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Abstract

Building footprint extraction is a critical indicator for assessing urban infrastructure, and extracting building footprints from remote
sensing imagery can have significant practical applications. However, achieving rapid and accurate extraction of building footprints
remains highly challenging, especially in scenarios with complex scenes, dense building distributions, and small targets. The instance
segmentation models of the YOLO series offer strong real-time performance, reducing considerable time and effort in practical
applications. Therefore, we propose building footprint extraction based on an enhance YOLO-v8 network. This study focuses on
three enhancements to the YOLO-v8 network to improve extraction accuracy. Building upon the YOLO-v8 framework, we have
incorporated the Feature Pyramid Network (FPN) module into feature maps at all scales to efficiently propagate high-level semantic
information. Additionally, we introduce the Triple Feature Encoder (TFE) module, which integrates spatial detail information from
feature maps at three different scales to enhance the network's ability to extract multi-scale information. Finally, we explore the
integration of the Prewitt model, a conventional edge detection operator, to assist in extracting edge features in target regions of
feature maps. This integration aims to reduce the jagged edges frequently seen in the outcomes of the original YOLO-v8.
Furthermore, the Prewitt operator's noise suppression capability helps mitigate the influence of non-target areas in the feature maps.
The proposed framework achieves an instance segmentation accuracy of ���50 is 84.6% and ���50:95 is 51.4% on public datasets,
outperforming the original YOLO-v8 network.

1. Instructions

For applications such as urban information updating, urban
planning, and urban 3D reconstruction, accurately and rapidly
extracting building footprint information from remote sensing
imagery is an important yet highly challenging task. With the
development of deep learning theories, this task has garnered
significant exploration in recent years. Currently, these studies
can be broadly categorized into two types. The first type is
pixel-wise semantic labeling tasks, such as PolyBuilding (Hu,
Wang et al. 2023) and weighted U-Net (Gui and Qin 2021),
which can generate raster building polygons. The second type is
vertex-based object segmentation methods, exemplified by
PolyWorld(Zorzi, Bazrafkan et al. 2022), which primarily
extract building vertices to form contours and generate vector-
building polygons. However, vertex-based object segmentation
methods tend to produce redundant vertices and exhibit poor
performance in extracting complex contours. Therefore, this
paper utilizes an instance segmentation-based approach for
building footprint extraction.

In the field of instance segmentation, researchers have proposed
various methods, including two different architectures: two-
stage and one-stage. Two-stage methods typically consist of two
main stages: region proposal generation and instance

segmentation. In the region proposal generation stage, the
model utilizes a Region Proposal Network (RPN) (Ren, He et al.
2015) or other region generation methods to propose candidate
regions that may contain targets. Subsequently, in the instance
segmentation stage, further processing is performed on each
candidate region to obtain accurate instance segmentation
results. Representative models of this approach include Mask R-
CNN (He, Gkioxari et al. 2017) and Cascade R-CNN (Cai and
Vasconcelos 2018), which have achieved remarkable results in
instance segmentation tasks. However, due to their multi-stage
processing, these methods incur high computational costs and
relatively slower speeds.

In contrast to two-stage methods, one-stage methods integrate
region proposal generation and instance segmentation into a
single stage to simplify the model structure and improve
inference speed. These methods typically achieve instance
segmentation by directly performing classification and
bounding box regression at each pixel. Representative models
of this approach include the YOLO series, which have higher
inference speeds and lower computational costs, making them
suitable for real-time application scenarios. Therefore, the
experiments in this paper employ the real-time YOLOv8
(Ultralytics 2023) network.
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Figure 1: An abridged general view of the framework of YOLO-v8

The typical YOLO framework consists of four main
components: Backbone, Neck, Head, and Loss, as illustrated in
Figure 1. The Backbone is a convolutional neural network
responsible for extracting image features at different
granularities, resulting in five feature maps of different scales.
The Backbone is composed of multiple ConvBNSiLU modules,
C2f (CSP bottleneck including 2 convolutional layers with
shortcut), and the final SPFF module. YOLO-v8 differs from
YOLO-v5(Ultralytics 2023) by replacing the C3 module (CSP
bottleneck including 3 convolutional layers) with the C2f
module, and employing the Decoupled head instead of the
Coupled head in the Head section. In addition to object
detection and instance segmentation, YOLO-v8 also
incorporates the idea of YOLACT(Bolya, Zhou et al. 2019).
The Neck section primarily performs feature fusion, where the
effective feature branches P3, P4, and P5 from the Backbone are
input into the Feature Pyramid Network (FPN)(Lin, Dollár et al.
2017) for multi-scale fusion. The Head is responsible for
decoding the fused features. During the decoding process, three
heads of different sizes corresponding to the effective feature
branches of the Backbone are used for object bounding box
prediction. After upsampling the P3 features, pixel-by-pixel
decoding is performed for target segmentation mask prediction,
completing instance segmentation. In the segmentation head,
three scales of features output three different anchor boxes, and
the mask proto module outputs prototype masks, which are
processed to obtain detection boxes and segmentation masks for
instance segmentation tasks.

In this paper, we propose a one-stage instance segmentation
model for building footprint extraction. The model primarily
focuses on improving the Neck section of YOLO-v8 to achieve
better multi-dimensional feature fusion. The main contributions
of this work are as follows:

1) Addressing the multi-scale problem in building object
detection and instance segmentation, we enhance the entire
feature pyramid by implementing the FPN concept from the
Neck section of YOLO-v8 across all five feature layers. The
main modification involves adding the high-resolution feature

maps P1 and P2 to the FPN. This facilitates the propagation of
high-level semantic information to lower levels, thereby
enhancing the entire pyramid.

2) We introduce a Triple Feature Encoder (TFE) (Kang, Ting et
al. 2023) module to propagate spatial detail features from lower
levels. By aggregating low-level feature maps (with high
resolution but weak semantic information) and high-level
feature maps (with low resolution and rich semantic
information), we can further enhance the representation
capability of multi-scale features.

3) We designed a feature map-based edge-guided module—the
Prewitt model(Prewitt 1970). This module utilizes Prewitt
operators to extract building boundary contours from lower-
level feature maps that have already focused on building
boundaries. The obtained edge information is then used as
weight values added to the feature maps for the final instance
segmentation.

2. Methods

2.1 Overall Architecture

Figure 2 shows the overall network architecture used in this
paper. The framework combines multi-scale semantic and
spatial information for building footprint extraction in remote
sensing imagery. (1) The FPN Model, concatenates the five
feature maps obtained from the backbone sequentially
downward, facilitating the propagation of strong semantic
features. (2) The TFE module, integrates high-level semantic
information from feature maps with different sizes in the spatial
dimension. The P3, P2, and P1 from lower levels are
normalized to the same size through upsampling and
downsampling, and then concatenated along the channel
dimension as inputs to the detection head. (3) The Prewitt
model, utilizes Prewitt operators to compute boundary
information in each feature map along the channel dimension.
This information is then added as weights to the original feature
maps to highlight target boundary information, thereby
improving network detection and segmentation accuracy.
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Figure 2: The overview of the proposed enhanced YOLO-v8 network

2.2 Feature Pyramid Network Model

FPN exploits the inherent multi-scale, pyramidal hierarchy of
deep convolutional networks to construct feature pyramids with
marginal extra cost. A top-down architecture with lateral
connections is developed to generate high-level semantic
feature maps at all scales. Although high-level feature maps
have lower resolution, they contain rich semantic information
after multiple convolutions. As illustrated in Figure 3, FPN
propagates high-level semantic features from top to bottom,
enhancing the semantic information of the entire feature
pyramid. In the normal YOLO-v8 model, the feature maps of

levels P3, P4, and P5 are concatenated and inputted into the
detector.

The modification in this paper involves concatenating all five
levels of feature maps with the corresponding feature maps in
the backbone, with the addition of feature maps P1 and P2. The
feature maps at lower levels undergo fewer convolution
operations and focus more on image textures, geometric shapes,
and other details, preserving most of the spatial information
from the original image. Additionally, these two feature maps
have higher spatial resolutions, which are more advantageous
for recognizing and detecting small objects.

Figure 3: The overview of the FPN Model

2.3 Triple Feature Encoder Model

The traditional FPN feature fusion mechanism only performs
upsampling on high-level small-sized feature maps and then
adds them to the previous layer feature maps. Although this
method transfers semantic information, it ignores the rich
spatial details contained in the low-level features. Therefore, we
adopt a Triple Feature Encoder Model, which incorporates
large-sized feature maps to enhance detailed feature information.
The main operations of the TFE module include the following:

1) Downsampling the large-sized feature map using the
AvgPooling module to reduce its size by half. Using
AvgPooling helps maintain high-resolution features to prevent
the loss of information about small targets. Then, the 1 ×
1ConvBNSiLU module is applied for convolutional operations
to enhance the model's non-linearity and complexity.

2) Performing a 1×1 convolutional operation on the medium-
sized feature map to maintain model complexity.

3) Upsampling the small-sized feature map using nearest
neighbor interpolation(Rukundo and Cao 2012) to double its
size. This helps maintain the richness of local features in low-
resolution images. Then, a 1× 1 convolutional operation is
performed.

4) Finally, the three obtained feature maps are concatenated
along the spatial dimension and input to the detector for object
detection and instance segmentation.
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Figure 3: The overview of the TFE Model

2.4 Prewitt Model

By observing the feature maps, it can be noticed that after
multiple convolutional operations and feature fusion, the P2
feature map has already extracted most of the features, with
some channels already focusing on the target objects. To extract
the features that have been attended to in the feature map and
define non-target areas as negative samples, we attempted to use
traditional edge detection operators to extract the target objects
in the feature map. By quantifying the edge features and adding
them as weight values into the original feature map, a method
similar to the attention mechanism was employed to make the
network pay more attention to the target regions.

Common image edge detection algorithms include the Prewitt
operator, Laplacian operator, Sobel operator (Sobel and
Feldman 1968), and Canny operator (Canny 1986). Through
experiments on edge detection using various operators on the
feature maps, it was found that the Prewitt operator achieves the
best performance in extracting targets from the feature maps
and does not introduce significant noise. The experimental
results are shown in Figure 5. Therefore, the Prewitt operator
was chosen as the fundamental edge detection algorithm in this
framework.

Figure 5: Comparison of several traditional edge detection methods

The Prewitt operator is an edge detection method based on first-
order differentiation. It detects edges by identifying extreme
values of the difference in grayscale values between
neighboring pixels in the vertical and horizontal directions. This
operator can eliminate some false edges and has a smoothing
effect on noise. The principle involves using two directional
templates in the image space to perform neighborhood
convolution with the image. One template detects horizontal
edges, and the other detects vertical edges.

The principle of edge detection using the Prewitt operator is as
follows:

1) Define the horizontal convolution kernel (PrewittX):

−1 0 1
−1 0 1
−1 0 1

(1)

2) Define the vertical convolution kernel (PrewittY):

−1 −1 −1
0 0 0
1 1 1

(2)

For pixels I x, y in the image, the horizontal gradient (Gx) and
vertical gradient ( Gy ) can be computed by applying the
convolution kernels to local regions of the image.

3) Compute the horizontal gradient(Gx):
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Gx = PrewittX ∗ I x, y (3)

4) Compute the vertical gradient(Gy):

Gy = PrewittY ∗ I x, y (4)

5) Compute the gradient magnitude for each pixel using the
following formula:

G = Gx2 + Gy2 (5)

Where G represents the gradient magnitude for each pixel,
based on the calculated gradient magnitude, pixels with values
greater than the threshold are considered as edge pixels, thus
achieving edge detection. This edge detection method is simple
to compute and has a fast calculation speed.

The flowchart of the Prewitt Model is illustrated in Figure
6, which can be primarily divided into five main steps:

1) Using the Prewitt operator, extract the edge features Ec from
the spatial dimensions of the feature map, where c represents
the channel dimension. Simultaneously, initialize a learnable
parameter α as a coefficient, which learns the weight assigned
to each Ec during network training.

E = α ∗ Ec (6)

2) Concatenate c feature maps along the channel dimension,
then sum them up along the channel dimension to obtain the
weight values of the edge features across the entire image.

3) Apply the Sigmoid function to nonlinearize the weight values
and constrain them within the range [0,1].

4) Perform a 1× 1 convolution on the original feature maps.
The main purpose is to increase the model's complexity and
learnability, avoiding the occurrence of gradient disappearance
or overfitting.

5) Finally, multiply the obtained weight values by the
convolved feature values.

Figure 6: The overview of the Prewitt Model

3. Experiments and Preliminary Results

3.1 Datasets

The experimental data used in this study was obtained from a
publicly available dataset compiled by the 2016 Data Plus
Energy Analytics Group (
https://doi.org/10.6084/m9.figshare.3504413.v1). The dataset
consists of high-resolution aerial orthoimages with spatial
resolutions ranging from 0.15 m to 0.3 m, acquired from the
United States Geological Survey (USGS), and corresponding
building footprints downloaded from OpenStreetMap (OSM).
For the experiments, a total of 2500 orthoimages with a size of
640×640 pixels, covering five different cities, were selected as
the experimental dataset. The dataset was randomly split into
training set, validation set, and test set in the ratio of 8:1:1, with
specific quantities of 1966, 267, and 267 images.

3.2 Training Implementation

The experiments are implemented on the NVIDIA A100-
SXM4-40GB GPU and Pytorch 2.1.1, Python 3.8, and CUDA
12.1 dependencies. We did not utilize pre-trained weights from

the COCO dataset. The input image size is 640×640. The
batch size of the training data quantity is 16. The training
process lasts 250 epochs. We use Stochastic Gradient Descent
(SGD) as an optimization function to train the model. The
hyperparameters of SDG are set to 0.937 of the momentum,
0.01 of the initial learning rate, and 0.0005 of the weight decay.

3.3 Quantitative Results

Table 1 shows the improvement in accuracy achieved by our
method on two base network models, YOLOv8n-seg and
YOLOv8n-p2-seg. A comparative analysis reveals that our
approach enhances the Mask ���50 and Mask ���50:95
metrics by 2.7% and 2.9%, over the original YOLO-v8 model.
Additionally, there is an increase in accuracy for the
YOLOv8n-p2-seg network, which is specifically designed for
small object detection within the YOLO series.

3.4 Qualitative Results

Figure 7 illustrates a visual comparison of three methods for
detecting and segmenting buildings in satellite imagery. By
comparing the yellow-boxed areas in the image, it can be
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observed that our method outperforms the other two methods in
detecting areas with complex scenes and dense building
distributions. Comparing the green areas reveals that our
method exhibits better regularity and smoothness along edges
compared to YOLO-v8. Comparing the blue areas
demonstrates that our method achieves better overall target
extraction performance than YOLOv8-p2-seg. Our approach
combines the advantages of the other two methods while also
compensating for their respective shortcomings.

Table 1: Performance comparison of different models for
building instance segmentation on the dataset. The best results

are in bold.

Figure 7: Qualitative comparison of different instance segmentation models

Figure 8 visualizes the difference in the large-scale feature map
P2 before and after passing through the Prewitt Model. It is
evident from the image that after overall weighting, regions
with higher attention in the feature map exhibit more
pronounced edge information. Regions with lower attention,
such as roads, are assigned smaller weight values, making them

easier to recognize as negative samples and subsequently
filtered out during the subsequent object detection process.
Additionally, due to the strong noise suppression capabilities of
the Prewitt operator, a significant amount of noise in the
resulting Prewitt Map is filtered out.

Figure 8: Comparison of feature maps before and after applying the Prewitt operator.

3.5 Ablation Experiments

Table 2 compares the contributions of three different modules to
instance segmentation performance. The most significant

improvement is observed when incorporating the TFE Model,
which integrates rich spatial detail information from lower-level
feature maps into higher-level semantic information, thereby
enhancing the detection performance of small objects. The

Box Mask
Model ���50 ���50:95 ���50 ���50:95

YOLOv8n-seg 0.839 0.562 0.819 0.485
YOLOv8n-p2-seg 0.84 0.563 0.817 0.478

ours 0.855 0.574 0.846 0.514
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primary contribution of the Prewitt Model lies in improving the
smoothness of building edges. FPN effectively propagates high-
level semantic information to the lowest-level feature maps. The
combined use of these three different modules elevates the
performance of YOLO-v8 in both object detection and instance
segmentation to a satisfactory level of accuracy.

Table 2: Adding accuracy comparison of different modules

4. Conclusion

We have improved YOLO-v8 to develop a precise and fast
instance segmentation model for building remote sensing
imagery. This model effectively propagates rich semantic
information from high-level layers while integrating both
semantic and spatial detail information for shape-aware building
detection and segmentation. We made improvements to three
aspects of YOLO-v8: the fusion of multi-scale feature
information through FPN and TFE models enhances
segmentation performance for multi-scale and small object
instances. The Prewitt Model guides the network by computing
target edges to enhance focus on target instances while
suppressing noise effects on results, achieving accurate
extraction of building edges. Although our model performs well
in densely distributed and complex scenes, the detection
performance for buildings obscured by trees remains suboptimal.
Further research is needed to address this specific scenario.
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