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Abstract 

 

Data capture in UAV photogrammetry is carried out using two main methodologies: frame-based and video-based. Frame-based data 

gathering is the preferred method among UAV projects because to its inherent reliability in calibration. Nonetheless, circumstances 

involving moving objects or occlusions inside the measured region may produce unsatisfactory results utilizing this method. In 

response to these challenges, video-based data collecting appears as a potential option, capable of creating a series of successive 

images that together alleviate the constraints outlined above. In this study we aim to compare the usefulness of frame and video 

images in building 3D models, using both oblique and vertical image orientations. Rigorous evaluations produced many outputs, 

including dense point clouds, digital surface models (DSM), meshes, and orthophotographs. The evaluation criteria included data 

acquisition velocity, processing efficiency, calibration precision, distortion analysis, residual plots, scale correctness, and reprojection 

error. The empirical results demonstrated the advantages of video-frame captures in improving the quality of the resulting 3D 

models. Notably, the use of video frames resulted in a significant reduction in reprojection error by 16%, calibration residuals by 

36%, distortions by up to 51%, and processing time by 27%. Thus, it seems that integrating video frames improves data gathering 

accuracy and speeds up processing, replacing standard frame images with video counterparts for increased efficacy. 

 

 

1. Introduction 

The field of photogrammetry is witnessing significant 

advancements in 3D modelling (Yalcin and Selcuk, 2015), a 

process that involves creating a three-dimensional 

representation of an object from two-dimensional images 

(Karami et al., 2023). This technology has found applications 

across various domains, including surveying engineering, road 

pavement monitoring, digital terrain modelling, as-built 

surveying, quality control, building information models (BIM), 

and computer-aided design (CAD) (Alsadik and Khalaf, 2022). 

Additionally, it plays a crucial role in medical fields such as 

prosthesis creation, disease diagnosis, and dental reconstruction 

(Lerma et al., 2018). Beyond healthcare, 3D modelling is 

instrumental in cultural heritage restoration, historical 

documentation, digital preservation, conservation, virtual reality 

motion graphics (Remondino, 2011, Marshall et al., 2019, 

Herraez et al., 2021), and urban design and management (Yalcin 

and Selcuk, 2015, Alsadik and Khalaf, 2022). These 

applications underscore the versatility and importance of 3D 

modelling in today's technology landscape. 

3D modelling primarily involves capturing still images with a 

certain degree of overlap to facilitate the creation of three-

dimensional representations of objects. Studies suggest that 

achieving an overlap of 80% in both side and end views is 

adequate for generating 3D models (Alsadik and Khalaf, 2022). 

However, this method is not without its challenges. Issues such 

as occlusion, where parts of the object are not visible due to 

being blocked by other parts (Nunes, 2010), and the distortion 

caused by moving objects, which can lead to poor matching and 

stretching in images, can compromise the quality of the 3D 

models. These problems can result in a reduction of information 

content within the dataset images, leading to weaker 3D 

modelling outcomes. 

The advancements in video resolution, utilizing both consumer 

and professional cameras, have expanded the potential 

applications of 3D modelling, including its use in sports event 

broadcasting and cinematography (Alsadik and Khalaf, 2022). It 

is anticipated that fields such as geoinformation science, 

photogrammetry, and image-based 3D city modelling will also 

benefit from these technological advancements. A notable 

development in this area is videogrammetry, a technique that 

involves capturing video of an object to create 3D models 

(Singh et al., 2014). Videogrammetry, which extracts 3D 

coordinates over time, facilitates the acquisition of 

multitemporal data for dynamic objects (Lerma et al., 2018). 

This method is becoming increasingly popular for extracting 3D 

models due to its flexibility and efficiency compared to 

traditional still photography. Video capture allows for 

continuous recording without the need to adjust the camera 

shutter speed or determine optimal waypoints along flight 

trajectories (Shilov et al., 2021, Alsadik and Khalaf, 2022), 

addressing the complexity of determining the optimal number of 

photos and angles for a satisfactory 3D model (Shilov et al., 

2021). 

Recently, great attention has been paid to using drones for 

mapping purposes. To this end, in this paper, our focus is on 

evaluating the effectiveness of using frame and video images 

captured from Unmanned Aerial Vehicles (UAVs) in 

constructing 3D models, utilizing both oblique and vertical 

image orientations. The process generates various outputs, 

including dense point clouds, Digital Surface Models (DSM), 

meshes, and orthophotos. These outputs are then assessed 

through a combination of visual comparison, data acquisition 

and processing time, and statistical evaluations. 

The rest of the paper is structured as follows. In Section 2 we 

give an overview of some of the related works in this area 

before outlining our materials and proposed method in Section 

3. Section 4 shows the results of our method when applied to a 

large dataset. Finally, we in Section 5 conclusions are reached 

and outlined. 
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2. Related works 

The use of video frames in 3D modelling of objects has already 

been investigated in several studies. Also, comparing the results 

of 3D modelling using both image and video frames has been 

demonstrated previously. 

One of the main applications of 3D modelling is DEM 

generation. Kwasnitschka et al. (2013) exploited the tremendous 

potential of Remotely Operated Vehicles (ROVs) in video and 

photographic data mining by observing and sampling seafloor. 

They presented a new workflow to create synthetic model 

visualizations of the sea floor with the aim of deriving 

fundamental field geology information such as quantitative 

stratigraphy and tectonic structures from ROV-based photo and 

video materials. Bhushan et al. (2021) developed an automated, 

open-source workflow to refine the SkySat camera models and 

improve absolute geolocation accuracy using external reference 

DEMs. These refined cameras are then used to produce accurate 

DEM and orthoimage composites from both the SkySat triplet 

stereo and video products. 

As stated before, another 3D modelling usage is in medical 

science. Lerma et al. (2018) investigated the suitability of 

smartphone video cameras to create 3D models for cranial 

deformation analysis compared to digital single-lens reflex 

(SLR) cameras traditionally used in close-range 

photogrammetry. Two models were obtained, the first one from 

slow-motion video recorded from a smartphone, and the second 

one from SLR camera imagery. They evaluated the results of 

two models with themselves and with the best-fitting ellipsoid 

that allows the determination of the cranial deformation. The 

average distance between models were 0.5 mm and below 1 mm 

for 86% of the model points. Also, Shilov et al. (2021) 

emphasized the use of modern computer vision algorithms, 

photogrammetry and machine learning methods to create 3D 

foot models based on video streams obtained from a 

smartphone. Their proposed method has a minimum linear 

deviation of 0.95 mm in foot length and width.  

In the field of cultural heritage restoration, the study of Herraez 

et al. (2021) showed the restoration by video projection of the 

vault paintings of a church in Valencia that were destroyed by 

fire. For this, they used two black and white analogue frames 

taken before the fire. Considering the ceiling of the case study 

was an irregular hemispherical vault, they projected images on 

its surface with video cannons in original positions and without 

metric deformation. To define geometry with the greatest 

accuracy that each partial image is projected on the real surface, 

they first calculated a complete 3D virtual image of paintings on 

the mathematical modelling of this irregular surface and then 

calculated 3D partial virtual images.  

Alsadik and Khalaf (2022) evaluated the potential use of blur-

free drone ultra-high-definition videos for 3D city modelling. In 

their research, the impact of using UHD video cameras onboard 

drones was investigated on the 3D reconstructed city models. In 

their experiment, it was shown that increasing the video 

resolution not only improved the density but also the internal 

and external accuracies of the created 3D models. According to 

the results, the point density and reconstruction accuracy 

improved up to 90% when using 8K compared with the HD 

videos taken from the same drone. Additionally, GSD was 

improved four times when the 8K image resolution was used 

compared with the HD resolution while maintaining the same 

flying height. 

In the extension of the above approaches, we aim to generate a 

3D model of the same building by both frame-based and video-

based approaches. Both datasets are captured by UAV. Then 

two sets of outputs are compared using evaluation criteria.  

 

3. Materials and method 

3.1 Study area 

The study object to model is the building of the dormitory of 

technical school of Loshan city located at 49°31’35” E and 

36°37’14” N in Rudbar city, Gilan province (Figure 1). 

 

 
 

Figure 1. Study area; a) Location b) Study building 

 

3.2 Data 

In this study we used a Phantom 4 Pro drone equipped with a 

8.8 mm focal length and a 2 cm pixel ground sampling distance 

(GSD) to gather the data, including both vertical and oblique 

images. The drone's capability to record 4K quality video is also 

leveraged for capturing video footage of the target object. For 

the generation of 3D models, it's essential to have control and 

check points, which were established using four points 

measured by a total station. This setup ensures the accuracy and 

reliability of the 3D modelling process. More details of 

Phantom 4 Pro are shown in Table 1. 

Item Value 

Resolution 20 MP 

5472*3648 

2 cm 

500 m 

7 Km 

8.8 mm 

≈ 30 min 

4K 

Image size 

Pixel size 

Flight height 

Flight range 

Focal length 

Max flight time 

Video quality 

Table 1. Technical details of Phantom 4 Pro 

 

3.3 Methodology 

Our workflow is illustrated in Figure 1. Two sets of datasets 

were acquired by DJI Phantom4Pro UAV. 
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Figure 2. Proposed workflow 

Flight planning is crucial for ensuring the success of UAV 

missions and meeting the objectives of mapping projects. 

Various flight planning strategies can be employed based on the 

specific requirements of the flight and the area being surveyed 

(Alsadik and Khalaf, 2022). Considering the desired object, 

which is a building in our case, circular flight was selected as 

flight planning for taking several 2D images and video 

recording, because it allows the capturing of stereoscopic 

photographs, supporting stereo restitution (Gómez-López et al., 

2020). 

Both datasets were captured by a pilot, manually with the frame 

ones taken at an overlap approximately equal to 80%. Also, the 

video of the building's surroundings was taken in both vertical 

and oblique modes. Since the frames were mostly captured at a 

high rate of 25 frames/sec, a frame sampling process was 

implemented at fixed intervals to ensure the overlap was 

sufficient for 3D modelling (Alsadik and Khalaf, 2022). 

Therefore, video was imported into MATLAB environment and 

its properties were extracted, revealing a frame rate of 23.9 

frames/sec and a total of 4666 frames. By selecting every 40th 

frame, the dataset was reduced, which helped in avoiding data 

redundancy, reducing processing time, and improving the 

quality of the 3D model by filtering out blurry images to reach a 

better 3D model and have a geometrically stronger 

configuration (Alsadik and Khalaf, 2022). Due to the variable 

speed of the UAV during video recording, some frames were 

very similar, especially in areas where the drone moved slowly. 

Consequently, frames with more than 80% coverage or 

duplicates were manually removed to prevent the creation of 

redundant data. Ultimately, 140 images were extracted in both 

oblique and vertical modes, ready for further processing. 

After creating the two datasets, they were imported into Agisoft 

Metashape software as separate files. The initial stage involved 

aligning the photos, which was accomplished through camera 

calibration and the formation of a sparse point cloud using 

detected key points and image matching. As previously 

mentioned, four control points at the corners of the building 

were measured using a total station. The subsequent stage 

involved importing these control points into the software, 

considering five scenarios: four cases where one point was used 

as a check point and the others as control points, and one case 

where all points were considered control points. 

To evaluate the results, it is essential to generate various 

products and compare them. Therefore, after creating a sparse 

point cloud, we generated the depth maps from the images in 

both datasets. These depth maps were then used to create a 

dense point cloud, offering a detailed representation of the 

object and its surroundings. Subsequently, a mesh, Digital 

Surface Model (DSM), and orthophoto were also produced. 

In the end, to evaluate the two approaches, the evaluation 

criteria were: 

• Data acquisition velocity 

• Processing efficiency 

• Scale correctness 

• Calibration precision 

• Distortion analysis 

• Residual plots  

• Reprojection errors 

 

4. Results 

Sample outputs are illustrated in Figures 3 to 6.  

 

 
Figure 3. Sparse and dense point clouds: The first and second 

columns are related to frame and video images respectively. 
 

 
Figure 4. Mesh: a: frame image; b: video frame 
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Figure 5. Mesh: a: frame image; b: video frame 

 
Figure 6. DSM: a: frame image; b: video frame 

 
Figure 6. Orthophoto: a: frame image; b: video frame 

 

The number of tie points identified in frame mode model was 

148107 and in video mode was 71613. 

By visually comparing the products obtained from frame images 

and video, it can be seen that frame products have a higher 

quality representing fewer gaps and visual blunders than the 

products obtained from video images. 

In addition to the visual evaluation, other criteria have been 

considered to evaluate the error and accuracy. One of the 

evaluation criteria considered to compare the models obtained 

from two datasets was control scale bars, the results of which 

are shown in Table 2. 

 

Scale item 
Distance 

(m) 

Error (mm) 

Frame Video 

1-2 33.2 -2.5 2.4 

2-3 12.47 -6.4 1.9 

3-4 33.18 3.4 5.4 

1-3 (Check) 12.47 3.2 6.0 

Control scale bars ---------- 4.2 3.6 

Check scale bars ---------- 3.2 6.0 

Table 2. Scale bar accuracy evaluation. 

According to Table 2, three scale distances are considered as the 

control scale, and one scale distance between control points 1 

and 3 is considered as a check, it can be seen that the amount of 

error is 2.7 mm in the video image more than that of the frame 

mode. The difference does not suggest any difference in terms 

of scale change in both models, as 2.7mm is not notable for the 

map scale of these evaluations. Therefore, to better evaluate the 

accuracy of the models, we decided to investigate the accuracy 

of some control and check points. Thus, the next criterion that 

was considered for evaluation was the accuracy assessment of 

control and check points. The results of this evaluation for 

different modes are given in Table 3. 

 

#GCP-

#CP-

No.CP 

Points 

type 

Frame Video 

Error 

(mm) 

Error 

(pix) 

Error 

(mm) 

Error 

(pix) 

4-0-0 Control 38 0.588 26 0.537 

3-1-1 
Control 36 0.583 21 0.54 

Check 82 0.542 110 0.215 

3-1-2 
Control 26 0.43 12 0.517 

Check 11 0.798 143 0.456 

3-1-3 
Control 19 0.603 12 0.526 

Check 111 0.55 140 0.364 

3-1-4 
Control 22 0.747 475 0.0217 

Check 116 0.252 628 0.0939 

Table 3. Control and check points errors. 

As the number of ground points in our case was limited, we 

took three points as control and one point as check. The first 

digit in the first column of the Table 3, shows the number 

control points, while the second digit represents the number of 

check point which is in all rows equal to 1. The third digit 

shows the number of the check point used to evaluate the 

accuracy of the resulting model. As can be seen, for almost all 

rows, the accuracy of the control points is a relatively low value 

and not much different in both frame and video-based models. 

This was expected as the photogrammetric model always fits 

itself to the base control coordinate system, almost regardless of 

the quality of the model. However, it is observed that that in all 

check points 1 to 4, the error in the video-based mode is notably 

larger than the corresponding frame-based model. This suggests 

the frame-based model is established more accurately. This 

could stem from the fact that the videos are less stable 

compared to frames and, thus, leading to more accurate models.  

To address the variability in error levels due to differences in the 

number of control and check points, an alternative metric, 

reprojection error, was employed to assess accuracy. This metric 

showed values of 1.7 pixels for frame images and 0.897 pixels 

for video images, with frame images exhibiting a higher error 
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rate. Another criterion considered for evaluation is the 

distortions resulting from two models. Distortion plots are 

illustrated in Figure 3. 

 
 

Figure 7. Distortion plots: a) frame image; b) video frame 
Figure 7 illustrates that distortions are more on the sides of the 

image, reflecting the typical distortion behaviour in images. 

However, frame images exhibited greater distortions compared 

to video images. The highest distortion was recorded as 11.2 

pixels in frame images and 5.25 pixels in video images. 

Furthermore, the presence of large residuals, particularly in the 

centre of the image, was more significant in frame images 

compared to video images. 

Also, the residual plot is considered as another evaluation 

criterion. Residual plots are illustrated in Figure 8. 

 
Figure 8. Residual plots: a: frame image; b: video frame 

According to Figure 8, it can be seen that the frame mode has 

shown a larger residual amount compared to the video mode. 

The maximum remaining value was 0.111 pixels in frame 

images and 0.0707 pixels in video images. In addition, the 

density of large residuals in parts of the image, including in the 

center of the image, was higher in the frame images mode 

compared to the video images mode. In video mode, larger 

residual vectors are observed on the sides of the image than in 

the centre. 

As mentioned earlier, calibration accuracy has also been one of 

the evaluation criteria. The information related to this criterion 

is given in Table 4. 

 

Parameters 
Error 

Frame Video 

F 0.3423 0.2427 

Cx 0.1657 0.0881 

Cy 0.2477 0.1101 

B1 0.3409 0.2395 

B2 0.1864 0.0827 

K1 0.0003 5.6*10-5 

K2 0.0010 0.0001 

K3 0.0011 0.0001 

P1 3.7*10-5 7.9*10-6 

P2 1.9*10-5 3.8*10-6 

Table 4. Calibration parameters errors 

According to Table 4, the error value for all calibration 

parameters is higher in frame images concerning its value in 

video ones. 

Another criterion for comparing frames and video modes is the 

total processing time allocated to each approach. This time is 17 

hours and 16 minutes in frame image mode and 14 hours and 7 

minutes in video image mode. The longer processing time in 

frame image mode can be attributed to the number of tie points 

detected in frame mode compared to video and their processing. 

 

Stage Frame  

(hour, min, sec) 

Video 

(hour, min, sec) 

Align 0,8, 6 0,9, 34 

Dense point cloud 16, 3, 33 12, 29, 23 

Texture 0,14, 31 1, 9, 36 

DSM 0,1, 40 0, 0,17 

Orthophoto 50,0,14 0,30, 22 

Total 17, 16,0 14, 7 

Table 4. Calibration parameters errors 

In addition, one of the challenges of working with video frames 

is the lack of video support in Agisoft Metashape software and 

the extraction of desired frames with the help of other software 

such as MATLAB. Also, the method of sampling and extracting 

frames depends on the speed of the UAV, which sometimes 

requires a human operator to be involved into this process. If 

the UAV movement speed is uniform, frame extraction can be 

done automatically, otherwise, like our case, the initial frames 

are extracted automatically, and then duplicate frames without 

new information are removed manually. Furthermore, the 

quality of the extracted frames in the in some images in video 

mode was lower than the frame images, which made it difficult 

to mark the control points. 

 

5. Conclusion 

The method of obtaining data in photogrammetry can be 

divided into two modes: frame-based and video-based. The 

purpose of this research was to compare the results of the 3D 

modelling of the building in these two cases based on different 
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criteria, including visual interpretation, statistical evaluation, 

and hardware performance. For this, criteria such as data 

acquisition velocity, processing efficiency, scale correctness, 

calibration precision, distortion analysis, residual plots and 

reprojection errors have been taken into account. In the case of 

modelling by video frames, we observed a reduction of 

reprojection error by 16%, calibration residuals by 36%, 

distortions by up to 51%, and processing time by 27% 

compared to frame images. On the other hand, in terms of visual 

evaluation, the model obtained from frame images is a more 

integrated model than the model of video images due to more 

tie points extraction. Finally, according to the cases examined in 

this research, mentioned advantages and drawbacks of 

employing video frames in Section 4, replacing frame images 

with video images can lead to an improvement in modelling 

accuracy and processing speed. 
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