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Abstract

To solve the current problem of insufficient exploration of three-dimensional spatial information detected by 3D ground penetrating
radar (3D GPR) and the data processing mainly based on the analysis and interpretation of two-dimensional slice images, a method is
proposed to extract underground target based on the local entropy feature of discrete point clouds after the voxelization of 3D GPR
data. First, the acquired 3D GPR data was voxelized into discrete three-dimensional point clouds. Then the local entropy feature of
the voxelized point clouds over the entire region were calculated. The soil background and underground targets were distinguished
by classifying them from multiple dimensions through Support Vector Machine (SVM). Finally, the urban road underground
environment was taken as the research object, and this method was used for experimental analysis using measured data. The
experimental results show that the accuracy of this method in extracting underground targets is as high as 90.1%, and the missing
detection rate of missing underground targets is as low as 7.8%. The proposed method is accurate and effective, providing a new
approach for 3D GPR to extract underground target.

1. Introduction

With the advancement of urbanization, the construction of roads,
subways, pipelines and other underground structures projects
has developed rapidly. Disasters such as road collapse also
occur frequently. Ground penetrating radar is a remote sensing
detection technology that uses the principle of different
propagation characteristics of electromagnetic wave in different
media to image the distribution of underground media (Qiu Yeji,
2015). Through the processing and interpretation of GPR
underground detection data, it is possible to achieve the true
restoration of underground media and non-destructive detection
of abnormal media bodies, which provides technical support for
remote sensing detection of underground physical spaces (Kim
N et al., 2019). GPR has broad application prospects in the
fields of urban underground pipeline detection, road disease
detection (Shi Zhenshi, 2022), underground engineering
structures (Cai Yihuang, 2019), archaeological excavation, and
other fields.

In the early days, due to the limitations of GPR system
hardware equipment technology, the data obtained by GPR
were mainly one-dimensional single channel wave (A-Scan) or
two-dimensional time profile (B-Scan) data. With the
development of 3D GPR technology, the main data form of
GPR has begun to become more accurate and intuitive three-
dimensional image data (C-scan). Ground penetrating radar
emits electromagnetic waves from a single transmitting antenna
at the same time, and the reflected waves received are A-scan
data, as shown in Figure 1 (a). B-scan data is the result of
splicing multiple sets of A-scan reflection waves, as shown in
Figure 1 (b). Ground penetrating radar emits electromagnetic
waves by multiple transmitting antennas moving in the same
direction for a certain distance within a certain period of time,
while the corresponding receiving antennas receive the
transmitted waves, obtaining multiple sets of B-scan data. These
B-scan data are concatenated to obtain C-scan data, as shown in
Figure 1 (c). C-Scan data is three-dimensional data collected by

3D GPR system, which is more intuitive and informative
compared with A-Scan data and B-Scan data, presenting a
complete three-dimensional space of the underground media
(Ching G P H et al., 2021) .

(a)A-scan (b) B-scan

(c) C-scan
Figure 1.Three types of GPR Data.

3D GPR has the advantages of high resolution, high signal-to-
noise ratio, high acquisition speed, and more intuitive
underground image data (Shi Lingfeng, 2008). With the
development of GPR software and hardware technology and the
demand for real underground three-dimensional spatial
information, higher requirements have been put forward for the
processing and analysis of three-dimensional ground penetrating
radar data in practical applications. However, due to the fact
that 3D GPR technology is still in the development stage, the
collecting, processing and interpreting technology of 3D GPR
data is not yet mature (Wang Dawei et al., 2023).

3D GPR collects C-scan data through a multi-channel three-
dimensional antenna array, which can generate two-dimensional
images such as vertical sections, cross sections, and horizontal
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sections. These images can recognize target features from
different angles. The current mainstream method for extracting
underground target by 3D GPR is still based on the time-
moment curve profile of two-dimensional slices of GPR (Yu kai
and Zhang bin, 2011). This method is limited to the
interpretation and analysis from two-dimensional perspective,
and the basis for interpretation is very simple. Therefor, it
cannot fully exploit the three-dimensional spatial characteristics
of 3D GPR, and lacks further methods for extracting
underground target using three-dimensional data. At present, the
processing of C-scan data mainly involves generating horizontal
slice images and establishing a data set of cracks, repairs, holes,
and poor connections between layers for intelligent
identification of diseases, or to use B-scan images and
horizontal slices to establish a data set for small sample hole
recognition. Another direction is to use a combination of three
images, including one horizontal part and two vertical parts of
C-scan data, as a training data set to improve classification
accuracy.

At the same time, most of the existing 3D GPR experiments
only collect underground data from a few sparse survey lines,
and cannot synthesize three-dimensional data of the
underground area (Hu Qunfang et al., 2020). Different from
sparse lines, collecting and synthesizing three-dimensional data
of 3D GPR and voxelizing the 3D GPR data can fully reflect the
detailed conditions of the underground three-dimensional space.
This method can identify the characteristics of underground
targets from a three-dimensional perspective, thereby improving
the extraction ability of underground targets (Zhang Wenbo et
al., 2008).

2. Method of Extraction Underground Target by
Voxelization and Local Entropy Feature

As shown in Figure 2, the overall process of this method is to
preprocess the collected 3D GPR data first. The preprocessed
3D GPR data is then voxelized into discrete point cloud with
three-dimensional coordinates and reflection feature values.
Then calculate the local entropy features of the soil background
and underground targets in the point clouds. Finally, the SVM is
used to classify and optimize the parameters of local entropy
features. The local entropy features are calculated based on the
optimized parameters, and the underground targets are extracted
through SVM.

Figure 2. Method Flowchart.

2.1 Data Preprocessing

The purpose of ground penetrating radar data preprocessing is
to reduce noise, enhance signal, improve signal-to-noise ratio,
and extract correct amplitude, frequency, phase and other
effective information from the data. The process is shown in
Figure 3. The raw ground penetrating radar data must be
preprocessed to obtain valid data with potential for further
interpretation.

Figure 3. GPR Data Preprocessing Flowchart.

2.2 3D GPR data Voxelization

Voxelization converts the geometric form of a three-
dimensional object into discrete point clouds represented by
small cubic units. 3D ground penetrating radar data voxelization
is the expansion of the two-dimensional image pixels of ground
penetrating radar in three-dimensional space. The ground
penetrating radar data is divided into small cubic blocks with a
certain size and discrete coordinates. And specific attribute
values are used to reflect its reflection characteristics (Ni Xuefei
and Qin Fuchun, 2015). This method provides an effective
means to interpret 3D ground penetrating radar data (Wang
Xiurong et al., 2017). The process of 3D ground penetrating
radar data voxelization is shown in Figure 4.

Figure 4. Voxelization Flowchart.

(1) Chunking and Layering: In order to reduce anomalies during
the interpolation, the data is divided into several chunks and
subjected to layering processing.

(2) Coordinate Transformation: Convert the position of each
voxel unit to a unified coordinate system for data splicing.
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(3) Spatial Resolution Determination: Calculate the x direction
resolution x0, y direction resolution y0, and depth resolution z0.
The horizontal resolution x0 and y0 are calculated based on the
size of chunks. The depth resolution z0 is the interval during
layering in (1). Each voxel unit in the chunk represents 3D
GPR data in the x0 × y0 × z0 range.

(4) Voxel Assignment: In addition to three-dimensional spatial
coordinates, 3D GPR data also records echo reflection feature
information to reflect the distribution of underground media.
Assign the reflection features from 3D ground penetrating radar
data to the voxel units at the corresponding positions. Each
voxel unit obtained after the final voxelization is completed has
position information of X, Y, and Z coordinates and attribute
information of reflection feature values.

(5)Result Merge: Splicing various rectangular chunks to obtain
voxelization results of the entire detection area.

2.3 Local Entropy Feature Calculation

Local entropy reflects the amount of information contained in a
local region (Wang Guangjun et al., 2000). The larger the local
entropy H of this region, the greater the amount of information
it contains, and the greater the probability of the existence of
underground targets (Wang Yuanbin and Yin Yang, 2017). This
article introduces the concept and calculation method of local
entropy, and proposes the concept and calculation method of
local entropy in three-dimensional regions, as shown in Figure 5.

Figure 5. Local Entropy Feature Calculation Flowchart.

Traverse all points within the region x×y×z, obtain their pixel
values and calculate their frequency. Then calculate the local
entropy of the region as follows.
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where x×y×z = the size of the region
X={0,1,2,…,255} = the range of pixel values
P(X=xi) = the frequency of pixel xi occurrence
p(X=xi) = the frequency of pixel xi
H(X) = the local entropy of the region

According to the experimental results of extracting underground
targets based on local entropy, the accuracy of extracting
underground targets solely through local entropy is relatively
low. Therefore, based on local entropy, the pixel mean and pixel
value variance of the region are calculated and added in local

entropy features to enhance the ability to distinguish between
soil background and underground targets.
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where X = the pixel mean
D(X) = the pixel value variance

It should be noted that different types of underground targets
have different extension directions, as shown in Figure 6 below.
The red arrow in Figure 6 indicates the extension direction.
Artificial vertical holes such as deep wells extend in the
underground direction. However, underground pipes generally
extend continuously in the horizontal direction. This difference
in extension direction is reflected in the difference in local
entropy feature changes of underground target point clouds in
different directions. Underground targets and their general
categories can be detected through the local entropy variance in
each direction.In order to make full use of the three-
dimensionality of 3D GPR, layer entropy variances in the three
directions of x, y, and z are introduced into the local entropy
feature to extract underground targets more effectively from a
three-dimensional perspective.
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Figure 6. Extension Directions of Different Types of
Underground Targets.
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At the same time, different types of underground targets come
in different sizes. Artificial vertical holes such as vertical
boreholes penetrate several meters deep into the ground. This
relatively large underground target is suitable for detection
using a large local entropy feature calculation area. As shown in
Figure 7, since the reflection feature value changes in the center
area of a larger underground target have a certain thickness, if
the area for calculating local entropy is too small, the center
area of the underground target will not be detected. On the other
hand, too small local entropy feature calculation area will also
lead to excessive calculation and reduce the computational
efficiency of extracting underground targets. Pipes are
concentrated in shallow locations, and some are smaller in
diameter. Some small holes and cracks on roads are also
relatively small in spatial scale and these underground targets
are suitable for detection using a smaller local entropy feature
calculation area.

Figure 7. Large Underground Target Center Area Layering.
In order to better detect underground targets of different sizes
and improve detection accuracy, this method uses three
different sizes of local entropy calculation areas (x×y×z of
Equation (1)) called large size, medium size and small size. The
large size can reflect the entropy characteristics of a large area,
but it is difficult to detect smaller underground targets, such as
small pipelines. The small size can detect smaller targets, but
compared to the large size, it is more susceptible to interference
from local noise and then misdetection (Xue Fuguo, 2002). In
order to improve the robustness of local entropy features of
large, medium, and small sizes in underground target detection,
detailed analysis and verification were carried out in
experiments. On the other hand, in order to determine the
optimal parameters for calculating local entropy features, such
as the size of the calculation area of each size, the parameters
should be adjusted according to the extraction results during the
actual experiment.

2.4 SVM Underground Target Detection

Calculate the local entropy features of some soil background
and various underground targets. Then optimize the local
entropy feature parameters based on the classification results in
the SVM. Finally, the local entropy features of the entire region
are calculated, and the underground targets are extracted
through SVM. The flowchart of this method is shown in Figure
8.

Figure 8. Underground Target extraction Based on Local
Entropy Feature Flowchart.

The pseudocode of Detection implementation algorithm process
is as follows:
Algorithm: Local entropy feature detection algorithm for
underground targets
Input:

The whole region point cloud ρ ;
n-th local region point cloud ρn ;
Local entropy feature μ ;
Local entropy feature characteristic parameters β ;
Large, medium, and small size training sets φ(β) ;
Classification accuracy threshold α0 ;
Classification accuracy αφ(β) .

Output:
Underground target area (UTA)

While (αφ(β)＜α0) do
optimize parameters β
calculate φ(β)
calculate αφ(β) through SVM classification

Iterative optimization is performed to obtain local entropy
feature parameters β and training set φ(β) that meet accuracy
requirements α0

While (ρn＜ ρ) do
Calculate local entropy μρn

If SVM classification φ(β)(μρn)=1
ρn ∈ Underground target area UTA

Output UTA;

3. Experiments and analysis

The handcart was equipped with a Raptor ground penetrating
radar system for detection in the underground area of sports
stadium ring road. The construction of underground structures
in sports stadium is relatively regular, with clear types and
characteristics of underground targets. Basic facilities such as
pipelines and shafts are preserved, making it suitable for
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conducting 3D ground penetrating radar underground target
extraction experiments (Zhou Qicai et al., 2010). The
orthophoto image of the experimental area is shown in Figure 9.

Figure 9. Orthophoto and Measurement Trajectory of the
Experimental Survey Region.

3.1 Analysis of Voxelization Results

After collecting underground data from the sports stadium on
the spot, the data of the entire study region was voxelized into
three-dimensional point clouds according to the aforementioned
voxelization method. The gray value of the point clouds
correspond to the reflection feature values of underground
media. As shown in Figure 10, the voxelization point cloud
results of the underground target area: the underground target
features are intuitive and clear, with high discrimination from
the soil background. From a three-dimensional perspective, the
grayscale values of the soil background do not show significant
changes in all directions; the underground targets are more

prominent and the gray value changes significantly in some
direction; the artificial vertical holes appear black or white,
extending deeper in the z-direction; the horizontal pipes extend
horizontally and have grayscale values close to light white.

Figure 10. Voxelized Point Cloud Result of Some Region.

3.2 Local Entropy Feature Analysis

Select some soil background, underground targets and their
edges, calculate and analyze their local entropy features. Some
calculation and analysis results are shown in Table 1. Table 1
lists the local entropy features of 6 sample points a~f in three
sizes: large, medium, and small, which all including entropy
value, x-direction layer entropy variance, y-direction layer
entropy variance, z-direction layer entropy variance, pixel mean,
and pixel variance, all measured in pixel values 0~255.

Serial Number a b c d e f

La
rg
e

Entropy Value 6.20 6.38 6.50 7.45 7.64 6.91
x-Layer Entropy Variance 38.01 40.45 42.16 48.85 55.84 46.68
y-Layer Entropy Variance 38.36 40.47 42.22 54.29 57.38 46.69
z-Layer Entropy Variance 37.66 40.80 42.71 53.04 58.07 47.09

Pixel Mean 128.00 127.00 127.00 127.00 127.00 127.00
Pixel Variance 320.71 409.65 479.66 5431.55 2637.57 1035.28

M
ed
iu
m

Entropy Value 6.22 6.26 6.46 7.19 7.87 7.35
x-Layer Entropy Variance 37.48 38.50 41.02 41.57 56.38 51.16
y-Layer Entropy Variance 38.12 38.40 41.16 48.77 60.21 50.31
z-Layer Entropy Variance 37.84 38.75 42.55 45.06 58.28 50.42

Pixel Mean 126.00 126.00 127.00 130.00 125.00 130.00
Pixel Variance 331.01 346.40 458.73 6862.81 4085.72 1991.75

Sm
al
l

Entropy Value 6.26 5.86 6.49 7.11 7.87 7.72
x-Layer Entropy Variance 36.38 32.79 39.19 36.62 52.90 50.81
y-Layer Entropy Variance 36.70 32.30 39.43 42.68 53.99 48.98
z-Layer Entropy Variance 36.72 32.64 42.17 37.93 50.78 48.27

Pixel Mean 127.00 134.00 126.00 119.00 131.00 131.00
Pixel Variance 357.33 251.63 492.86 7635.44 3984.92 3377.03

Table 1. Partial Local Entropy Feature Calculation Results
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In Table 1, a, b, and c represent soil background, d and e
represent artificial vertical holes, and f represents horizontal
pipes.

As shown in Figure 11 and Table 1, the grayscale change of the
soil background is relatively smooth; the entropy value is low;
the pixel mean is close to 127; the pixel value variance is small.
And the layer entropy variances in the x, y, and z directions are
also small. Small size local entropy features have stronger
robustness to soil background detection, but are more affected
by noise at deeper positions, resulting in larger entropy values,
layer entropy variance, and pixel variance of the soil
background, which can easily lead to misjudgment.

(a) (b) (c)
Figure 11. Soil Background Area.

As shown in Figure 12 and Table 1, the artificial vertical hole is
deeper, with obvious black and white alternation. At the edge of
the hole, the entropy value, layer entropy variance, and pixel
variance are also significant. Large size local entropy features
have stronger robustness. However, the layer entropy variance
of small and medium sizes are greatly affected.

(d) (e)
Figure 12. Artificial Vertical Hole Area.

As shown in Figure 13 and Table 1, the pipeline is located in a
shallower position with clear alternating black and white. Due
to the small diameter of the pipeline, it is not suitable to use
large size local entropy feature for detection. Under small size
conditions, the entropy value, layer entropy variance, and pixel
variance of the pipeline are relatively large, resulting in better
detection performance for the pipeline.

(f)
Figure 13. Horizontal Pipe Area.

3.3 Analysis of SVM Detection Results

According to the principle of uniform sampling, multiple
background points and underground target points are extracted
to calculate local entropy features. Use SVM for classification

and ensure the classification accuracy reaches 95% through
parameter optimization. Underground target area detection is
performed based on the optimized parameters. And the
detection results are compared with the true value labels to
verify their accuracy. In order to integrate the advantages of
local entropy features of different sizes, local entropy features
of three sizes are used to synthesize feature vectors for
classification. This method can not only reduce the interference
of noise on underground target identification, but also detect
relatively small underground targets. The comparison of
original point cloud data and underground target acquisition
results at small, medium, large and synthesis sizes is shown in
Figure 14. The final and best detection result is shown in Figure
15 as follows.

Figure 14. Comparison of Underground Target Extraction
Results under Different Sizes.

Figure 15. Underground target area extraction result.
As shown in Figure 16, the underground target detection results
are overlaid with the drawn true value labels, and the
underground target detection accuracy rate is calculated to be
90.1% and the missed detection rate is 7.8%. Local entropy
features are less affected by noise, the detection accuracy of the
underground targets is high, and the missed detection rate of
underground targets is also low.
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Figure 16. Underground Target Area Extraction Accuracy
Calculation Flowchart.

Through classification by the trained SVM, the final accuracy
and missing detection rate results of large size, medium size,
small size and synthesis size are shown in Table 2. Large size
detection of underground targets is more accurate, with an
accuracy rate of 94.5%, but there are more missing underground
targets, with a missing detection rate of 14%. There are fewer
errors in underground targets of small size, with a low missing
detection rate of 3.2%, but it is easier to detect soil background
as underground targets, with a lower accuracy rate of 85.3%.
Combining the three sizes of large, medium, and small can
achieve both high accuracy and low missing rate, and obtain
accurate and effective underground target detection results.

Size Accuracy/% Missing Rate/%
Large Size 94.5 14.0
Medium Size 89.7 9.6
Small Size 85.3 3.2

Synthesis Size 90.1 7.8

Table 2. Multi-size Detection Accuracy and Missed Detection
Rate results

4. Conclusion

Currently ground penetrating radar is a hot field of scientific
research, and 3D ground penetrating radar data processing is
one of the hot spots among them (Li Jianing, 2014). This
technology has been widely applied in geological exploration,
tunnel engineering, underground pipelines and other fields. The
rapid identification of underground targets has become an
increasingly urgent demand.

This study aims at the problem that current 3D ground
penetrating radar mainly focuses on detecting underground
targets from two-dimensional segmented images, lacking the
ability to extract underground targets from a three-dimensional
perspective. This study proposes a method for extracting
underground targets from a three-dimensional perspective,
providing a high-precision and high-efficient solution for urban
underground targets detection. This method has the
characteristics of high accuracy, low missing rate, and
automation without the need for manual interpretation.

This method innovatively adopts a new approach of interpreting
and analyzing 3D ground penetrating radar data, converting 3D
ground penetrating radar data into three-dimensional discrete
point clouds. Accurately extract underground targets from the
perspective of point clouds through the relationship between
their three-dimensional positions and reflection feature values.

This method comprehensively considers the differences in the
three-dimensional point cloud characteristics of soil background
and underground targets, proposes local entropy features, and
continuously supplements and optimizes local entropy features
through experiments to improve the ability of local entropy
features to distinguish soil background and underground targets.
On the other hand, according to the characteristics of different
underground targets, the robustness of identifying underground
targets is enhanced from the perspective of multiple sizes.

However, there are still some issues with this method that need
to be solved in future research. There is still room for further
optimization of local entropy features; the data richness is
insufficient to verify the robustness of the method in various
complex situations; the processing of ground penetrating radar
data still involves manual involvement, and achieving
automation of ground penetrating radar data processing is one
of the future research directions.
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