
Visual Reinforcement Learning for Dynamic Object Detection 
 

 

Xiangsheng Wang 1, Xikun Hu 1, Ping Zhong 1 

 
1 College of Electrical Science and Technology, National University of Defense Technology, China -  

(wangxiangsheng, huxikun, zhongping)@nudt.edu.cn 

 

Keywords: Reinforcement Learning, Dynamic Object Detection, Viewpoint Adjustment. 

 

 

Abstract 

 

Object detection is a widely studied task in computer vision. Current methods often focus on images captured from appropriate 

viewpoints. However, there is a large disparity between objects observed from different viewpoints in the real world. Dynamic Object 

Detection (DOD) method automatically adjusts the camera viewpoint in a visual scene to sequentially find optimal viewpoints. 

Currently, the DOD tasks are usually modeled as a sequential decision-making problem and solved using reinforcement learning 

methods. Existing approaches face challenges with sparse rewards and training instability. To tackle these issues, we proposed a single-

step reward function and a lightweight network, respectively. The single-step reward function, which provides timely feedback, gives 

an efficient training process for DOD tasks. The lightweight network with few parameters can ensure the stability of the training 

process. To evaluate the effectiveness of our method, we developed a simulation dataset based on UE4, which consists of 1800 training 

images and 450 testing images. The dataset includes five object categories: vans, cars, trailers, box trucks and SUVs. Experiments 

demonstrate that our method outperforms SOTA object detectors on our simulation dataset. Specifically, the average precisions(APs) 

are improved from 89.1% to 96.0% when using the YOLOv8 object detector.  

 

 

1. Introduction 

Visual object detection is widely used in a variety of industries. 

In recent years, significant progress has been made in the field of 

object detection with the development of deep learning. Existing 

object detection methods, such as Faster R-CNN (Ren et al., 2017) 

and YOLO (Redmon et al., 2016), have achieved satisfactory 

detection performance. Object detection technology has shown 

promising applications in various fields such as traffic 

monitoring (Byun et al., 2021), power inspection (Abdelfattah et 

al., 2020) , and disaster relief (Boi-Tuli et al., 2019). 

 

 
Figure 1 Images captured from two different viewpoints 

 

Current methods often focus on images captured from 

appropriate viewpoints. However, real-world applications often 

involve images taken with uncertain intentions, small-scale 

objects, and partial occlusions, which can result in poor detection 

performance. As shown in Figure 1, objects are partially 

obscured in the left image, which can be solved by adjusting the 

viewpoint as shown in the right image.  

 

Figure 2 presents the objects imaging under 5 different yaw 

angles(0°, 45°, 90°, 135°, 180°) and 3 different pitch angles(90°, 

60°, 30°). It can be noticed in Figure 2 that there are some views 

where objects are heavily occluded from each other, and there are 

also some views where targets are not occluded from each other. 

For the same objects in the scene, imaging with different 

viewpoints will get a different detection score. To improve 

detection performance in real-world scenarios, it is of vital 

importance to find a proper viewpoint.  

 

Dynamic Object Detection(DOD) method, which automatically 

adjusts viewpoints in a visual scene to sequentially find optimal 

viewpoint and scale, can effectively circumvent poor viewpoints 

and achieve better detection performance. There is an object 

detector and a next-view selector in a DOD framework. The 

object detector provides the object detection result towards the 

current image, and the next-view selector adjusts the viewpoint 

based on the detection results to achieve a better detection score 

in the next image.  

 

As for training, a two-stage training framework has been 

designed for DOD methods (Xu et al., 2021; Ding et al., 2023). 

The first stage aims to obtain a well-trained SOTA object detector, 

such as YOLOv8 or other similar detectors. The subsequent stage 

is to train an effective next-view selector by receiving feedback 

from the object detector. Sequentially adjusting the viewpoint 

and scale can considerably enhance the detection performance of 

the object detector for objects of interest in the following 

observations.  

 

The adjustment process in DOD problems is usually modelled as 

a sequential decision-making problem and solved using 

reinforcement learning methods. Current DOD methods typically 

design episode reward(Han et al., 2019) and extract image 

features directly using off-the-shelf deep networks(Liu et al., 

2021). Episode reward, which gives feedback once an episode, is 

also regarded as sparse reward. Consequently, it is difficult for 

an agent to find a beneficial path of action because it receives few 

useful reward signals to guide its actions. Besides, deep networks 

are usually more difficult to train in reinforcement learning tasks 

due to their large number of parameters. 

 

To tackle these issues, we proposed a single-step reward function 

and a lightweight network. The former, which provides timely 

feedback after each decision made by an agent, can efficiently 

guide the agent to the optimal viewpoints. Furthermore, we 

design a lightweight network for extracting image features. The 

lightweight network with few parameters tends to converge more 

steadily than deep networks in DOD tasks. 
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Figure 2. Images captured from different viewpoints 

 

2. Dynamic Object Detection Dataset 

A dynamic object detection dataset (DODD) based on UE4 is 

proposed to demonstrate the effectiveness of the proposed 

method. DODD includes five object categories: vans, cars, 

trailers, box trucks, and SUVs. Sample objects for the five 

categories are shown in Figure 3. 

 

 
Figure 3 Sample objects 

 

The image acquisition example is shown in Figure 4. Images 

from 15 viewpoints were captured for each scene, including data 

from 5 different yaw angles and 3 different pitch angles. The 

average yaw angle of objects within a scene is set as the initial 

yaw angle, at which yaw is equal to 0 degrees. The viewpoint 

directly above the objects has a pitch angle of 90 degrees. At each 

viewpoint, images are taken from five different distances to 

simulate different scales. 30m, 40m, 50m, 60m, and 70m from 

objects correspond to scale 1 to 5 respectively, which means 

object size is largest in scale 1. 

 

 
Figure 4 Image acquisition example. 

 

As a result, there are 75 images captured within a single scene. 

Details of yaw angles and pitch angles are listed in Table 1. 

 

  yaw 

pitch 
0° 45° 90° 135° 180° 

90° 1 2 3 4 5 

60° 6 7 8 9 10 

30° 11 12 13 14 15 

Table 1 Serial number of each viewpoint. 

 

The length and width of the images in DODD are both 640 pixels. 

Image samples of DODD are shown in Figure 5. 

 

   
(a)  viewpoint 6, scale1      (b)  viewpoint 11, scale1 

 

   
(c)  viewpoint 13, scale1     (d) viewpoint 14, scale1 

Figure 5. Image samples. 

 

Statistically, DODD consists of 30 scenes, of which 24 are 

divided into training scenes and 6 are divided into testing scenes. 

Consequently, there are 1800 training images and 450 testing 

images in total. The number of objects per category in the training 

dataset and test dataset is shown in Table 2. 

 

 car SUV trailer van box truck 

train set 3375 2925 1875 2100 2175 

test set 600 675 525 450 1200 

Table 2 The number of objects per category in the train set and 

test set of DODD. 
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3. Methodology 

In this section, we describe the Dynamic Object Detection 

method we have proposed. The overall architecture of the 

proposed method is first presented, along with its component 

modules. Then, the problem definition is presented for the 

dynamic object detection task, and the training method is 

explained. The next-view selector and the single-step reward are 

then presented in turn. 

 

3.1 Dynamic Object Detection Framework 

 
Figure 6 The framework of dynamic object detection. 

 

DOD framework is presented in Figure 6. DOD consists of an 

object detector and a next-view selector. The object detector 

provides detection results towards the current image, and the 

next-view selector adjusts the viewpoint and scale based on the 

detection result to achieve a better detection score in the next 

image. We use an off-the-shelf SOTA object detector and design 

an effective  next-view selector to obtain a better detection score. 

 

3.2 Problem Formulation 

We consider the dynamic object detection task as a standard 

model-free reinforcement learning problem. The next-view 

selector is defined as an agent whose goal is to obtain a better 

detection score for the object detector by adjusting the viewpoint 

and scale over several discrete times. We denote S, A, R, P and 𝛾 

as state space, action space, reward function, transition function 

and discount factor, respectively.  

 

The state space S includes all the states that the agent may 

encounter. The action space A consists of seven actions, which 

are yaw increase, yaw decrease, pitch increase, pitch decrease, 

scale increase, scale decrease, and stop. Every episode, consisting 

of several exploration steps of the agent, is ended once 

exploration steps exceed the episode length or when the agent 

selects the stop action. We set episode length to 5 in our 

experiments.  

 

 
Figure 7 The interactive process between environment and 

agent in reinforcement learning 

 

The interactive process of reinforcement learning is shown in 

Figure 7. In discrete time step t, the agent receives the state 𝑠𝑡 

from the environment and then the action 𝑎𝑡 is drawn from the 

agent’s policy function distribution: 𝑎𝑡~𝜋(∙ |𝑠𝑡). After the agent 

takes 𝑎𝑡, the state 𝑠𝑡+1 at next time step are obtained from the 

transition function 𝑃(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) . Meanwhile, 𝑟(𝑠𝑡, 𝑎𝑡) is 

obtained from the environment after the agent takes 𝑎𝑡  at the 

state 𝑠𝑡 . 𝛾  reflects the impact of current action 𝑎𝑡  on future 

decisions, which means the current action 𝑎𝑡  should not only 

benefit the next step but also contribute to the overall goal. 

 

As for training, the two-stage training framework is used for the 

dynamic object detection task. The first stage aims to obtain a 

well-trained SOTA object detector, which is trained through 

supervised learning paradigms. The subsequent stage is to train 

an effective next-view selector, which is trained through 

reinforcement learning paradigms.  

 

3.3 The Next-view Selector 

 
Figure 8 The next-view selector 

 

As shown in Figure 8, the next-view selector consists of a feature 

extractor network and a policy network. The feature extractor  

network extracts the image features and the policy network 

receives the image features to perform decision making. The 

feature extractor network and the policy network are presented 

first, and then the PPO algorithm is introduced for the training. 

 

3.3.1 The feature extractor: In deep learning tasks, deep 

neural networks are typically used as feature extractors. 

VRL3(Wang et al., 2022) achieved better performance in 

reinforcement-learning tasks only using 5-layer network. 

Therefore, we designed a lighter convolutional network as a 

feature extractor and experimentally demonstrated that the lighter 

convolutional network works perfectly for dynamic object 

detection. 

 

 
Figure 9 The framework of the lighter convolutional network 

 

The lighter convolutional network is shown in Figure 9, and it 

consists of five neural network layers, each of which is composed 

of a 2D convolutional layer, a ReLU layer and a maximum 

pooling layer. The number of output channels of the five 2D 

convolutional layers is categorized as 32, 64, 128, 256, and 512. 

After the average pooling operation is performed on the feature 

extractor network outputs, they are fed into the policy network. 

 

3.3.2 The policy network: The policy network consists of an 

actor module and a critic module, where the actor learns the 

action policy for a given state and the critic evaluates the 

performance of the given state. 

 

 
Figure 10 The framework of the policy network. The actor 

module on the left and the critic module on the right. 
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As shown in Figure 10, both the actor module and the critic 

module consist of three neural network layers, corresponding to 

the input layer, hidden layer and output layer respectively. Each 

of the layers is composed of a fully connected layer and a Tanh 

layer. In the actor module, the fully connected layer widths of the 

input layer, the hidden layer and the output layer are 512, 1024, 

and 7, respectively. The counterparts in the critic module are 512, 

1024, and 1. 

 

3.3.3 Proximal Policy Optimization (PPO) Algorithm: The 

next-view selector is trained using the PPO algorithm, which is a 

policy-based reinforcement learning algorithm. The core idea of 

the PPO algorithm is to limit the gap between the new policy and 

the old policy when optimizing the policy parameters to ensure 

the stability of the learning process. Its optimization objective is 

written as: 
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where 𝜃  is the training parameter for the next-view selector, 

𝑟𝑡(𝜃) represents the update magnitude. The larger 𝑟𝑡(𝜃) is, the 

greater the probability that the current policy 𝜋𝜃 will take action 

𝑎𝑡 in state 𝑠𝑡, and the larger the update relative to the old policy 

𝜋𝜃1.  𝐴𝜋𝜃1
 is the advantage function under the old policy 𝜋𝜃1 and 

𝜀  is truncation parameter, which is used to prevent the gap 

between  𝜋𝜃1 and  𝜋𝜃 from becoming too huge.  

 

The key of the PPO algorithm lies in its objective function PPO-

Clip, which improves the stability of learning by cropping the 

ratio between the new policy and the old one so that the new 

strategy will not deviate too far from the old one. In addition, the 

PPO algorithm has shown excellent performance and stability in 

practice and is an effective strategy optimization method. 

 

3.4 The Single-step Reward Function 

In reinforcement learning, the sparse reward problem is an 

important challenge. This refers to the fact that the agent obtains 

only a few reward signals when exploring an environment, 

causing learning to become exceptionally difficult. In such 

environments, the agent may need to go through a large number 

of exploratory behaviors to get some occasional rewards. This 

leads to prevent the agent from effectively learning how to 

accomplish the task. 

 

To mitigate the impact of sparse rewards on the dynamic object 

detection task, we design a single-step reward function, which 

provides timely feedback based on the detection results of the 

current image. Once the agent makes a decision, the precision, 

recall, and detection confidence are combined to calculate the 

current reward, which is capable of guiding the agent to adjust 

the viewpoints to those that are effective for object detection. 

 

 * *tF P R C=  (3) 

 

 i

i

C TP=  (4) 

 

where 𝐹𝑡 is detection score as time step t, P is detection precision, 

R is detection recall, and C is mean confidence of all true 

positives in detection results. In order to evaluate the gain of the 

action on object detection at time step t, we set the reward at time 

step t as: 

 

 
1t t tr F F −= −  (5) 

 

Once an episode is ended, a termination reward is obtained, 

which is as: 

 

 01T

T

F
r

F
= −  (6) 

 

where T means the total steps within an episode. 

 

4. Experiments 

In this section, a large number of experiments are conducted to 

demonstrate the effectiveness of the proposed method. A 

computer with Intel Core i9-12900K CPU, 64 GB RAM, and 

NVIDIA GeForce RTX 4090 is used for both training and 

evaluation. 

 

4.1 Experiments for the Object Detector 

Firstly, a SOTA object detector named YOLOv8 is selected as 

the object detector in the DOD framework, and is trained on 

DODD. 

 

4.1.1 Hyperparameters for the Object Detector: We give a 

detailed description of the training hyperparameters for the object 

detector YOLOv8 here. Firstly, we set the image size to 640x640 

pixels, set the batch size to 16, and set training epochs to 40. The 

Adam algorithm is used as the optimizer, whose momentum and 

weight decay are set to 0.937 and 0.0005, respectively. Besides, 

the learning rate is set to 1e-3 at the beginning of training and is 

reduced to 1e-5 using the cosine decay rate. Lastly, YOLOv8's 

built-in data augmentation operations are used during training, 

including horizontal flipping, mosaic enhancement, color 

translation, and scale translation. 

 

4.1.2 Results for the Object Detector: Firstly, DODD is used 

to train and evaluate the object detector YOLOv8. 

 

 
Figure 11 Regression loss and classification loss.  
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The first and second rows of Figure 11 show the regression loss 

values and classification loss values for the training and test data, 

respectively. As can be seen from Figure 11, the object detector 

YOLOv8 has converged after 40 epochs of training. 

 

For evaluation protocol, Average Precisions(APs) at different 

IoUs (AP at IoU =0.50 : 0.05 : 0.95) are used to evaluate the 

effectiveness  of the object detector YOLOv8. As a result, we 

obtain an AP of 89.1% for the test dataset in DODD. 

 

4.2 Experiments for  the Next-View Selector 

In this section, the next-view selector in the DOD framework  is 

evaluated based on the feedback of the object detector YOLOv8. 

 

4.2.1 Hyperparameters for the Next-View Selector: We 

give a detailed description of the training hyperparameters for the 

next-view selector here. Firstly, the Proximal Policy 

Optimization (PPO) Algorithm is used to update the parameters 

of the next-view selector during training. 𝛾, 𝜆, and 𝜀 of PPO are 

set to 0.99, 0.95, and 0.2, respectively. Besides, the learning rate 

is set to 1e-5 during training. The batch size and minibatch size 

are set to 1024 and 32, respectively, which means that the next-

view selector is trained with a minibatch size of 32 images once 

the agent explores 1024 steps. Lastly, the total exploration steps 

of the agent are set to 30k. 

 

4.2.2 Results for the Next-View Selector: Here, we use the 

proposed DODD dataset to train and evaluate the Next-View 

Selector. 

 

For the evaluation protocol, the results of all steps within each 

episode are adopted to evaluate the proposed method. Every 

image in the test dataset is used as the starting viewpoint. APs are 

used to measure the performance variations during the viewpoint 

adjustment in episodes. In order to validate the effectiveness of 

the proposed method, we compare it to the passive approach and 

random approach.  

 

Passive Approach(PA) means using the result of the first image 

in every episode as the episode final result. 

 

Random Approach(RA) means randomly selecting five actions 

in the action space, executing sequentially and using the result of 

the last image as the episode final result. 

 

Method 
Step 

0 1 2 3 4 5 

PA 89.1 - 

RA 89.1 89.0 89.2 89.0 89.1 89.1 

Ours 89.1 92.4 94.4 95.5 95.9 96.0 

Table 3 Comparison of Average Precisions(APs) for every step 

within episodes using different methods.  

 

From Table 3, it can be seen that our method can find a suitable 

viewpoint for object detection by sequentially adjusting the 

viewpoint, and our method achieves the best performance 

compared with PA and ARA. With adjustments according to the 

proposed method, APs is improved from 89.1% to 96.0% when 

using the object detector YOLOv8.  

 

 car SUV trailer van box truck 

Step 0 0.88 0.898 0.889 0.886 0.899 

Step 5 0.963 0.963 0.937 0.967 0.968 

Table 4 Average Precisions(APs) for each category 

 

Average Precisions(APs) , which correspond to step 0 and step 5 

with our method, for each category are shown in Table 4. It can 

be seen that after using the proposed DOD method, the APs of 

each category are significantly improved. 

 

Lastly, we give an example episode in the testing stage. As shown 

in Figure 12, the agent chooses the scale increase action two 

times, chooses the pitch increase action two times, and chooses 

the yaw increase action one time. As a result, detection score F is 

increased gradually from 0.7057 to 0.9487. 

 

 

 
Figure 12 Visualization results of viewpoint adjusting sequence. F of each image is calculated according to Eq.(5) 
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5. Conclusion 

This paper proposed a dynamic object detection method, which 

adjusts the camera to appropriate viewpoints for the object 

detection task. Combining precision, recall, and detection 

confidence, the proposed single-reward function provides a 

reward signal every time step and effectively alleviates training 

instability due to sparse rewards. Existing deep networks are 

over-parameterized, making it difficult for model convergence. 

Therefore, a lightweight network with few parameters is 

proposed to improve the speed of convergence efficiently. To 

demonstrate the effectiveness of the proposed methodology, a 

DODD dataset containing 1800 training images and 450 testing 

images is created based on UE4. Finally, the dynamic object 

detection method is trained using the PPO algorithm. 

Quantitatively, APs of test images are improved from 89.1% to 

96.0% after the viewpoint adjustment by the proposed method 

when the object detector is YOLOv8. 
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