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Abstract 

With the progress of remote sensing sensors, the quality of optical remote sensing image is significantly improved, and target 

detection on it can extract rich feature information. However, due to the characteristics of remote sensing image with various target 

sizes and a large proportion of the number of small targets, increasing the difficulty in target detection for it. In response to this 

challenge, this paper proposes an improved YOLOv8 algorithm for multi-scale target detection of optical remote sensing images. 

First, we propose a PSPPF module, which improves the model's ability to adapt to different data distributions; Second, DSConv is 

introduced into the Backbone structure of YOLOv8 to reduce the complexity of the network while maintaining the performance of 

model detection; Finally, we replace the original loss function CIoU with MPDIoU to improve the localization accuracy of the 

prediction box. Applying the improved algorithm to the public dataset NWPU VHR-10, the mAP value of the our algorithm is 95.1%, 

which is 3.0% higher than that of the original YOLOv8, indicating that the proposed algorithm is able to effectively detect multi-

scale targets in optical remote sensing images. 

1. Introduction

Optical remote sensing images are acquired by optical sensors, 

which contains information about objects and changes on the 

Earth's surface. Through target detection of these images, 

researchers can analyze the characteristics and movement of 

different targets without touching or approaching them. 

Therefore, remote sensing image target detection has been 

widely used in urban planning, geological survey, hydrological 

analysis, national defense and many other fields (Wang et al. 

2024). With the development of aerospace technology and the 

advancement of remote sensing imaging equipment, the quality 

of optical remote sensing images has been significantly 

improved. However, the complexity of the information 

contained in the image has also increased markedly, and there 

are generally characteristics such as diverse target sizes, dense 

target distribution and high proportion of background 

information, which increases the difficulty of doing target 

detection on it. 

Traditional target detection is mostly achieved by feature-based 

and segmentation-based methods, such as DPM features and 

Harr features, which have provided a variety of generalized 

algorithms for target detection tasks for a long time due to their 

low computational effort and fast processing speeds. In recent 

years, with the increase in the complexity of optical remote 

sensing images, the traditional methods are gradually unable to 

meet the needs of the current multi-scale target detection tasks 

in terms of detection accuracy and speed. Meanwhile, because 

of the maturity of deep learning networks and their wide 

application in the field of image processing, deep learning 

algorithms with higher detection accuracy and stronger 

generalization have further promoted the development of target 

detection methods, and have gradually become the mainstream 

way. Current target detection algorithms based on deep learning 

can be mainly categorized into two types: two-stage detection 

and one-stage detection. Two-stage detection methods, such as 

R-CNN (Girshick et al. 2014), Fast R-CNN (Girshick et al.

2015), and Faster R-CNN (Ren et al. 2015), need to select

candidate regions on the image firstly, and analyze these regions

in order to arrive at the classification and localization of targets,

which have a higher accuracy but slower speed. In order to

improve the detection speed, one-stage detection algorithm

represented by the YOLO (Redmon et al. 2016) series and SSD

(Liu et al. 2016) series has appeared. This type of method omits

the candidate region generation stage, and after the image

features are extracted with neural networks, the category and

position coordinates of the target are directly obtained through

regression analysis, which is suitable for task scenarios such as

high-volume detection and real-time monitoring. Although the

YOLO series have better performance in many application

scenarios, the accuracy of using them detecting targets directly

is relatively low because of the complexity of optical remote

sensing images. In order to improve the detection performance

of targets in images, many researchers have improved the

YOLO series of algorithms. (Xie et al. 2023) improves the

YOLOv4 algorithm by adding the adaptive Spatial Feature

Fusion structure into the feature enhancement network, and at

the same time optimizes the Spatial Pyramid Pool structure, and

adopts the adaptive weight parameter to fuse the multi-scale

feature information to improve the detection accuracy of the

remote sensing targets; (Li et al. 2023) introduces a novel

YOLOv5-based network named RSI-YOLO, they utilized

channel attention and spatial attention mechanisms to enhance

neural network fusion of features, and improved the original

network multi-scale feature fusion structure based on the PANet

structure into a weighted bi-directional feature pyramid

structure to achieve more efficient and richer feature fusion;

(Liu et al. 2023) presents an innovative approach called

YOLOv8-SnakeVision. The method introduces Dynamic Snake

Convolution, Context Aggregation Attention Mechanism and

Wise-loU strategy in the YOLOv8 framework to improve the

target detection performance. It not only enhances small object
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detection but also strengthens the ability to recognize multiple 

targets; (Yi et al. 2023) proposed LAR-YOLOv8. This 

algorithm enhances the local module in the feature extraction 

network by utilizing the dual-branch architectural attention 

mechanism, and proposes the RIOU loss function, which avoids 

the failure of the loss function and improves the consistency of 

the shape of the prediction box with the ground truth box. 

Based on the inspiration of the above work, we propose a multi-

scale target detection algorithm for optical remote sensing 

images based on improved YOLOv8 and has achieved good 

results on the NWPU VHR-10 (Gong et al. 2014). The main 

contributions of this paper can be summarized as follows:： 

(1)The PSPPF module is proposed to improve the sensitivity of 

the network to image detail information and the detection of 

multi-scale targets. 

(2)Add DSConv to the Backbone structure of YOLOv8, to 

reduce the number of computational parameters of the network 

and accelerate the training speed while ensuring the model has a 

high detection accuracy. 

(3)Use MPDIoU instead of the original loss function CloU, in 

order to enhance the localization accuracy of the prediction box 

and improve the accuracy of target detection. 

 

2. YOLOv8 Network  

YOLOv8 is a one-stage target detection algorithm open-sourced 

by Ultralytics, and its specific network structure is shown in 

Figure 1. 

 

Figure 1. The structure of YOLOv8. 

 

The YOLOv8 algorithm model is mainly composed of three 

parts: Backbone, Neck and Head. Before the model training 

starts, the input side will first preprocess the images fed into the 

network through Mosaic data enhancement, adaptive image 

scaling and grayscale padding. The Conv, C2f and SPPF 

modules in the Backbone extract image features by convolution 

and pooling and input them to the Neck. Neck is designed based 

on the PAN (Path Aggregation Network), which fuses feature 

maps with different scaling scales through up-sampling, down-

sampling and splicing. Head is composed of anchor-free 

decoupled head structure, which realizes positive and negative 

sample matching and loss calculation. 

There are five different pre-trained models for YOLOv8, which 

are YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and 

YOLOv8x. YOLOv8n is the smallest of all the models, and the 

others are obtained by increasing the width as well as the depth 

of the training based on it. 

 

3. Improvement of YOLOv8 

3.1 PSPPF Module 

The SPPF module is located in the last layer of the Backbone 

and it utilizes the output of the previous layer as the basis for 

processing. SPPF can effectively fuse the global feature 

information from the feature extraction network to improve the 

efficiency and accuracy of the model. However, the traditional 

SPPF module uses the ReLU (Glorot et al. 2011) as the 

activation function. ReLU has a zero output value in the 

negative input region, which leads to the fact that when a 

neuron learns negative weights during the training process, the 

neuron will never be activated, and will be unable to update its 

weights, resulting in a partial failure of the network. To solve 

this problem, we propose a PSPPF module that can better adapt 

to different data distributions by introducing the PReLU (He et 

al. 2015) function into the SPPF. The specific structure of 

PSPPF is shown in Figure 2. 

 

Figure 2. The structure of PSPPF 

 

where PReLU is specified as follows： 
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Where
ia is a learnable parameter. PReLU has different slopes 

in the negative input region, which enables the PSPPF module 

to learn different feature representations based on the input data 

and improves its robust performance. Meanwhile, relative to the 

asymmetric property of ReLU, PReLU can better balance the 

processing of positive and negative inputs and improve the 

model representation. 
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3.2 Add DSConv into the Backbone 

DSConv (Nascimento et al. 2019) is a sensitive quantized 

convolutional operator, which can effectively improve the speed 

and reduce the memory consumption of convolutional neural 

networks while guaranteeing the training effect, and its specific 

computational process is shown in Figure 3. 

 

Figure 3. The structure of DSConv 

 

When doing the convolution operation, DSConv splits each 

tensor into two parts: The first part is called the Variable 

Quantized Kernel (VQK), which has the same tensor size as that 

obtained by regular convolutional computation and consists of 

integer values. The second part consists of the Kernel 

Distribution Shift(KDS) and the Channel Distribution Shift 

(CDS). During pre-training of the network, DSConv first 

divides the weight tensor by depth into blocks of length B, each 

sharing a floating-point value, then quantizes all the blocks 

using the block floating point (BFP), and finally multiplies the 

quantized blocks with the integer values of the first part of the 

tensor, and multiplies the obtained results by their respective 

scales again in order to achieve the distribution of the individual 

blocks in the correct range. The memory savings per tensor for 

calculations by using DSConv are： 
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where is the number of input channels and is a customizable 

hyperparameter. In this paper, DSConv is added to the 

Backbone structure to reduce the number of parameters during 

training. 

 

3.3 Improvement of the Loss Function 

In the target detection task, the loss function plays an important 

role in the localization accuracy of the detection results. 

Therefore, choosing the appropriate loss function according to 

different task requirements can improve the learning effect and 

robustness of the model. The traditional IoU loss function 

evaluates the detection results by measuring the similarity 

between the predicted frame and the actual frame. In recent 

years, many different loss functions have been derived based on 

IoU, which improve the defects of the original IoU loss function 

from different aspects, and the most representative methods are 

GIOU, DIOU and CIOU. 

YOLOv8 adopts CIoU as the loss function, which integrates 

three important geometric factors including overlap region, 

centroid distance and aspect ratio, resulting in improved 

localization of the prediction frame. However, when the 

prediction box has the same aspect ratio as the groundtruth box 

but has completely different width and height values, it may 

prevent the model from optimizing the similarity efficiently, 

and therefore there is still a lot of room for improvement in 

CIoU. To solve this problem, we choose MPDIoU (Siliang et al. 

2023) to replace the CIoU in the original network, which is 

represented in Figure 4. 

 

Figure 4. Schematic calculation of MPDIoU 

 

Compared with the existing loss functions, MPDIoU takes the 

minimum point distance into account in addition to the relevant 

factors such as centroid distances, width and height deviations 

to recharacterize the loss function and reduce the total degrees 

of freedom of the loss function. The formula of LMPDIoU is 

shown as follows: 

 

1MPDIoUL MPDIoU= −                  (3) 
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In cases such as non-overlapping centroids, MPDIoU can 

promote the prediction box to be closer to the groundtruth box, 

which solves the limitation of the CIoU. Therefore, in this paper, 

we use MPDIoU as the loss function of our network, which is 

able to stabilize the convergence of the model and improve the 

accuracy of the detection of multi-scale targets. 
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4. Experimentation and Analysis 

4.1 Dataset and experimental environment  

 In order to test the effectiveness of the improved YOLOv8 

algorithm, we choose NWPU VHR-10 (Gong et al. 2014) for 

training and evaluating the model. NWPU VHR-10 was 

released by Northwestern Polytechnical University in 2014, and 

contains a total of 800 high-resolution aerial images of 3651 

targets in 10 categories, including airplane, ship, storage tank, 

baseball diamond , tennis court, basketball court, ground track 

field, harbor, bridge, and vehicle. The specific distribution of 

objectives by category is shown in Figure 5. 

 

Figure 5. The number and size distribution of labels for each 

category 

 

This experiment is based on the PyTorch deep learning 

framework and uses a single NVIDIA GeForce GPU 3090 for 

model training. Before starting the training, epochs were set to 

300, batch_size to 16, initial learning rate to 0.01, image_size to 

640×640, and the input images are preprocessed using Mosaic 

image enhancement. The specific experimental setting is shown 

in Table 1 

 

Item Name 

OS version Windows11 

CPU AMD Ryzen 9 5900X 

GPU NVIDIA GeForce RTX 3090 

RAM 32 GB 

DL framework PyTorch (1.13.1) 

Interpreter Python (3.10) 

CUDA version CUDA (11.7) 

Table 1. settings of the experimental environment. 

 

4.2 Evaluating Indicator 

In order to facilitate the evaluation of the performance of the 

improved model, we choose the P (Precision), the R (Recall) 

and the mAP (mean Average Precision) as the evaluation 

metrics in this experiment. The specific formulas for P and R 

are as follow: 
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where TP (True Positive) denotes the number of samples that 

were judged to be positive and were in fact positive; TN (True 

Negative) denotes the number of samples that were judged to be 

negative and were in fact negative; FP (False Positive) denotes 

the number of samples that were judged to be positive but were 

in fact negative; and FN (False Negative) indicates the number 

of samples that were judged to be negative but were in fact 

positive. According to the values of P and R, the P-R curve can 

be plotted, and the area enclosed by the P-R curve indicates the 

Average Precision (AP) of a single category in the test sample, 

which is calculated as follows： 
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In target detection containing multiple categories of samples, 

mAP is obtained by summing the detection accuracies of each 

target to obtain the mean value. 
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4.3 Ablation study 

In order to verify the effectiveness of our proposed three 

improved modules, we designed ablation experiments for the 

improved algorithms, and the specific experimental results are 

shown in Table 2, where Base denotes the original YOLOv8s 

model, "√" denotes the added module, and "× " indicates that 

the module is not added. 

 

Base PSPPF DSConv MPDIoU mAP@0.5% 

√ × × × 92.1 

√ √ × × 92.3 

√ × √ × 94.1 

√ × × √ 94.3 

√ √ √ × 94.4 

√ √ × √ 94.8 

√ √ √ √ 95.1 

Table 2. the results of ablation study. 

 

As seen from the results in the Table 2, the mAP improves by 

0.2% when the PSPPF module is added to YOLOv8s alone, and 

by 2.0% when DSConv is added to Backbone alone. When the 

MPDIoU loss function is added, mAP improved by 2.2%. When 

all three modules are added, map improves by 3.0%, 

demonstrating that all of our proposed improvements contribute 

to improving the mAP value to varying degrees and lead to a 

significant improvement in the overall detection accuracy of the 

model. 

The curves of the experimental results comparing the improved 

algorithm with the original algorithm are shown in Figure 6. 

From Figure 6, it can be seen that the mAP values of the 

improved algorithm are significantly higher than those of the 

original YOLOv8 algorithm as the number of training epochs 

increases. 
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Figure 6. Comparison of mAP@0.5 curves before and after 

improvement. 

 

In this paper, we select three targets of different scales which 

are harbor, vehicle and airplane, and compare the detection 

effect with the original YOLOv8 network to verify the 

effectiveness of the proposed algorithm for multi-scale target 

detection, and the detection results are shown in Figure 7. 

 
(a) 

 
(b) 

Figure 7. Comparison of detection results between original 

YOLOv8(a) and improved YOLOv8(b). 

 

For harbor, the original YOLOv8 model misses one, and the 

improved model detects all of them; for vehicle, the original 

network model misdetects one, and the improved model detects 

all of them; for images containing airplanes, the original 

network model misdetects two, and the improved model detects 

all of them; and for all the three types of different scales of 

targets, the improved algorithm's detection accuracies are higher 

than that of the original algorithm, which proves that our model 

has significantly improved detection effectiveness of multi-

scale targets compared with the original YOLOv8. 

 

4.4 Comparison test 

In order to further verify the effectiveness of the improved 

algorithm, we choose some popular algorithms in the field of 

optical remote sensing image target detection in recent years to 

compare with our proposed algorithm, and the specific 

comparison algorithms and experimental results are shown in 

Table 3. 

 

Algorithm img_size epoch mAP@0.5% 

SSD 640×640 300 81.2 

Faster R-CNN 640×640 300 84.7 

YOLOv4 640×640 300 89.5 

YOLOv5 640×640 300 90.8 

YOLOv7 640×640 300 92.7 

YOLOv8 640×640 300 92.1 

Our algorithm 640×640 300 95.1 

Table 3. the results of comparison test. 

 

From the data in Table 3, it can be seen that under the same 

input image size and number of training epochs, our algorithm 

obtains a higher mAP index compared to other algorithms, 

which proves that the improved algorithm has a more accurate 

detection effect for multi-scale targets. 

 

5. Conclusion 

For the problems of high detection difficulty and low accuracy 

caused by multi target scales and high background complexity 

in optical remote sensing images, this paper proposes a multi-

scale target detection algorithm for optical remote sensing 

images based on the YOLOv8 by proposing a PSPPF module, 

adding DSConv to the Backbone structure and using MPDIoU 

to replace the CIoU loss function in the original network. Both 

ablation and control experiments demonstrate that the detection 

effect of our proposed algorithm is better than the original 

YOLOv8 algorithm and other typical target detection 

algorithms, and it has more excellent detection performance for 

multi-scale targets in optical remote sensing images. In the 

subsequent tasks, we plan to continue to enhance the 

generalization ability of the model, so that it can also achieve 

excellent detection results for small or ultra-small targets in 

visible remote sensing images. 
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