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Abstract 

 

Forests play key roles in climate regulation and essential environmental services for living organisms. This is why forests are the 

central focus of the United Nations (UN) Sustainable Development Goal (SDG 15). Thus, effective forest management is critical for 

forest sustainability and preservation. Remote sensing advancements have improved forest mensuration leveraging cost and time, 

contrary to the field surveying approach. Often, field data is required to validate remotely sensed results. However, circumstances 

in the forest may render field data collection impossible. This study applied LiDAR-derived L-moments to directly estimate and 

classify five forest plot decay levels, to understand forest growth dynamics in the absence of field data. Two L-moment-based 

rules were tested and evaluated for classifying the plot decay levels from ALS height returns. Our findings show that the first rule 

(Lcv = 0.5) classified decay Levels 1 and 2 at Lcv < 0.5 and Levels 3 to 5 at Lcv > 0.5, while the second rule (Lskew = 0) 

classified decay Level 1 at Lskew < 0, and Levels 2 to 5 at Lskew > 0. This indicates that, while discriminating plot decay levels, the 

L-moment-based rules can classify healthy forest areas and areas of deadwood of varying decay levels directly from ALS height 

returns. This can be convenient for forest managers to exploit for classifying plot decay levels and for mapping areas of large gaps 

for planning forest resources for effective forest management. Furthermore, the approach can equally be significant for assessing 

forest biomass, biodiversity, and carbon stock. 

 

 

1. Introduction 

Forests cover about 31% of the world’s total land area, out of 

which 93% are natural forests and the rest are planted (FAO, 

2020). Forests play a key role in regulating a clean climate 

and thus serve as the backbone of natural ecosystems (Millar 

and Stephenson, 2015, Gauthier et al., 2015, Wingfield et al., 

2015, Hansen et al., 2013). Thus, understanding forest growth 

dynamics is very important for effective forest management, 

which is critical to forest sustainability and preservation. 

 

Forests experience disturbances due to biotic, abiotic, and 

anthropogenic activities (Millar and Stephenson, 2015, Curtis 

et al., 2018, Gauthier et al., 2015, Sugden et al., 2015). This can 

cause serious effects resulting in tree mortality like tree 

infections and decay, leading to a reduction in productivity, and 

eco- system services (Keen, 1955, Thomas, 1979, Millar and 

Stephenson, 2015). Forest tree decay begins when trees die. 

Subsequently, defoliation, twigs, and branch breakages as well 

as broken tops are frequently seen in varying degrees based on 

the level of decay, to the extent that trees become snags 

(Thomas, 1979). Thus, monitoring and mapping forest tree 

decay levels is vital for understanding forest growth dynamics 

and for effective forest resource management. Furthermore, this 

can equally be significant for biodiversity, biomass, and carbon 

stock assessments. 

Monitoring natural forests is more challenging than plantations 

because plantations are often single species (Wingfield et al., 

2015) while natural forests consist of numerous species. An- 

other reason is the variations in landscape, tree spatial 

distribution and density, and biodiversity. Advancement in 

remote sensing has improved forest observations from long-

range measurements, leveraging time and cost (White et al., 

2016), contrary to the classical field surveying approach. 

Consequently, forest managers and practitioners frequently use 

remote sensing data and techniques for forest health 

mensuration and monitoring (Curtis et al., 2018, Lausch et al., 

2017, Lausch et al., 2016, Sani-Mohammed et al., 2022). 

However, it has been a normal practice to have field data for 

supporting remotely sensed data in analyzing and validating 

results. Nonetheless, it is also argued that circumstances such 

as floods, unfavorable topography, wild animals, and some 

natural phenomena could delay and/or make field surveying 

impossible in several parts of the forest. Therefore, the need for 
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a tested convenient optional approach to understanding forest 

growth dynamics without using field data cannot be 

underestimated, albeit coupled with expert advice. 

The introduction of the Light detection and ranging (LiDAR) 

sensor (Dong and Chen, 2017, Drake et al., 2002, Lefsky et al., 

2002b) has enabled forest mensuration in 3D with higher 

resolution and accuracy (contrary to the optical sensors) in the 

form of point clouds. LiDAR measurements are from pulse 

signal returns in full waveform (Yao et al., 2012) or discrete 

returns (Teobaldelli et al., 2017). Airborne Laser Scanning 

(ALS) is a LiDAR-based system mounted on aircraft for forest 

mensuration from above. Contrary to Terrestrial Laser 

Scanning (TLS), ALS has the advantage of measuring above-

ground biomass with a larger coverage area (Dubayah and 

Drake, 2000, Lefsky et al., 2002a). This makes ALS more 

convenient for measuring larger forest areas. 

Research has established that ALS-derived L-moments can 

directly classify forest structural features, which can be 

significantly convenient to forest managers in the absence of 

field data (Valbuena et al., 2017). Forest tree decay 

biophysically changes trees’ structural features and forest 

stands dynamics. Cognizant of this fact, it is hypothesized that, 

based on L-moments (Hosking, 1989), ALS height returns can 

conveniently estimate and classify forest plot decay levels 

using L-moment-based rules (Valbuena et al., 2017) in the 

absence of field data. Therefore, this study evaluated the L-

moment-based rules for classifying five plot decay levels in the 

Bavarian Forest National Park (BFNP) (Figure 1). While this 

approach can be a convenient option for forest managers to 

assess and plan forest resources and biodiversity, it can equally 

be a cost-effective way of understanding forest growth 

dynamics for effective forest management and preservation. 

 

2. Materials and Methods 

2.1 Study area 

The BFNP (Figure 1) natural mixed forest in Southeastern 

Germany was the study area. The forest has an area of about 

242.5 km2 and shares boundaries with the Czech Republic at 

49.10 degrees North, and 13.22 degrees East. The park was 

established in the 1970s aiming to prevent anthropogenic 

activities in the forest to protect its natural processes (Nielsen et 

al., 2014, Sani-Mohammed et al., 2022). The forest has 

undulating terrain with heights varying between about 600 and 

1455 m. This makes field surveying challenging. Most of the 

plant species are conifers, dominated by the Norway Spruce 

(Picea abies); other species include the European silver fir 

(Abies alba), and European Beech (Fagus sylvatica) (van der 

Knaap et al., 2020). 

 

2.2 Data acquisition 

Three transects (Figure 1) of ALS data were acquired using a 

Riegle LMS-Q680i-400 kHz scanner during a flight on 18th 

August 2016, at about 300 m high above sea level. The raw data 

was preprocessed and transformed to fit the Gauss-Kruger 

coordinate system (EPSG = 31468; DHDN 3-Degree Gauss 

zone 4) in LAZ 1.2 format. The resulting point cloud had a 

greater than 70 points per square meter sampling rate. 

CIR imagery (20 cm ground resolution) with three spectral 

bands (NIR, R, G) was used to augment the ALS data for 

spectral visualization in examining the five plot decay levels. 

The imagery was acquired using a Cessna 207 aircraft with 

DMC 122 camera at an average height of 2918 m above 

mean sea level. Radiometric correction and orthorectification 

were applied to the imagery Trimble’s OrthoBox (orthovista 

Orthomaster). 

 

 

Figure 1. The BFNP map (green) illustrating the ALS transacts 

(blue) and the selected plots (red). 

 

  

2.3 Data processing and plot selection 

The ALS point clouds were fused with the CIR imagery for 

visual inspection of tree canopies and examining plots of 

varying decay levels. This combination was considered to 

exploit the spectral values of the CIR imagery to differentiate, 

especially, between the healthy trees and deadwood. Since ALS 

does not have the color effect, differentiating between decay 

levels is challenging, especially for Levels 1 (healthy trees) and 

2 (early-stage dead trees). Then, five decay levels (Level 1 to 

Level 5; Figure 2) were examined from mature stands and 

selected, taking inspiration from Thomas’ description (Thomas, 

1979, Sani-Mohammed et al., 2023, Wong et al., 2023) and 

based on visual interpretation of combined ALS point clouds 

and CIR imagery, at a 30 m radius plot level. Detailed 

descriptions of the plot decay levels are presented in Table 1, 

while Figure 2 displays the five decay levels resulting from 

combined ALS and corresponding CIR imagery. Table 2 

presents the vertical distributions of the geometric ALS 

metrics (Roussel et al., 2020) of point clouds for each of the 

30 m plots. Subsequently, we created five more subplots from 

each of the main plots. These subplots were created from the 

centre with radii of 5, 10, 15, 20, and 25 m making 30 plots 

in total (6 plots for each decay level). After examining, 

identifying, and selecting plot decay levels, the remainder of the 

processing was conducted using only ALS point clouds. The 

Cloth Simulation Function (CSF) algorithm (Zhang et al., 

2016) was used to classify ground points before generating 

Digital terrain models (DTMs). The point clouds were 

normalized to the ground points and DTMs before deriving the 

ALS-based L-moments. 
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Figure 2. The five plot (30 m radius) decay levels displayed 

from combined ALS point clouds and CIR imagery. The 

reddish-to-brown crowns indicate healthy trees while gray/dark 

gray to green indicate dead trees. 

 

 

Decay 

Level 

Description 

Lv 1 All healthy trees without remnants of de- cay. Tree 

crowns are spectrally seen in red- dish to brown 

color from the CIR imagery. Plots have closed 

canopied due to thick and heavy foliage and 

branches. 

 

Lv 2 Dead trees at early stages with small or no 

defoliation. Tree crowns are detected due to a color 

change from gray to green. 

 

Lv 3 Dead trees with more defoliation. Tree crowns are 

detected due to biophysical changes in color (gray to 

green) and size (reduction due to fallen leaves, 

broken branches, and in some cases treetops). 

 

Lv 4 Dead trees with heavy defoliation with several 

broken twigs and branches. Tree crowns are 

detected due to biophysical changes in color and 

size. Fallen logs and many broken treetops are seen. 

Trees are fast approaching snag level as larger gaps 

are seen between deadwoods. 

 

Lv 5 Snag dominated and deadwood. Almost all branches 

and twigs cleared. Many dead- woods are broken to 

the stem level. Fallen log traces are seen lying on the 

ground. 

 

Table 1. Description of the plot decay levels. 

 

 

Decay 

Level 

No. of 

points 

Ground 

points 

(%) 

Hmean 

(m) 

 

Hmax 

(m) 

SD 

Lv 1 285919 11.8 21.3 41.9 10.6 

Lv 2 405106 12.8 12.2 36.4 9.26 

Lv 3 597143 21.6 10.9 34.2 9.1 

Lv 4 390399 66.5 3.66 28.9 6.15 

Lv 5 157362 88.5 0.67 20.9 2.71 

 

Table 2. The vertical distribution of the geometric ALS metrics 

of point clouds for each of the 30 m radius plots. Hmean = Mean 

height; Hmax = Maximum height; SD = Standard deviation 
 

2.4 The L-moment-based rules 

L-moments are metrics that are statistically derived from linear 

combinations of order statistics (Hosking, 1990, Hosking, 

1989). They are less susceptible to bias. For example, Let X 
be a random variable with cumulative distribution F (x), and 

quantile function x(F ), a sample order statistics of a random 

sample size r, Xk:r, can be drawn from the distribution of X 
(Valbuena et al., 2017). Therefore, L-moments of X result from 

their expected values E(Xk:r) as expressed in Equations 1, 2, 

and 3 for the first, second, and third L-moments respectively 

(Hosking, 1990, Hosking, 1989). 

 

 

 

(1) 

 

 

 

(2) 

 

 

 

(3) 

 

 

For forest plot decay level estimation, X represents the 

distribution of ALS heights of the trees in the plots. L-

coefficient of variation (Lcv) and L-skewness (Lskew) are types 

of L-moment ratios such that (Adnan et al., 2021, Valbuena et 

al., 2017): 

 

 
 

(4) 

And 

 

 
 

(5) 

 

From Equations 4 and 5, Valbuena et al., (2017) proposed two 

rules (Lcv = 0.5 (Valbuena et al., 2012); and Lskew = 0) for 

discriminating tree sizes and assessing light availability in forest 

areas based on ALS height returns. Here, the rules are tested to 

discriminate and classify five forest plot decay levels into two 

categories from ALS height returns. We hypothesize that the 

ability of ALS pulses to reach subcanopies and provide a 3D 

structural view of canopies should show the variations in plot 

decay levels, due to variations in tree sizes and plot patterns. 

Consequently, while discriminating the variations in decay 

level, Lcv = 0.5 is tested to classify forest plot decay levels into 

two groups. Lskew = 0 is tested to classify forest plot decay 

levels into two groups, to detect areas where much light 

intensity can reach subcanopies; Lskew < 0 describes areas 

where more ALS light is backscattered due to closed canopies, 

while Lskew > 0 describes areas where light can easily reach 

subcanopies, due to forest gaps. Figure 3 illustrates the 

flowchart of the approach. 
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Figure 3. Flowchart of the approach 

 

 

3. Results 

Figure 4 displays the classification results of the plot decay 

levels based on the L-moments for the rule Lcv = 0.5 from ALS 

height returns. From Equation 4, the rule in terms of L-moments 

can be expressed as L2 = 0.5L1, which represents the threshold 

that classifies the plot decay levels into two groups (areas of 

even sizes and areas of great inequality). Observation of the 

graph shows that the threshold (short blue dashes) categorized 

decay Levels 1 and 2 at Lcv < 0.5 and decay levels 3, 4, and 

5 at Lcv > 0.5, although two plots from decay level 3 are lightly 

veered off the threshold. While the clusters of plots for each 

decay level are seen, the declining trend from Level 1 to Level 

5 is observed. Moreover, the closeness of decay Levels 2 and 3 

is worth noting. 

 

Figure 5 shows the classification results of the plot decay levels 

based on L-moments for the rule Lskew = 0 from ALS height 

returns. The threshold (short blue dashes) represents the line of 

symmetry. Observation of the graph shows that decay Level 1 

(healthy trees) is categorized at Lskew < 0, while decay levels 2 

to 5 (dead trees) are categorized at Lskew > 0. It is also 

noteworthy the discrimination of clusters for each decay level, 

albeit the closeness of decay Levels 2 and 3. 

 

 
 

Figure 4. Classification of plot decay levels based on the rule 

Lcv = 0.5 (short blue dashes). Numbers indicate respective plot 

radii. 

 

 
 

Figure 5. Classification of Classification of plot decay levels 

based on the rule Lskew = 0 (short blue dashes). Numbers 

indicate respective plot radii. 

 

 

4. Discussion 

LiDAR-based ALS-derived L-moments can directly classify 

forest structural features (Adnan et al., 2021, Valbuena et 

al., 2017). Cognizant of the fact that the effect of tree 

decay results in biophysical changes in tree canopy structure 

and sizes, we hypothesized that ALS-derived L-moments can 

directly discriminate forest plot decay levels and serve as an 

optional convenient approach to understanding forest growth 

dynamics without field data. Thus, we tested the two proposed 

L-moment-based rules (Valbuena et al., 2017) to discriminate 

and classify forest plot decay levels into two categories from 

ALS height returns. Our results show that the first rule, Lcv = 

0.5 (Figure 4) classified decay Levels 1 and 2 as even-sized 

areas (Lcv < 0.5), while decay Levels 3, 4, and 5 were 

classified as areas of great size inequality (Lcv > 0.5). This 

indicates that plot decay Levels 1 and 2 are forest areas where 

trees are even sized while Levels 3, 4, and 5 are areas of great 
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inequality. However, Level 2 despite being categorized as an 

even-sized area could be seen closer to the threshold boundary 

and to Level 3. While this indicate a small difference between 

decay Level 2 and 3, it further confirms that the Level 2 plot 

consists of early- stage dead trees, which may have a slight 

structural deficiency in decay (defoliation). This also 

demonstrates the reason why it is sometimes challenging to 

differentiate between Level 2 and 3, and 1 and 2 from only 

ALS point clouds; thus showing the necessity of the sensor 

combination in assessing decay levels (Wong et al., 2023). 

Moreover, the findings indicate that there exists a dependency 

between the first L-moment (L1) and the second L-moment 

(L2) as the declining trend of decay levels is demonstrated in 

Figure 4, which equally reflects the decline in tree heights from 

decay Level 1 to 5. This further implies that ALS-derived L-

moments, especially the relationship between L1 and L2, have 

the potential for modeling forest plot decay levels. 

On the other hand, results for the second rule, Lskew = 0 
(Figure 5) classified decay Level 1 as closed canopy areas 

(Lskew < 0) while decay Levels 2 to 5 are classified as open 

canopy areas (Lskew > 0). This corroborates the concept of 

forest plot decay levels and their effects. For example, dense 

forests with healthy trees (Level 1) have closed canopies. 

However, when trees die and begin to decay, gaps begin to 

widen, and the degree of decay is proportional to the extent 

of gaps in the canopies and forests. Also, this explains that the 

second rule has the potential to classify forest areas of healthy 

trees and areas of dead trees. This further implies that the 

second rule categorized forest areas where ALS light pulses do 

not easily reach the understory due to closed canopy, resulting 

in backscattering at the higher canopy levels (like the concept of 

Euphotic zone (Lefsky et al., 2002b, Lefsky et al., 1999), and 

forest areas where the ALS light pulses can easily reach the 

understory due to canopy gaps and tree size inequalities (like 

the concept of oligophotic zones (Lefsky et al., 2002b, Lefsky 

et al., 1999). These findings exhibit the significance of LiDAR 

metrics in classifying forest plot decay levels for understanding 

forest growth dynamics. The approach can be simple and 

convenient to forest managers for understanding forest growth 

dynamics for effective forest management. Furthermore, while 

forest managers can exploit this approach for mapping areas of 

large gaps for planning and managing forest resources, the 

approach can equally be significant for assessing forest 

biomass, biodiversity, and carbon stock. 

5. Conclusion

In this study, we directly discriminated and classified five forest 

plot decay levels from LiDAR-based ALS height returns using 

L-moments. The classification resulted from testing two

proposed L-moment-based rules (Lcv = 0.5 and Lskew = 0).

The first rule, Lcv = 0.5, classified plot decay levels based

on tree structural sizes, and thus classified Levels 1 and 2 at

Lcv < 0.5 indicating forest areas of even-sized trees, while

Levels 3, 4, and 5 were classified at Lcv > 0.5 indicating

forest areas of great size inequality. On the other hand, the

second rule Lskew = 0 classified plot decay levels based on the

amount of ALS light intensity, and thus classified Level 1 at

Lskew < 0 indicating forest areas where most light intensity

is backscattered due to closed canopy, while Levels 2 to 5 were

classified at Lskew > 0 indicating forest areas where most light

intensity reaches sub-canopy due to open canopy. The research

provides an optional and convenient approach forest managers

can use, in the absence of field data, to understand forest growth

dynamics through the discrimination and classification of forest

plot decay levels. Also, the approach can be exploited for

mapping forest areas with large gaps for planning and managing 

forest resources effectively. 
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