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ABSTRACT： 

 

With the acceleration of urbanization, the environment and climate necessary for our survival have gradually deteriorated, leading to 

the increasing prominence of the Urban Heat Island (UHI) effect. Local Climate Zone (LCZ) classification, as a standard of urban 

morphology, has become an essential tool for monitoring the UHI effect and conducting temperature studies. Deep Learning (DL) 

models have the ability to represent high-level semantic features. Therefore, this paper proposes a mixed scene unmixing DL framework 

for LCZ mapping and analysis using Very High Resolution (VHR) remote sensing images. This framework consists of a two-stream 

deep network, including a pure scene classification network (PS-Net) and a mixed scene unmixing network (MSU-Net). We conducted 

random sampling tests in Wuhan, China in the experiment A. The results show that this model achieved a satisfactory accuracy with 

the Overall Accuracies (OAs) is 96.78% and a mixed scene unmixing Mean Absolute Error (MAE) of 0.0495. Furthermore, we applied 

the proposed model to generate LCZ map for five districts in Wuhan in the experiment B. The test accuracy between two experiments 

differs very slightly. These results demonstrate the applicability and potential of our model for LCZ mapping and urban climate analysis. 

 

 

 

1. Introduction 

With the rapid advancement of urbanization and the continuous 

growth of urban population, urban land and resources are facing 

unprecedented pressure. Meanwhile, heat emissions 

accompanying human activities in daily life lead to the gradual 

increase in urban temperatures and aggravate the Urban Heat 

Island (UHI) effect where temperatures in urban areas tend to be 

higher than those in surrounding rural or suburban areas. The 

UHI phenomenon is regarded as a crucial indicator for studying 

urban climate characteristics and has become an essential part of 

thermal environment research in recent years.(Fisher et al.,2006; 

Streutker,2003). In these studies, most researchers assess the 

UHI effect using straightforward classification schemes 

distinguishing between urban and rural areas. However, these 

approaches failed to depict the diversity of complex urban-rural 

structures. In order to better understand and assess the UHI effect, 

researchers urgently need a more refined and precise 

classification scheme.Stewart and Oke proposed the Local 

Climate Zone (LCZ) classification scheme in 2012(Stewart and 

Oke,2012), which has become the internationally recognized 

standard for urban morphology classification among researchers 

studying the UHI effect. Different from the simple urban-rural 

classification aforementioned, LCZs are defined by coverage 

spanning from hundreds of meters to several kilometers in 

horizontal scale, with homogeneous surface cover, structure, 

materials, and human activities. The LCZ scheme classifies 

inner urban areas based on vegetation cover, impervious surface 

fractions, building height, and texture and the entire LCZ 

classification system divided into "built" type LCZs (1-10) and 

"natural" type LCZs (LCZA-G), as shown in Figure 1. The LCZ 

concept is particularly well-suited for urban blocks, as it can 

precisely quantify underlying surface elements and consider the 

comprehensive impacts of each specific block on local climate 

conditions. Therefore, LCZs can help researchers identify the 

degree of UHI effects in different urban areas, accurately 

simulate climate variations within cities, and provide scientific 

basis for urban planning and climate adaptation(Huang et 

al.,2021). 

 

Figure1. This LCZ classification system is segmented into 

“built” types (LCZ 1–10) and “natural” types (LCZ A–
G)(Stewart and Oke,2012).
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In the past decade, some scholars have explored many computer-

based methods to accurately classify LCZs, with one of the most 

widespread techniques being based on Geographic Information 

Systems (GIS) technology (Geletič and Lehnert,2016; Lelovics 

et al.,2014).In GIS, a large number of relevant feature 

parameters need to be incorporated, such as Sky View Factor 

(SVF), Building Surface Fraction (BSF), Fraction (ISF), Height-

to-Width Ratio of Elements (HRE), and Aspect Ratio (AR)(Liu 

et al.,2023).However, in many cities, especially in developing 

ones, these required geographical feature parameters are often 

unavailable, thereby restricting the widespread application of 

GIS. Another commonly used approach involves utilizing 

remote sensing data from satellites and aerial platforms to 

provide abundant information for interpreting LCZs and 

generating global LCZ maps.For instance, The World Urban 

Database and Access Portal Tools (WUDAPT)(Ching et al.,2018) 

project employs Landsat satellite data, the Google Earth 

platform, and Random Forest (RF) classifiers to produce LCZ 

maps globally at a 100-meter resolution. Several researchers 

have achieved excellent results using the WUDAPT platform. 

For example, Kotharkar et al. designed an improved LCZ 

classification technique using WUDAPT to generate LCZ maps 

for Nagpur, India(Kotharkar and Bagade,2018). Likewise,Cai et 

al. used a WUDAPT-based approach to map LCZs in 

Guangzhou, China(Cai et al.,2016). Despite WUDAPT being 

widely applied to study the UHI phenomenon in more than 50 

cities worldwide(Bechtel et al.,2019),only a limited number of 

cities have achieved satisfactory mapping accuracy(Wang et 

al.,2018).This significantly affects the subsequent applications 

of LCZ classification. 

 

LCZ categories represent intricate semantic scenes. For instance, 

LCZ5 comprises open mid-rise buildings, low vegetation, 

scattered trees, and soil. However, WUDAPT could only extract 

low-level semantic information from Remote Sensing Images 

(RSIs) and  falls short of capturing detailed semantic information 

within urban landscape space. Hence, it is necessary to apply 

methods more suitable for interpreting LCZs. Deep 

Learning(DL) models possess powerful feature learning 

capabilities and adaptability to complex scenes, allowing them 

to learn advanced land cover features and spatial information 

from RSIs, which are essential for producing high-precision 

LCZ maps. In recent years, with the continuous development of 

DL technology, using Convolutional Neural Networks (CNNs) 

and Recurrent Neural Networks (RNNs) for LCZ classification 

has become a research hotspot. Liu et al. regarded LCZ as a 

scene classification task and they used Sentinel-2 multispectral 

data to map LCZs in 15 cities in China, proposing LCZ-Net, a 

deep CNN consisting of residual learning and squeeze-and-

excitation blocks, achieving an accuracy of 88.61%(Liu and 

Shi,2020).Additionally Huang et al. proposed a novel CNN 

(LCZ-CNN) and used Landsat data to classify LCZs in 32 cities 

in China, with accuracy exceeding 80% in half of these 

cities(Huang et al.,2021). 

 

However, achieving an accuracy above 90% with recent LCZ 

classification methods based on remote sensing data and DL 

methods is challenging. On the one hand, this is because the 

resolution of the most commonly used RSIs not being high 

enough.Most of them are  medium to low-resolution images such 

as Landsat and Sentinel, which are insufficient to depict the 

complex spatial layout of urban streets. On the other hand, 

current LCZ classification studies based on medium to low-

resolution RSIs mainly treat LCZ mapping tasks as pixel-based 

classification, which directly neglects a large amount of spatial 

information and interactions between objects within scenes. 

Furthermore, in practical scene classification, pure scene 

classification cannot satisfy the demands of practical 

applications as there is often not just a pure LCZ scene. Instead, 

there are many mixed LCZ scenes. For example, as depicted in 

Figure 2, in a block belonging to a school zone, there may 

typically exist two or more LCZ categories, such as LCZ4 (Open 

high-rise), LCZ5 (Open mid-rise), and LCZF (Bare soil or sand). 

Considering this, unmixing scenes by quantifying the percentage 

of each LCZ category in each block is essential for analyzing the 

spatial interactions between per LCZ category. 

 

  

 LCZ5:Open mid-rise 

 LCZF:Bare soil or 

sand 

(a)A VHR image (b)LCZ classification of (a) 

Figure 2. The LCZ classification of a mixed scene  in a 

school zone 
 

In summary, to address the issues as mentioned above, this paper 

proposed a scene unmixing deep learning model, SU-Net, for 

LCZ mapping using Very High Resolution (VHR) images. The 

model thoroughly considers the characteristics of extracting 

LCZ categories from pure scenes to guide a more accurate scene 

unmixing process and is designed as a two-stream model. The 

dataset used in this study consists of VHR images from Google 

Earth, with a resolution of up to 1 meter. The study takes Wuhan 

as the research area and conducted experiments. The remainder 

of this paper is organized as follows. In Section 2, we introduce 

detailed information about the dataset used in the experiments. 

Then, in Section 3, we provide a detailed description of SU-Net, 

training process, and accuracy assessment metrics. In Section 4, 

we present and analyse the results. Finally, we draw some 

conclusions and offer research prospects in Section 5. 

 

2. Study area and data 

2.1 Study area 

As the capital city of Hubei Province,Wuhan, located in the 

middle of the Jianghan Plain with a total area of approximately 

8,569 square kilometers. It’s situated at the confluence of the 

Yangtze River and Han River, about one-fourth of its total area 

is covered by lakes and rivers. The climate of Wuhan falls into 

the subtropical monsoon climate category, characterized by four 

distinct seasons(Deng et al.,2022).Summers are hot and humid, 

winters are cold and dry, while spring and autumn are mild and 

pleasant, making it conducive for both agricultural production 

and urban development. Overall, Wuhan boasts a flat terrain and 

open landscape,conducive to urban construction and agricultural 

development. Over the past two decades, Wuhan has undergone 

significant economic and cultural growth, experiencing 

unprecedented urbanization characterized by densification and 

outward expansion(Jiao et al.,2021). Within this city, bustling 

urban centers with dense populations and various development 

zones have emerged, accompanied by the continuous expansion 

of urban construction area from approximately 6,000 square 

kilometres to 15,000 square kilometres. The permanent resident 

population has also surged from 8 million to 12.28 million. 

Therefore, Wuhan serves as an ideal research subject for 

investigating the relationship between urban landscape changes 

and climate variations, including phenomena such as the urban 

heat island effect. 

 

LCZ4:Open high-rise 
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2.2 Data 

The VHR images used in this study were collected from the 

Google Earth platform (https://earth.google.com/), which has the 

advantage of high resolution and broad coverage. With a 

resolution of up to 1 meter, this platform provides sufficient 

detail for DL models to accurately capture surface characteristics 

and features, helping to improve the accuracy of classification 

and identification. Before conducting the experiments, we 

downloaded most of the images in Wuhan, a total of 507 original 

Google images with a size of about 3500*3500.To allow the 

model to learn the correct features during the training process, 

we manually annotated the VHR images and made secondary 

corrections before putting them into use. Considering the 

varying sizes of LCZ ranging from hundreds to thousands of 

square meters, Considering that the size of the LCZ ranges from 

hundreds to thousands of square meters, we divided the original 

image into 256*256 patches with a total size of 84975 after a 

series of coordinate transformation, cropping and other data 

preprocessing operations.Among these patches, the ratio of 

mixed scenes to pure scenes was approximately 2:1 and we 

randomly selected 15,000 mixed scene images and 7,500 pure 

images with a ratio of approximately 4:1:1 for the training set, 

validation set, and test set. 

 

3. Methods 

 

3.1 the architecture of the proposed SU-Net model 

This paper proposes a scene unmixing deep learning model 

utilizing VHR imagery for LCZ mapping. The model fully 

considers the features extracted from pure scenes and the pure 

scene classification also guides a more accurate mix scene 

unmixing process. Hence, this model is designed as a two-stream 

model consisting of the Pure Scene Classification Network 

(PSC-Net) and the Mix Scene Unmixng Network (MSC-Net). 

PSC-Net comprises an encoder for pure scene classification, 

while MSC-Net consists of both an encoder and a decoder for 

scene unmixing and image reconstruction. Inspired by 

Hyperspectral Unmixing (HU) tasks, we regarded mixed scenes 

as mixed pixels, pure scenes as endmembers in HU tasks and the 

unmixing results of mixed scenes as abundances in HU tasks. 

Therefore, the model quantifies the percentage of each LCZ 

category in mixed scenes through the method of  Adding Non-

negative Constraint (ANC) and Adding Sum-to-one 

Constraint(ASC) between the encoder and decoder in MSC-

Net(Hong et al.,2021). Significantly, information exchange 

between the two networks is maximized through parameter 

sharing. Specifically, PS-Net transfers information from pure 

LCZ scenes to MSC-Net, while MSC-Net provides detailed 

features of each pixel in mixed scenes to PS-Net. Thus, this 

network can quantify the percentage of pure scenes in each 

mixed scene and improve the accuracy of pure scene 

classification to some extent. 

 

3.1.1  Pure Scene Classification Network (PSC-Net): The 

main task of this network is to classify pure images in the dataset, 

mainly composed of a Backbone, two constraints, and a 

classifier. Firstly, pure images are first segmented into fixed-size 

16*16 image patches and each patch is then transformed into a 

vector representation through the patch embedding module. 

Subsequently, the Backbone extracts features from the image 

blocks, gradually transforming the input data into high-level 

feature representations. Finally, after passing through non-

negative and sum-to-one constraints as in equations (1) and (2), 

the network ouputs the logits. 

We  selected Swin-V2(Liu et al.,2022) as the backbone of PSC-

Net, and its network architecture is shown in Figure 3. Swin-V2 

is a deep network model based on the Transformer 

architecture(Vaswani et al.,2017), which employs hierarchical 

attention mechanisms and local-window self-attention 

mechanisms to maintain efficiency when processing large-scale 

images. Compared to traditional CNNs, Swin-V2 not only 

captures better both global and local information in images but 

also enables relatively low memory consumption when handling 

VHR imagery. Additionally, Swin-V2 adopts a multi-level 

feature extraction strategy, allowing it to capture multi-scale 

information in images better, enhance the model's generalization 

ability, and apply it more efficiently to downstream tasks. 

 

ASC and ANC are two commonly used constraint conditions in 

HU tasks.ANC requires that the abundance of each each 

endmember in the mixed pixel must be non-negative values, 

while ASC requires that the sum of abundances of all 

endmembers in the mixed pixel must be equal to one. Employing 

these constraints ensures the accuracy and the physical 

interpretability of the unmixing process and results(Keshava and 

Mustard,2002). Therefore, to ensure the accuracy of this study 

in the task of scene unmixing, we enforce the ASC and ANC in 

the last two blocks employing ReLU layer and Softmax layer, 

respectively, which are 

𝑅𝑒𝐿𝑈(𝑥) = max⁡(0, 𝑥) (1)⁡ 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖) = exp(𝑥𝑖) /𝑠𝑢𝑚(𝑒𝑥𝑝(𝑥𝑖) (2) 

Where 𝑥  represents the output values of the encoder (Swin-

V2),⁡𝑖⁡represents the i-th element of the input vector. 

 

3.1.2  Mix Scene Unmixing Network(MSU-Network): 

Inspired by the successful hyperspectral unmixing framework 

based on Auto Encoder(AE)(Palsson et al.,2018), we designed a 

similar MSC-Net. The overall structure is an encoder-decoder 

architecture, with two functionally similar basic modules to AE: 

quantifying the percentage of LCZ categories in mixed scene 

images (i.e., unmixing) and image reconstruction. Unlike AE, in 

our MSC-Net, the backbone is Swin-V2 introduced in Section 

3.1.1, while the decoder adopts the same architecture as the 

decoder in Upernet,consisting primarily Pyramid Pooling 

Module (PPM) and Feature Pyramid Network(FPN) (Xiao et 

al.,2018). The general function of the decoder is mapping 

features back to the original image size. Compared to traditional 

decoder networks, the Upernet decoder has the following 

characteristics: first, it can dynamically adjust based on the input 

image size, making it directly applicable to image classification 

tasks of different sizes; Secondly, the decoder in UperNet 

introduces skip connections, which connect shallow features 

from the encoder with corresponding features in the decoder to 

better fuse features at different levels and capture details and 

edge information in VHR imagery more effectively. 

 

The PPM module(Zhao et al.,2017) and FPN module(Lin et 

al.,2017) play vital roles in extracting and fusing multi-scale 

features, respectively.The PPM module employs a pyramid 

pooling approach, dividing the input feature map into grids of 

varying sizes, conducting pooling operations on each grid, and 

then concatenating all pooling results to generate a multi-scale 

feature representation. This enables the model to capture 

information comprehensively across different scales in the 

image, thereby reducing redundant computations effectively. On 

the other hand, the FPN module, a classic pyramid-style feature 

fusion network, aims to integrate and leverage features at diverse 

levels. Within the FPN module, the bottom-up feature extractor 

extracts features at various levels from the input image, while 
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the top-down feature fusion incorporates high-level semantic 

information into low-level features through skip connections, 

forming a multi-scale feature pyramid. 

 

 
Figure 3. (a) The architecture of a Swin Transformer (Swin-T); (b) two successive Swin Transformer Blocks (notation presented with 

Eq. (3)). W-MSA and SW-MSA are multi-head self-attention modules with regular and shifted windowing configurations, 

respectively(Liu et al.,2021). 

 

3.2 The SU-Net training 

The SU-Net needs to simultaneously accomplish three related 

but different tasks, and during the training process, it needs to 

optimize three loss functions.  Among them, loss one and loss 

two are intended to optimize the results of the classification task, 

so they are designed as Cross-entropy loss functions which is 

mostly adopted in image classification tasks, while loss three 

aims to optimize the image reconstruction task belonging to a 

regression task, hence it is designed as L1 loss. To automatically 

balance the weights of each loss in the total loss during training, 

we adopt a multi-task loss function based on Gradnorm(Chen et 

al.,2018). The Gradnorm-based approach ensures relatively 

consistent gradient magnitudes for each task, reducing training 

instability between different tasks, and enhancing the 

convergence speed and performance of the model in multi-task 

learning, making it well-suited for the SU-Net model. 

 

During training, to prevent overfitting, we employ the Dropout 

technique. Dropout randomly drops the output of some neurons 

in the network based on a predetermined dropout rate during 

each training iteration, forcing the network to learn different sub-

network structures in each iteration, thereby reducing the 

network's reliance on specific neurons and enhancing its 

generalization ability(Srivastava et al.,2014). 

 

In the training process, we choose Adam optimizer algorithm 

with Weight Decay (AdamW)(Loshchilov and Hutter,2017) as 

the optimizer algorithm for the SU-Net network, with an initial 

learning rate set to 1e-4 and a batch size set to 32. We chose 

AdamW because it is an improved algorithm based on Adam, 

AdamW inherites the advantages of rapid convergence and 

applicability of the Adam optimizer. Meanwhile, it improved the 

model's generalization ability and training stability by 

introducing a mechanism for weight decay.  

 
3.3 Accuracy assessment 

 We employ Overall Accuracies (OAs),Precision and Recall 

calculated from the confusion matrix to measure the accuracy of 

pure image classification while For scene unmixing evaluation, 

Mean Absolute Error (MAE), Overall Pseudo Accuracy (OPA), 

Pseudo Precision (P-Precision), and Pseudo Recall (P-Recall) 

are utilized.MAE measures the average absolute error between 

the predicted proportions of each LCZ class in mixed scenes and 

the reference values and OPA,P-Precision and P-Recall are 

proposed to assess the accuracy between the unmixing results 

obtained from unmixing pure images(referred to as Pseudo 

classification) and the true pure classification. The calculation 

method parallels that of OA, Precision, and Recall for true 

classification, with the exception that the predicted values of the 

true classification are replaced with those of the pseudo-

classification. The specific formulas for computing OA, 

Precision, and Recall for pure image classification, as well as the 

MAE metric for mixed image unmixing, are detailed in Table 1. 

 

Metrics Formulas # 

Overall 
Accuracies(OAs) 

∑ (𝑇𝑃𝑐 + 𝑇𝑁𝑐)
𝐶
𝑐=1

∑ (𝑇𝑃𝑐 + 𝑇𝑁𝑐 + 𝐹𝑃𝑐+𝐹𝑁𝑐)
𝐶
𝑐=1

 
(3) 

Precision ∑ 𝑇𝑃𝑐
𝐶
𝑐=1

∑ (𝑇𝑃𝑐 + 𝐹𝑃𝑐)
𝐶
𝑐=1

 
(4) 

Recall ∑ 𝑇𝑃𝑐
𝐶
𝑐=1

∑ (𝑇𝑃𝑐 + 𝐹𝑁𝑐)
𝐶
𝑐=1

 
(5) 

Mean Absolute 
Error(MAE) 

1

𝑁
∑ |𝑦𝑡𝑟𝑢𝑒

(𝑖)
−

𝑁

𝑖=1
𝑦𝑝𝑟𝑒𝑑
(𝑖)

| 
(6) 

Table1.The formula of the evaluation metrics. Where C is 
the number of the LCZ types.𝑇𝑃 indicates True Positives;𝑇𝑁 
indicates True Negatives;𝐹𝑃 indicates False Positive;𝐹𝑁 
indicates False Negatives. Where N is the number of 

reference labels or true labels,𝑦𝑡𝑟𝑢𝑒
(𝑖)

 represents the true 

value of the 𝑖-th sample and 𝑦𝑝𝑟𝑒𝑑
𝑖  represents the predicted 

value of the 𝑖-th sample. 
 

4. Results and discussion 

4.1  Experiment A 

We conducted experiment A using 2055 pure and mixed images 

randomly selected from Wuhan city which were input into the 

SU-Net for evaluation. Table 2 presents the overall accuracy 

assessment of the experiment results. Our network was 

demonstrated its satisfactory performance in both pure image 

classification and mixed image unmixing. Notably, compared to 

other methods, there was a notable improvement in OA for pure 

image classification and MAE has decreased to 0.0495. 

Furthermore, the accuracy of pseudo-classification using the 

unmixing network also showed enhancement, indicating the 

reliable adaptation of MSU-Net to LCZ categories and the 

relatively precise unmixing outcomes. 
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Figure 4. Confusion matrix of the pure scene classification for 

the Experiment A. The background color represents the number 

of predicted labels divided by the number of reference labels of 

this class (%). 

 

The confusion matrix for the pure image classification results is 

shown in Figure 4. The classification achieved OAs of 96.78% 

and the Recall of 96.46%. It should be noted that since the 

manually labeled dataset for Wuhan does not include the pure 

LCZ-1 class, both the row and column corresponding to LCZ-1 

in the confusion matrix have values of 0. For other classes, 

whether natural or built, the classification accuracy is above 0.92. 

 

The accuracy metric MAE for unmixing is 0.049, indicating a 

small distance between the predicted and reference values. To 

compute Overall Pseudo Accuracy (OPA), the pure images are 

considered as mixed images and input into the MSU-Net within 

the SU-Net. The resulting pseudo-predictions for pure images 

are obtained, and the confusion matrix is shown in Figure 5. The 

classification accuracies of evaluation metrics OPA, P-Precision, 

and P-Recall have all shown improvement compared to the true 

pure image classification. This further validates that our 

unmixing network could be adopted to quantify the 

characteristics of various categories in pure images to achieve 

the unmixing effect. 

 

 
Figure 5.Confusion matrix of the pseudo pure scene 

classification to show the performance of the MSU-Net. The 

background color represents the number of predicted labels 

divided by the number of reference labels of this class (%) 

 

4.2 Experiment B 

To evaluate the stability and generalization ability of the SU-Net 

network, we conducted experiment B using all pure and mixed 

images from five districts in Wuhan. The confusion matrix for 

the classification of pure images and the confusion matrix for 

pseudo-classification of pure images using MSU-Net are shown 

in Figures 6 and 7, respectively. 

 

 
Figure 6. Confusion matrix of the pure scene classification for 

Experiment B. The background color represents number of 

predicted labels divided by the number of reference labels of 

this class (%). 

 

The accuracies metrics of pure image classification in Wuhan 

are as follows included OA, Precision and Recall :96.09%, 96.41% 

and 96.09%. The Mean Absolute Error (MAE) for unmixing is 

calculated to be 0.0323, while OPA, P Precision and P Recall are 

determined to be 96.13%, 96.46%, and 96.13%, respectively. 

These results closely resemble the sampling test results from 

experiment A, albeit with a slightly higher MAE. This suggests 

that the SU-Net exhibits high stability and generalization ability, 

rendering it suitable for LCZ mapping in other cities. 

 

 
Figure 7.Confusion matrix of the pseudo pure scene 

classification for showing the performance of the MSU-Net. The 

background color represents the number of predicted labels     

divided by the number of reference labels of this class (%). 
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 Experiment1 Experiment2 

Metrics Pure 

scene 

Mix 

scene 

Pure 

scene 

Mix 

scene 

OA 96.78% * 96.09% * 

Precision 96.79% * 96.41% * 

Recall 96.78% * 96.09% * 

OPA * 96.84% * 96.13% 

P-precision * 96.88% * 96.46% 

P-Recall * 96.84% * 96.13% 

MAE * 0.0495 * 0.0323 

Table 2. The results of Experiment(a) and Experiment(b) 

 

4.3 Discussions 

In most current studies that regard LCZ mapping as pure image 

classification, it is commonly observed that the accuracy of these 

methods applied to LCZ 1-6 is lower than when applied to 

natural classes LCZ A-G. This indicates it is challenging for 

these methods to learn useful spatial information, such as the 

height of buildings. In contrast, our network performs 

exceptionally well in identifying LCZ 1-5, especially with the 

classification OA of LCZ-3 has reached 99.99%. However, the 

accuracy on LCZ-6 is 0.92 which is slightly lower than other 

categories and is easily misclassified as LCZ-F (Bare soil or 

sand). Additionally, the classification accuracy of LCZ-D (Low 

plants) and LCZ-F (Bare soil or sand) is 0.93, as these two 

classes share similarities in land cover, resulting in our model 

having a probability of misidentifying them. We also conducted 

Pseudo classification experiments. Using the MSU-Net to 

classify pure images demonstrates our model could be adopted 

to unmix the mixed scenes. Furthermore, large-scale pure scene 

classification and unmixing experiments under large datasets 

demonstrated that our model not only exhibits excellent learning 

capabilities but also possesses high generalization abilities. 

 

5. Conclusion 

This study was inspired by the task of hyperspectral unmixing 

and proposed a scene unmixing deep learning model for LCZ 

mapping using VHR imagery. The model consists of two parallel 

deep networks: PSC-Net for pure image classification and MSC-

Net for image unmixing. PSC-Net employs Swin-V2 as the 

backbone for feature extraction and outputs classification results 

with non-negativity and sum-to-one constraints. On the other 

hand, MSC-Net adopts a similar structure to autoencoders, 

utilizing Swin-V2 as the backbone and Upernet's decoder 

network structure for image reconstruction and feature fusion. 

Two experiments have validated the excellent performance and 

high generalization ability of the proposed model, providing a 

more convenient, efficient, and accurate method for LCZ 

mapping and quantitative measurement for urban heat island 

studies. 

 

Currently, only Wuhan city has been tested, yet different cities 

exhibit variations in LCZ class distribution. Therefore, in future 

research, we plan to construct larger-scale datasets tailored to the 

characteristics and data distributions of other cities, further 

optimizing the model to enhance its generalization ability. 

Additionally, efforts will be made to establish a robust 

connection between LCZ mapping and real-time urban 

landscape analysis, integrating the model into real-time 

detection systems for timely LCZ map updates by continuously 

receiving remote sensing data. 

 

Through these further efforts, we aim to gain a more 

comprehensive and accurate understanding of urban heat island 

effects, providing precise data support for urban planning and 

climate adaptation to promote sustainable urban development 

and improve human living environments. 
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