented 
to two to three scene remote sensing image fusion, and there is 
no research on spatio-temporal-spectral fusion method oriented 
to long time series or multi scene remote sensing data which 
involves datasets more than 4 time phrases.  
 

 

 
 

Figure 1. Overall Framework 
 

3. Proposed Method 

 
3.1 Spatio-Temporal-Spectral Fusion Framework 

The irradiance is converted into a continuous time-varying 
optical signal through the detection element, which is then 
converted into an electronic signal. After being amplified and 
processed by the element, it is sampled and quantified into pixel 
values (DN) in an analog-to-digital converter over time. The 
specific values of the signal are obtained by integrating the 
sensor at certain time intervals, wavelength intervals, and spatial 
intervals based on the characteristics of the component. It can 
be said that the signal is obtained by convolution of input 
radiation in spectral, spatial, and temporal dimensions with the 
instrument response function. 

 
in which represents the output of the instrument on the channel, 
represents the input of the instrument on, represents convolution 
operation, and represents the response function of the 
instrument on. 
Therefore, the multidimensional data integration image process 
under the assumption of sensor nonlinearity is 

 
in which represents the long-term multidimensional observation 
dataset obtained by sensors, represents the real (fusion 
reconstruction) long-term multidimensional dataset, and 

represents the nonlinear mapping relationship of comprehensive 
temporal resampling, spatial resampling, and spectral 
resampling factors. 
Based on formula (4), a multi-source and multi-dimensional 
remote sensing data fusion model framework can be obtained, 
namely 

 
in which represents the multi-source and multidimensional 
remote sensing data obtained after fusion reconstruction, and 
represents the integrated mapping relationship based on the 
multidimensional remote sensing dataset. 
Combining the multidimensional dataset fusion framework, 
construct a feature information extraction model for multi-
source remote sensing data in temporal, spatial, and spectral 
dimensions, namely 

 
in which represents the first multidimensional remote sensing 
dataset to be fused, represents the feature information extraction 
model of the time, space, or spectral dimensions, and represents 
the corresponding feature information. 
Spatial dimension mapping feature extraction utilizes the 
relationship between high spatial resolution panchromatic 
datasets and time encoded resampled high temporal resolution 
multispectral datasets for extraction, i.e 

 
Time dimension mapping feature extraction utilizes the 
relationship between the original high-resolution multispectral 
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dataset and the time encoded resampled high-resolution 
multispectral dataset, i.e 

 
Due to the presence of band noise and data concatenation issues 
in the shortwave infrared spectrum of the hyperspectral data of 
the ZY1-02D/E satellite, it is proposed to perform principal 
component transformation on the hyperspectral data, using the 
transformed data to extract spectral dimension mapping features 
to filter out data noise. Extracting high temporal resolution 
multispectral datasets and their relationships using time encoded 
resampling, i.e 

 
Due to the different scales of multi-source and multidimensional 
remote sensing data in spatial, spectral, and temporal 
dimensions, the design of mapping feature extraction networks 
focuses on achieving multi-scale information extraction. We 
plan to perform multi-scale feature extraction with different 
filter operator sizes on the basis of stacking residual blocks to 
achieve feature extraction at multiple spatial, temporal, and 
spectral scales. For each residual block, its input and output can 
be simplified as 

 
 

in which , is the output of the residual block, is the input of the 
residual block, is the number of group convolutions, that is, the 
cardinality of the network, and is the feature extraction network 
of the th scale. This approach is easy to achieve convergence 
while increasing the cardinality of the network, which can 
increase the accuracy of the network without increasing its 
depth. The architecture of the mapping feature extraction 
network residual block is proposed to be designed in Figure 2. 
 

 
Figure 2. Residual Block 

 
3.2 Joint Extraction Based on Multitask Learning 

Through the design of multi feature loss function based on multi 
task learning, the objective loss function of all single task 
feature network branches is optimally combined to achieve joint 
feature extraction and fusion of multi task learning. Assuming 
that the learnable parameter set of a multitask learning network 
is, which represents all weight parameters in the network. The 
input set of the multi task learning network is, the label set is, 
and all predicted label sets are. For each single task 
characteristic network branch, its loss function is, where. The 
total loss function of the multi task learning network is designed 
as a linear combination of each single task characteristic 
network branch, namely 

 
in which, is the weight of the loss function of the branch of the 
task characteristic network. The most direct way is to manually 
assign values, but the model is sensitive to weight parameters 
and may affect the final accuracy results. Therefore, a learnable 
parameter set will be added, namely 

) 
To force a positive value to avoid a negative value when it 
drops to, the regularization term is designed as 

) 
Therefore, the total loss function of multi task learning is finally 
designed as 

 
Perform multi-dimensional fusion and reconstruction of the 
feature information extracted from the model to obtain a 
spatiotemporal spectral fusion dataset, achieving the following 
process 

 
By concatenating and fusing the mapping feature extraction 
network, a spatiotemporal spectral fusion dataset can be 
obtained. 
 

4. Experiments and Results 

4.1 Datasets and Experimental Settings 

The technical goal is to construct a long-term spatiotemporal 
spectrum fusion method based on the idea of multitasking 
learning, and use ZY1 02D/E multispectral data, hyperspectral 
data, and GF-6 wide-swath multispectral data to construct a 
long-term dataset fusion reconstruction, obtaining the spatial 
resolution of ZY1-02D/E multispectral data high temporal 
resolution remote sensing data set of time resolution of GF 6 
and spectral resolution of ZY-1-02D/E hyperspectral data. The 
comparison of theoretical target resolution indicators before and 
after fusion is shown in Table 1. 
Two datasets are used in this study. Dataset I is the simulated 
dataset simulated using 7 dates of hyperspectral images 
obtained from ZY1-02D. The images are sensed during 
Dec.13th, 2021 to Jun.25th, 2022 at N37.5 E116.7 in China. 
Dataset I mainly contains buildings and crop fields. The 
hyperspectral data were simulated to 4 images of 90m 
hyperspectral data, 7 images of 60m multispectral data and 30m 
multispectral data. The spatial simulation was done using 
bilinear interpolation and the spectral simulation used spectral 
response functions of GF-6 wide-swath camera and ZY1-02D 
visible/near-infrared camera. Dataset II is the real dataset which 
contains 4 images sensed by ZY1-02D hyperspectral camera 
and multispectral camera as well as Gaofen-6 wide-swath 
camera. The images are sensed during Sep.7th, 2020 to Jan. 
27th,2021. The dataset were are preprocessed with geometric 
correction, geospatial registration and normalized radiometric 
correction. 
 

Data Spatial 
resolution 

Temporal 
resolution 

Spectral 
resolution 

ZY1-
02D 

Hyperspectral camera 30m 55d 5nm/10n
m 

Visible /Near-infrared 10m 55d 1 band 
GF-6 Wide-swath camera 16m 6d 8 bands 

Table 1. Resolutions of Different Instruments 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1-2024 
ISPRS TC I Mid-term Symposium “Intelligent Sensing and Remote Sensing Application”, 13–17 May 2024, Changsha, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-567-2024 | © Author(s) 2024. CC BY 4.0 License.

 
569



4.2 Results 

The experiments of different kernels’ effect were conducted on 
the two datasets. The kernels are set as 1, 1/3, 1/3/5, as different 
cardinalities. The results for the two datasets are shown as Table 
2 and Table 3. As we can see that for the two datasets, 1 and 1/3 
perform the best overall.  
For the spectral indicators SAM, smaller kernel shows better 
performance as results of kernel 1 are the smallest among three 
groups. For the overall indicators CC and PSNR and the spatial 
indicators SSMI, 1-3 performs best for the simulated datasets 
yet 1 performs best for the real dataset. This may due to the fact 
that simulation was conducted on hyperspectral data, which has 
blur effect than the finer multispectral data, and 1/3 kernel can 
better capture the blur effect. When it comes to real dataset with 
no blur effect on fine images, smaller kernel has better 
capability to capture fine textures. The running times shows that 
smaller kernel costs less time. Table 4 and Table 5 show the 
results of different dates on both dataset on relatively best 
average result. 

Size CC SAM PSNR SSMI Time/s 

1 0.7935  2.9558  29.5757  0.6505 680 
1/3 0.8362  3.4243  29.6338  0.6977 1473 
1/3/5 0.7650 3.3315 28.9650 0.6798 3114 

Table 2. Quantitative Results of Different Kernel Size on 
Dataset I 

From the result below we can come to the conclusion that, for 
real datasets with fine multispectral data, models with only 1 
kernel performs the best. 

TABLE II QUANTITATIVE RESULTS OF DIFFERENT KERNEL 
SIZE ON REAL DATASET 

Size CC SAM PSNR SSMI Time/s 
1 0.7760  5.8687  24.9184  0.5321  535 
1/3 0.7141  6.1855  22.3987  0.4073  1023 
1/3/5 0.7371 9.5547 22.3015 0.4833 2986 

Table 3. Quantitative Results of Different Kernel Size on 
Dataset II 

In order to show the effectiveness of our method, we compare 
the results of real dataset with combination of spatiotemporal 
and spatial-spectral methods. We chose traditional methods of 
ESTARFM(Zhu et al., 2010) and CNMF(Yokoya et al., 2012), 
as well as deep learning methods of STFDCNN(Peng et al., 
2020) and SRECNN(Peng et al., 2019). Among them, 
STFDCNN is a integrated spatio-temporal methods which can 
process multi-temporal images of all time. The two-stage 
methods are combined by each spatiotemporal and spatial-
spectral methods. The results are shown in Table III below. We 
can see that compared to the two-stage methods, our methods 
perform the best in all quantitative indices as well as cost time. 
This shows that our integrated method can utilize spatio-
temporal-spectral information better compared to two-stage 
methods. Deep learning methods cost less time, and integrated 
methods such as STFDCNN can effectively reduce processing 
time. 

Size CC SAM PSNR SSMI Time 
Ours 0.7207 4.5935 25.6058 0.5012 1473 
ESTARFM 
+CNMF 0.7099 6.2116 21.6568 0.4333 48972 

ESTARFM
+SRECNN 0.2849 22.9863 22.4711 0.2502 20060 

STFDCNN 
+CNMF 0.5613 12.3754 20.0720 0.3095 34082 

STFDCNN 
+SRECNN 0.4191 14.2738 14.6536 0.1530 4666 

Table 4. Quantitative Results of Different Methods on Dataset I 

Size CC SAM PSNR SSMI Time 
Ours 0.5375 9.5249 20.5763 0.3399 1023 
ESTARFM 
+CNMF 0.4378 15.8413 16.2998 0.1978 11681 

ESTARFM
+SRECNN 0.4465 15.7589 16.4954 0.2025 7352 

STFDCNN 
+CNMF 0.5613 12.3754 20.0720 0.3095 5376 

STFDCNN 
+SRECNN 0.4191 14.2738 14.6536 0.1530 1553 

Table 5. Quantitative Results of Different Methods on Dataset II 

(a)GT on date 2

(b)Ours on date 2
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(c) GT on date 4

(d) Ours on date4

(e)GT on date 6

(f) Ours on date 6

(a)GT on date 2

(b)Ours on date 2

(c) GT on date 4

(d) Ours on date4
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Figure 3. RGB composites of Ground Truth and Our Methods on Dataset I 



(e)GT on date 6

(f) Ours on date 6

Figure 4. RGB composites of Ground Truth and Our Methods 
on Dataset II 

5. Conclusions

This article proposed a long-time-series spatio-temporal-
spectral fusion method. By constructing multi-temporal remote 
sensing datasets into four-dimensional dataset, temporal 
information can be extracted compactly. The method extract 
spatial information, spectral information and temporal 
information by three branches of convolutional neural networks, 
and fuse them jointly by multi-task learning structure. The 
method was tested on a simulated dataset and a real dataset, and 
was compared with two-stage fusion methods. The results show 
that our method performs the best in both accuracy and cost 
time. 
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