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Abstract 

 

The lack of precisely labeled data limits the development of supervised polarimetric synthetic aperture radar (PolSAR) image change 

detection. Therefore, semi-supervised deep learning methods have recently demonstrated their significant capability for PolSAR 

image change detection. Similarity Matching (SimMatch) improves the performance of semi-supervised learning tasks across 

different benchmark datasets and different settings. Introducing SimMatch into the field of PolSAR image change detection can 

improve the performance of semi-supervised PolSAR image change detection under limited labeled data conditions. Usually, semi-

supervision solves the problem of insufficient labeled data by generating pseudo-labels. However, when the pseudo-label method is 

simply applied, the model will fit on the confident but wrong pseudo-labels, resulting in poor performance. SimMatch offers a 

solution by requiring the strongly augmented view to share the same semantic similarity (i.e. label prediction) and instance 

characteristics (i.e. similarity between instances) with a weak augmented view for more intrinsic feature matching. Besides, by using 

a labeled memory buffer, the two similarities can be isomorphically transformed with each other by introducing the aggregating and 

unfolding techniques. Therefore, the semantic and instance pseudo-labels can be mutually propagated, and then, the detection 

performance of the PolSAR image change detection is improved. Experimental results on real PolSAR datasets demonstrated that 

SimMatch is an effective semi-supervised PolSAR change detection method and its performance surpasses some well-known change 

detection methods. Compared to the fully-supervised algorithm CWNN, the semi-supervised SimMatch algorithm can improve 

accuracy by up to 14.4%. 

 

1. Introduction 

In the past several years, polarimetric synthetic aperture radar 

(PolSAR) data have become easily accessible due to more and 

more satellites launched for data collection (Zhang et al., 2021). 

Taking the Gaofen-3 satellite as an example, the resolution can 

reach 1 meter and the maximum width can reach 650 kilometers. 

Benefiting from artificial intelligence (AI), the methods for 

performing image change detection tasks on PolSAR data have 

advanced rapidly (Chen et al., 2020).  

However, a large volume of labeled data is very expensive to 

collect in a real-world scenario. Learning with few labeled data 

has been a longstanding problem in the PolSAR image change 

detection research community. Among various methods, semi-

supervised learning (SSL) (Chapelle et al., 2006) has recently 

demonstrated its significant capability for PolSAR image 

change detection. 

A simple but very effective semi-supervised learning method 

is to adopt the classical two-stage training paradigm: pre-

training plus fine-tuning. Such as ResNet (He et al., 2016), 

Vision Transformer (ViT) (Dosovitskiy et al., 2020), and Swin-

T (Liu et al., 2021) are commonly pretrained in a supervised 

manner on a large-scale dataset, and then transfer the learned 

representation by fine-tuning the pretrained model with a few 

labeled samples. 

Instead of separate two-stage pretraining and fine-tuning, 

current popular methods directly involve the labeled data in a 

joint feature learning paradigm with pseudo labeling (Lee, 2013) 

or consistency regularization (Sajjadi et al., 2016). These 

methods train semantic classifiers with labeled samples and use 

predicted distributions as pseudo labels for unlabeled samples. 

Pseudo-labels typically come from weakly augmented views or 

the average predicted values of strongly augmented views. 

However, when there are only very limited labeled data, they 

suffer severe "overconfidence" issues, i.e., the model will fit on 

the confident but wrong pseudo-labels, resulting in poor 

performance. We notice that matching the similarity 

relationships of both semantic and instance levels 

simultaneously is extremely beneficial to decouple their

 

 

Figure 1. Consider the Fully-Connected layer vector as the 

semantic representation or class center of each category. 

SimMatch uses labeled memory buffers to fully utilize instance-

level labels. 

 

predictions as well as alleviate overfitting on noisy pseudo-

labels. 

In this paper, we introduce Similarity Matching (SimMatch) 

(Zheng et al., 2022) to improve the performance of Semi-

supervised PolSAR image change detection across different 

benchmark datasets and different settings. SimMatch, which has 

been shown in Figure 1, offers a solution by requiring the 

strongly augmented view to share the same semantic similarity 

(i.e. label prediction) and instance characteristics (i.e. similarity 

between instances) with a weak augmented view for more 

intrinsic feature matching. Besides, by using a labeled memory 

buffer, the two similarities can be isomorphically transformed 

with each other by introducing the aggregating and unfolding 

techniques. Therefore, the semantic and instance pseudo-labels 

can be mutually propagated, and then, the detection 
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performance of the PolSAR image change is improved. We 

extended SimMatch from red-green-blue (RGB) to PolSAR 

image change detection, which is a novel semi-supervised 

learning framework that considers both semantic similarity and 

instance similarity, achieving better results than other methods. 

 

2. Related Work 

2.1 Semi-Supervised Learning. 

Consistency regularization and entropy minimization 

methods are widely used in semi-supervised learning. 

Consistency regularization ensures that when perturbations are 

applied to the input or model, the model's response to the input 

remains consistent (Sajjadi et al., 2016). Regularization can be 

achieved through the simplest form of loss terms: 

 

||p
model 

(y|A(x);θ)-p
model 

'(y|A(x);θ)||
2

2
,              (1) 

 

A(x) is stochastic transformation, which can be domain-specific 

data augmentation (Sajjadi et al., 2016), random max pooling 

(Sajjadi et al., 2016), or adversarial transformation (Miyato et 

al., 2018). A further approach is to perturb the model p
model 

', 

rather than the input. The perturbation can be adversarial 

perturbations to model parameters θ (Zhang and Qi, 2020), or a 

time ensembling for the model at different time steps 

(Tarvainen and Valpola, 2017). Also, entropy minimization 

utilizes unlabeled data in an explicit bootstrapping manner, 

assigning pseudo labels to unlabeled data for joint training with 

labeled data. Different from prior works, MixMatch (Berthelot, 

2019), ReMixMatch (Berthelot et al., 2019), and FixMatch 

(Sohn et al., 2017) combine the advantages of these two 

methods and propose a hybrid framework to leverage unlabeled 

data from two perspectives. Specifically, MixMatch adopts 

sharpened average predictions from multiple strongly 

augmented views as pseudo labels and further enhances them by 

using the MixUp trick (Berthelot, 2019). ReMixMatch inherited 

this idea and proposed Augmentation Anchoring to generate 

pseudo labels with weakly augmented views. It also introduces 

a distribution alignment strategy that encourages pseudo-label 

distribution to match the edge distribution of ground-truth class 

labels (Berthelot, 2019). FixMatch simplified unnecessary 

mechanisms and achieved optimal performance by retaining 

only high-confidence pseudo labels and their corresponding 

unlabeled data. In recent work, FlexMatch (Zhang et al., 2021) 

utilized inherent learning states to filter low-confidence labels 

class-wise as a further extension. 

 

2.2 The self-training via pseudo labeling. 

Pseudo-labels are artificial labels generated by the model 

itself for further training. Lee (2013) selected the class with the 

highest prediction probability of the model as the pseudo label 

in his semi-supervised deep learning network. The low-density 

separation assumption requires that when minimizing the 

entropy on pseudo labels, the decision boundaries between 

clusters of unlabeled samples are in the low-density region. 

Filtering pseudo labels based on confidence threshold (Sohn et 

al., 2020) is a simple but effective extension, which defines the 

confidence of a pseudo label as the highest probability it is 

considered to be any class. Filter out pseudo labels with 

confidence levels below the threshold, allowing us to focus 

more on labels that are away from the decision boundaries but 

have high confidence (low entropy).  

 
Figure 2. The input neighborhood window data of a pixel in a 

PolSAR image. C denotes the number of channels. H and W 

denote the height and width of the neighborhood window of a 

pixel. 

 

 
Figure 3. The input data formed by overlapping data of 

different periods. 

 

The use of pseudo labels for self-training is an explicit 

classical method proposed more than a decade ago (Lee, 2013). 

In recent years, it has received increasing attention from various 

fields, such as semi-supervised learning (Cascante-Bonilla et al., 

2021), fully-supervised learning (Radosavovic et al., 2018), and 

domain adaptation (Kumar et al., 2020). Especially in semi-

supervised learning, it has been refocused in some computer 

vision tasks, such as image detection. 

 

3. Method 

This section first introduces the input data types of PolSAR 

images, and then provides a basic framework for semi-

supervised learning with augmentation anchoring to delve into 

the main components of SimMatch. 

 

3.1 The input data of SimMatch 

Under horizontal and vertical polarization bases (H, V) , 

PolSAR can obtain full polarization information of targets, 

which can be characterized by polarization scattering matrices: 

 

S= [
SHH SHV

SVH SVV
],                                  (2) 

 

where H is the horizontally polarized emission or reception of 

electromagnetic wave signals, and V is the vertically polarized 

emission or reception of electromagnetic wave signals. 

Under the assumption of reciprocity (SVH=SHV) in a single 

station scenario, the commonly used polarization coherence 

matrix in polarimetric SAR information processing can be 

obtained: 

T=⟨ kPk P
H ⟩= [

T11 T12 T13

T21 T22 T23

T31 T32 T33

],                       (3) 

kP=
1

√2
[SHH+SWSHH-SW2SHV]T.                        (4) 
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Figure 4. Overview of SimMatch pseudo label generation process. SimMatch first uses a semantic pseudo label and an instance 

pseudo label generated from weakly enhanced views to calculate the similarity between semantics and instances through the class 

center and tag embedding and then uses unfolding and aggregation operations to fuse these two similarities, ultimately obtaining the 

pseudo label. 

 

In Eq. (3), kP is the Pauli scattering vector, and (⋅)H
 represents 

conjugate transposition. 

The elements in the T are complex numbers except for the 

diagonal ones. The polarimetric information of each pixel can 

be defined by a vector tp. 

 

tp=[T11, T22, T33, 

Re [T12] , Im [T13],  Re [T13] ,                      (5) 

Im [T13], Re [T23], Im [T23]], 

 

where Tij  are the elements in T . i, j = 1, 2, 3 . Re []  and Im [] 

denote the real part and imaginary part of Tij, respectively. 

Typically, when classifying a pixel in a PolSAR image, the 

neighborhood window data of the pixel is also used as input, as 

shown in Figure 2. Let C denote the number of channels, also 

the number of elements in tp and H and W denote the height and 

width of the neighborhood window data. Then the size of the 

input data is (C, H, W). 

The number of channels in a PolSAR image is 9. In order to 

detect change in the same pixel at different times, we overlay 

two PolSAR images with the same location but different phases, 

as shown in Figure 3. At this point, the number of channels for 

the input data is 18. 

 

3.2 SimMatch semi-supervised learning framework 

The semi-supervised image detection problem can be defined 

as follows. Randomly apply a weak augmentation function 

Tw(⋅) to a batch of labeled data X= {xb: b∈ (1…, B)} to obtain 

weakly augmented samples. Then, use the encoder F (⋅) of the 

convolutional neural network to obtain feature information: 

h=f (T (x)), and map hb to semantic similarity p=ϕ (h) using the 

fully connected class prediction head ϕ (⋅). Similarly, applying 

weak augmented Tw(⋅)  and strong augmented Ts(⋅)  [5, 6] to 

unlabeled data u = {ub:b∈ (1…, μB)}  randomly, the same 

processing is performed to obtain the semantic similarity for 

weak augmented sample pw (pseudo label) and strong 

augmented sample ps. 

SimMatch also considers instance similarity, which 

encourages strong augmented views and weak augmented views 

to have similar similarity distributions. Assuming a nonlinear 

projection head g (⋅) is mapped to a low dimensional embedding 

zb=g(hb), based on augmented anchoring, zb
w and zb

s  are used to 

represent the embeddings of weakly augmented views and 

strongly augmented views. For k  weakly augmented 

embeddings of different samples {zk: k∈ (1..., K)} , the 

similarity function sim (⋅)  is used to calculate the similarity 

between zw  and the i -th instance. This similarity function 

represents the L2 normalization vector sim (u, v) =uTv/ ||u|| ||v||. 

Process the obtained similarity in the softmax layer to obtain the 

similarity distribution, where 𝑡 is the temperature parameter for 

adjusting the sharpness of the distribution: 

 

q
i
w=

exp(sim(zb
w, zi)/t)

∑  K
k=1 exp(sim(zb

w, zk)/t)
.                            (6) 

 

Similarly, calculating the similarity sim (zb
s , zi)  between the 

strongly augmented views zS  and zi  yields a similarity 

distribution as follows: 

 

q
i
s=

exp(sim(zb
s , zi)/t)

∑  K
k=1 exp(sim(zb

s , zk)/t)
.                              (7) 

 

3.2.1 Label Propagation through SimMatch 

In the previous text, we considered instance-level consistency 

regularization, but due to the completely unsupervised instance 

pseudo-label qw, it caused a great waste of labeled information. 

SimMatch improves the quality of pseudo-labels by utilizing 

labeled information on the instance level and a strategy that 

allows for interaction between semantic similarity and instance 

similarity.   

All annotated examples are saved in a labeled memory buffer, 

as shown in Figure 4 (green branch). In Eq.  (6) and Eq.  (7) 

each zk can be assigned to a specific class. The vector in ϕ is 

interpreted as a "centered" class reference and the embeddings 

in the labeled memory buffer can be considered as a set of 

"single" class references.  

By using a weakly augmented sample, the semantic similarity 

pw∈R1×L  and instance similarity qw∈R1×K  can be calculated 

first. (Note that since each class requires at least one sample, L 

is usually much smaller than K.) We need to unfold pw into K-

dimensional space (represented as punfold ) to calibrate qw . By 

matching the corresponding semantic similarity embedded in 

each tag, this can be achieved: 

 

p
i

unfold
=p

j
w,where class(q

j
w)=class(p

i
w) ,               (8) 
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Figure 5. The label propagation. When the semantic and 

instance similarity are similar, the resulting pseudo labels will 

be clearer and when these two similarity points are different, the 

generated pseudo labels will be flatter. 

 

among them, class (·) is a function that returns the basic truth 

class. Specifically, class(q
j
w)  represents the label of the jth 

element in the memory buffer, and class(q
j
w) represents the ith 

class. Then use punfold  to scale qw  to regenerate the calibrated 

instance pseudo labels, which can be represented as: 

 

q̂
i
=

q
i
wp

i

unfold

∑  K
k=1 q

k
wp

k

unfold
.                               (9) 

 

The pseudo label q̂ of the calibrated instance will replace the old 

one qw. On the other hand, in order to use instance similarity to 

adjust semantic similarity, it is necessary to first aggregate q 

into the L  dimensional space, represent it as qagg , and then 

achieve sharing the same ground-truth labels by 

summing instance similarity: 

 

q
i

agg
= ∑  

K

j=0

1(class(p
i
w)=class(q

j
w))q

j
w.                 (10) 

 

The semantic pseudo labels readjusted by using qagg smoothing 

pw can be written as: 

 

p
î
=αp

i
w+(1-a)q

i

agg
 ,                            (11) 

 

among α it is a hyper-parameter that controls the weight and 

instance information of semantics. Similarly, the adjusted 

semantic pseudo labels will replace the old one p
i
w. In this way, 

pseudo labels p̂ and q̂ will contain both semantic and instance-

level information. As shown in Figure 5, if these two 

similarities are different, the result will be flatter and do not 

contain high probability values. On the other hand, when the 

similarity between semantics and instances is close, it means 

that these two distributions are consistent with each other's 

predictions, resulting in sharper results and high confidence for 

certain classes.  

 

3.2.2 Efficient Memory Buffer 

As mentioned earlier, SimMatch has a memory buffer to store 

feature embeddings and basic truth labels of labeled data. 

Specifically, SimMatch defines a feature memory buffer Q
f
 and 

a label memory buffer Q
l
, where K is the number of labeled data 

and D is the embedding size. For Q
l
, only one scalar needs to be 

stored for each label, and we can achieve aggregation and 

unfolding operations through the gather and scatter add 

functions in the deep learning library (Zheng et al., 2022). 

In SimMatch, two different implementations were adopted 

for different buffer sizes. When K is large, MoCo (He et al., 

2020) is followed to utilize a student-teacher-based framework, 

represented as Fs and Ft.  

In this case, the labeled data and strongly augmented data 

will be passed into Fs, while weakly augmented data will be fed 

into Ft to generate pseudo labels. 

 

Ft←mFt+(1-m)Fs.                             (12) 

 

On the other hand, when K  is small, a time integration 

strategy (French et al., 2017) is only needed to smooth the 

features in the memory buffer, which can be written as: 

 

zt←mzt-1+(1-m)zt .                            (13) 

 

In this case, all samples will be directly passed to the same 

encoder. 

 

3.3 Loss 

As can be seen from the previous text, the labeled samples 

are directly optimized through cross-entropy loss with ground-

truth labels: 

 

Ls=
1

B
∑H(y, p).                                  (14) 

 

Unsupervised loss can be defined by the cross entropy 

between the semantic similarity for weak augmented sample pw 

(pseudo label) and strong augmented sample ps. 

 

Lu=
1

μB
∑1(maxDA(pw)>τ)H(DA(pw), ps),         (15) 

 

next, we only retain the maximum class probability in the 

pseudo label that is greater than the confidence threshold τ 

unlabeled samples (Sohn et al., 2020).  DA (·)  represents a 

distribution alignment strategy (Berthelot et al., 2019), which 

balances the distribution of pseudo labels. We just need to 

maintain the moving-average of p
avg
w  and use 

Normalize(pw/p
avg
w )  to adjust the current pw  (Li et al., 2021). 

Additionally, it should be noted that DA(pw)  will be used 

directly as a pseudo label instead of using the sharpened or hot 

version of pw. 

Besides, we achieve consistency regularization by 

minimizing the difference between qs  and qw . Here, cross-

entropy loss is used: 

 

Lin=
1

μB
∑H(qw, qs).                               (16) 

 

The overall training objective of our model is: 

 

Loverall=Ls+λuLu+λinLin .                       (17) 

 

4. Experiments 

4.1 Dataset 

The dataset was generated by unmanned aerial vehicle 

synthetic aperture radar (UAVSAR) sensors capturing different 

regions of Los Angeles (LA), with each dataset consisting of 

two sets of images from April 23, 2009, and May 11, 2015. 

Among them, LA1 has a height of 786 pixels and a width of 

300 pixels, and LA2 has a height of 766 pixels and a width of 

300 pixels. Figure 6 shows the Pauli pseudo-color maps and 

their ground-truth (GT) maps of LA1 and LA2 at different times. 
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Changed areas Unchanged areas 

                             
(a)                              (b)                              (c)                                 (d)                              (e)                              (f) 

Figure 6. Pauli pseudo-color images of the UAVSAR images. Black denotes unchanged areas, and white denotes changed areas. 

(a)(b) Pauli pseudo-color images of UAVSAR LA1. (c) GT of LA1. (d)(e) Pauli pseudo-color images of UAVSAR LA2. (f) GT of 

LA2. 

Changed areas Unchanged areas False positives False negatives 

                             
(a)                               (b)                               (c)                                  (d)                               (e)                               (f) 

Figure 7. Change detection results on the UAVSAR LA1 dataset and the UAVSAR LA2 dataset. (a) CWNN on LA1. (b) 

SimMatch on LA1 (100 samples). (c) SimMatch on LA1 (3664 samples, 5%). (d) CWNN on LA2. (e) SimMatch on LA2 (100 

samples). (f) SimMatch on LA2 (2318 samples, 5%). 

 
Methods Samples  OA(%) Kappa Precise Recall F1 

CWNN 3664 88.17 0.579 0.601 0.706 0.649 
SimMatch 100 90.35 0.686 0.979 0.905 0.941 

SimMatch 3664 95.08 0.815 0.974 0.967 0.971 

Table 1. The change detection performance evaluation on the 

UAVSAR LA1 detest. 

 
Methods Samples  OA(%) Kappa Precise Recall F1 

CWNN 2318 83.38 0.282 0.300 0.487 0.371 
SimMatch 100 97.78 0.885 0.996 0.979 0.988 

SimMatch 2318 98.31 0.910 0.995 0.987 0.991 

Table 2. The change detection performance evaluation on the 

UAVSAR LA2 detest. 

 

The experiment uses 100 labeled change pixels as the number 

of training samples for semi-supervised change detection. For 

each dataset, we randomly select the same number of training 

samples representing both changed and unchanged types, with 

the remaining pixels used for performance evaluation. The OA, 

Kappa coefficient, precision, recall, and F1 score were used for 

the change detection performance evaluation (Lee, 2013). We 

compare the well-known fully-supervised change detection 

method CWNN (Gao et al., 2019) with SimMatch: a SAR 

image sea ice change detection method based on a 

convolutional-wavelet neural network. 

 

4.2 Results 

The change detection results and performance evaluation on 

the UAVSAR LA1 dataset are shown in Figure 7 and Table 1 

The CWNN achieved impressive results, but some unchanged 

areas were detected as changing areas, which affected the 

performance of change detection. The SimMatch algorithm 

proposed in this article achieved excellent performance on this 

dataset, with slightly better accuracy than CWNN even under 

the constraint of semi-supervised learning with small samples. 

Most of the changed and unchanged regions were correctly 

identified. The OA, Kappa coefficient, recall, and F1 scores are 

2.18%, 0.107, 0.199, and 0.031 higher than those of CWNN, 

respectively. 

Figure 7 and Table 2 show the change detection results of the 

LA2 dataset. The performance of CWNN is very low, with 
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many unchanged areas identified as changed areas, while the 

changed area in the upper right corner is almost not recognized. 

The performance of the proposed SimMatch is also much 

better than CWNN in semi-supervised situations. Compared 

with CWNN, OA has improved by 14.4%, the Kappa 

coefficient has increased by 0.603, the recall has increased by 

0.492, and the F1 score has increased by 0.617. 

To further explore the optimal performance of SimMatch, we 

conducted a fully-supervised experiment on the UAVSAR 

dataset using 5% of labeled samples. We use 3664 samples on 

the LA1 dataset and 2318 samples on the LA2 dataset. 

SimMatch achieved excellent results on both datasets. The OA 

has reached its highest level with 95.08% and 98.31% 

respectively. The experiment further validated the excellent 

performance of SimMatch under fully-supervised learning. 

The above experiments and analysis indicate that the 

SimMatch proposed in this paper can achieve good performance 

in PolSAR image change detection. Even with a small number 

of training samples, the performance surpasses advanced fully-

supervised change detection methods. This framework 

considers both semantic-level and instance-level consistency 

regularization and has memory buffers to fully utilize instance-

level data annotations, with strong feature extraction capabilities. 

 

5. Conclusion 

This paper introduces the new semi-supervised learning 

framework SimMatch into the field of SAR image change 

detection. In SimMatch, consistency regularization is applied 

simultaneously at the semantic-level and instance-level, 

associating semantic similarity with instance similarity. The two 

types of similarity can be propagated through unfolding and 

aggregation operations. At the same time, it also has a labeled 

memory buffer that can fully utilize the basic fact labels at the 

instance-level. Extensive experiments have shown that 

SimMatch can generate higher quality and more reliable 

matching targets with a small amount of labeled data. The 

change detection results on the UAVSAR dataset demonstrate 

the most advanced performance of semi-supervised learning. 
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