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Abstract 
 
The firn temperature is a crucial parameter for understanding firn densification processes of the Antarctic Ice Sheet (AIS). Simulations 
with firn densification models (FDM) can be conceptualized as a function that relies on forcing data, comprising temperature and 
surface mass balance, together with tuning parameters determined based on measured depth-density profiles from different locations. 
The simulated firn temperature is obtained in the firn densification models by solving the one-dimensional heat conduction equation. 
Microwave satellite data on brightness temperature at different frequencies can also provide remote sensing monitoring of firn 
temperature variations across the AIS (i.e., the L-band up to 1500 meters). The firn temperature can be estimated by the microwave 
emission model and the regression method, but these two methods need more observations of temperature profiles for correction and 
validation. Therefore, we compiled a dataset with temperature profiles and temperature observations with depth around 10 meters. In 
this work, two methods were used to simulate/retrieve firn temperature across the Antarctic ice sheet. One method estimated the 
temperature profiles by solving the one-dimensional heat conduction equation driven by reanalyses and regional climate models, which 
are used in the simulation of FDMs. The other one established a relationship between the multi-frequency brightness temperature data 
from microwave remote sensing satellites and the firn temperature.  
 

1. Introduction 

With global warming since last century, the extraordinary 
temperature change events are increasing in the Antarctic ice 
sheet （AIS） (Wille et al., 2024). The firn temperature was 
influenced by the surface temperature dynamic change, and it 
plays an essential role in firn densification models (FDMs) and 
the stability of the AIS because it can influence the firn 
densification rate and meltwater within the firn (Dunmire et al., 
2024). The firn temperature profiles can be derived by using the 
thermal model and passive-microwave data (Jun et al., 2002). 
Most FDMs need a thermal model to simulate the heat-diffusion 
process to estimate the firn densification rate. Temperature-
induced correction from FDMs can reach 40% of all the AIS 
mass balance results. Firn temperature is also a key indicator of 
the melt happening. 

 
The firn densification is of great significance for estimating 

the mass balance of the AIS by satellite altimetry, it will cause 
surface elevation changes (no mass changes), which need to be 
deducted from the surface height change estimation of altimetry. 
FDMs are a reasonable method to deduct firn densification 
impacts on surface height change due to a lack of long-term 
observations for firn densification rate. The seasonal cycle of firn 
temperature below 10 m is totally small (<1 k), so the temperature 
variations usually happen above 10 m (Cullather et al., 2014). 
The FDMs need the surface mass balance (SMB) and surface 
temperature as the forcing inputs to simulate the density and 
temperature evolution with the depth. 

 
In passive microwave remote sensing research, low-

frequency passive microwaves, especially those in the C-band 
and frequencies below 6.9 GHz, have demonstrated the ability to 
penetrate more than 10 meters into dry snow layers in AIS field 
experiments and theoretical simulations (Mätzler, 1987). This 
capability provides a significant perspective for a deeper 
understanding of the structure and dynamics of the AIS. In 
contrast, higher-frequency microwaves are more suited for 
monitoring temperature changes in shallow firn layers. Further 

studies have shown that V-polarization brightness temperature 
(Tb) data have a distinct advantage over H-polarization in 
monitoring temperature changes within the firn layer, due to its 
higher signal-to-noise ratio. The seasonal temperature variations 
within the firn layer mainly occur within the top 10 meters. 
Several research have proved that the Tb data collected by multi-
frequency passive microwave remote sensing can effectively 
retrieve the internal temperature changes within this layer. The 
Advanced Microwave Scanning Radiometer (AMSR-E) and its 
successor, the Advanced Microwave Scanning Radiometer 2 
(AMSR2), have Tb products for 6 bands of frequencies, namely 
C (6.9 GHz), X (10.7 GHz), K-(23.8 GHz), Ku (18.7 GHz), Ka 
(36.5 GHz), and W (89 GHz). These allow them to retrieve the 
firn temperature variations above 10 meters. 

 
However, both the FDMs temperature simulation and the 

inversion of firn layer temperatures using passive microwave 
remote sensing require as much measured data as possible for 
calibration. Currently, temperature verification experiments for 
existing FDMs are limited to very few long-term observational 
data and verification of the model's lower boundary temperature 
at 10 meters (T10). T10 served as a reliable indicator of the 
average annual temperature of AIS. The calibration of internal 
firn temperature inversion using Tb is also based only on single 
observation sites or model-simulated temperature data.  

 
Therefore, this study collected a large temperature 

observation dataset with single-measured temperature profiles, 
multiple measurements of temperature observations, and a 
widely distributed T10. Then, we simulated the firn temperature 
at various depths by the FDMs driven by the SMB and surface 
temperature, and used the Wide Neural Network (WNN) model 
to retrieve the firn temperature from the 6 bands (C-, X-, Ku-, K-, 
Ka-, and W-) Tb data at V polarization from AMSR-E/2. The 
temperature observation dataset will be used to evaluate the 
performance of these two methods. It will be  
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2. Dataset 

2.1 Observation 

The dataset contains 3 types of temperature observations: 1. 
18 single-measured temperature profiles which include 16 
observations located along the Zhongshan-Dome A traverse, the 
other 2 observations in the South Pole and Siple dome; 2. 9 
multiple measurements temperature profiles observations which 
include 6 observations located along the Zhongshan-Dome A 
traverse, 2 observations located at the Dome C, one located in the 
South Pole; 3. 1006 temperature T10 observations, as shown in 
the Fig. 1. 

 

 
 

Figure 1. Temperature observations over the AIS (The orange 
dots are the measured temperature at around 10 m depth; The 
red triangles represent the single temperature measurements at 
various depths; The blue solid pentagram is stopped multiple 

temperature measurements at various depths; The hollow 
pentagram is the stopped multiple temperature measurements at 
various depths; The red circle at the South Pole indicates areas 

not covered by the AMSR-E/2 satellite) 
 

Currently, only the temperature observations at Taishan 
Station, Dome C Station, 16 observations along the Zhongshan-
Dome A traverse and T10 dataset can be simulated and retrieved, 
because we only have RACMO2.3p2 products that were released 
before 2020. T10 was evaluated by comparing with the average 
annual surface temperature. 

 
The evaluation focus on the temperature profiles above 10 

m because the temperature variations usually happen above 10 m. 
From 2016 to 2018, temperature profile observations at Taishan 
Station were conducted at 1-hour intervals with a depth interval 
of 0.1 meters. Observations ceased on December 31, 2016, due 
to battery depletion and resumed on November 13, 2017, 
following a battery replacement. For the years 2020-2021, the 
observation frequency at Taishan Station was adjusted to every 4 
hours, with a depth interval of 0.5 meters. Between 2006 and 
2010, temperature profile observations at Dome C Station were 
carried out at 1-hour intervals, with a non-uniform depth interval 
ranging from 0.1 meters to 10 meters. From 2012 to 2016, Dome 
C Station maintained the same observation frequency and depth 
intervals; however, data from 2013 to 2015 were excluded from 
accuracy evaluations due to partial depth data loss. Detailed 
parameters of the temperature observation instruments are 
presented in Table 1. 

 
Figures 2a, 2b, 2c, and 2d clearly illustrate the seasonal 

surface temperature variations of the firn and the process of 

temperature transfer into the interior. Surface temperature 
changes have a direct impact on the shallow firn layer above 1 m, 
with the variation pattern almost identical to that of the surface 
firn temperature. However, the temperature changes within the 
deep firn are lagging compared to the surface temperature 
variations of the firn layer. Figure 2e demonstrates that the 
internal temperature of the firn decreases with increasing latitude, 
and in higher latitude regions, the firn temperature remains stable 
at shallower depths, whereas in lower latitude regions, the depth 
affected by surface temperature changes is greater. 

 
Table 1 Detailed parameters of the temperature profiles 

Stations Taishan Dome C 
Zhongshan- 

Dome A 
traverse 

Period 2016-18 2020-21  2018-19 

Instrument DS28EA00 PT1000 PT100 ~ 
Nominal 
voltage 5 V 5 V  12 V 

Working 
temperature 

(℃) 
- 40~85 -70~85 -100~0 -50 ~ 50 

Resolution 
(℃) 0.0625 0.012 0.02 - 

Precision 
(℃) - 0.3 0.3 0.2 

 

 
a. The temperature profiles at Taishan station from 2016 to 2018 

 

 
b. The temperature profiles at Taishan station from 2020 to 2021 
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c. The temperature profiles at Dome C station from 2006 to 2010 

 

 
d. The temperature profiles at Dome C station from 2012 to 2016 

 

 
e. The temperature profiles along the Zhongshan-Dome A traverse 

 
Figure 2. The single measurement temperature profiles along the 
Zhongshan – Dome A traverse and the multiple measurements 

temperature profiles at Taishan and Dome C stations 
 

2.2 Reanalysis climate model 

We selected the RACMO2.3p2 product of SMB and surface 
temperature as forcing input for the FDMs because our previous 
work proved that it has the best performance on surface 
temperature product compared to another 6 climate model 
products (ERA5, MERRA2, HIRHAM5_ERA-Interim, 
HIRHAM5_ERA5, MARv3.11, and RACMO2.3p1) over the 
AIS. 

RACMO2.3p2 is a regional climate model developed by the 
Institute for Marine and Atmospheric Research Utrecht at Utrecht 
University, which combines the dynamical core of the HIRLAM 
version6.3.7 and cycle CY33r1 with ECMWF IFS. 
RACMO2.3p2 forced by ERA5 reanalysis climate model can 
provide 3-hourly products at 27 km horizontal resolution and 
vertical resolution of 40 levels, by interactively coupling it to a 
multilayer snow model that calculates melt, refreezing, 
percolation, and run-off of meltwater, for snow grain size, 
background ice albedo, and drifting snow, the model combined 
with an improved surface albedo scheme, MODIS fields, and a 
drifting-snow routine. Besides,  RACMO2.3p2 updated 
incorporates upper-air relaxation, a revised topography, tuned 
parameters in the cloud scheme, and modified snow properties, 

more detailed information can be found in (van Wessem et al., 
2018). 

 
RACMO2.3p2 can provide the SMB and surface 

temperature products as the forcing input for the FDMs over the 
AIS, we got the SMB and surface temperature products of 
RACMO2.3p2 before 2020 from Sanne B. M. Veldhuijsen 
(Institute for Marine and Atmospheric Research Utrecht, Utrecht 
University), so only the temperature profiles simulation based on 
the FDMs before 2020 can be evaluated. 

 
2.3 Brightness data 

The radiometer data AMSR-E/2 on NASA's earth observing 
system Aqua satellite, is available through the National Snow and 
Ice Data Centre (NSIDC) at the University of Colorado, Boulder . 
The transit time of AMSR-E/2 satellite are the local times of 
01:30 and 13:30. AMSR-E/2 cannot cover the areas around the 
South Pole, as shown in the Fig.1. 

 
We chose the Level-3 grided products (C- (6.9 GHz), X- 

(10.7 GHz), Ku- (18.7 GHz), K-(23.8 GHz),Ka- (36.5 GHz), and 
W- (89 GHz) in both H and V polarizations) of AMSR-E/2 at the 
resolution of 25 km. Only the C-, X-, Ku-, Ka-, and W- bands at 
V polarizations was used to retrieve the firn temperature at vary 
depth because  V polarizations product has higher signal-to-noise 
ratio on firn temperature simulation (Macelloni et al., 2007). 

 
3. Firn temperature simulation 

3.1 Temperature Simulation of FDMs 

The firn temperature can be derived using the standard one-
dimensional heat conduction equation, which adheres to the 
principle of energy conservation. The heat conduction equation 
is presented as Eq. (1). 

 
𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝑘𝑘𝛻𝛻2𝑇𝑇+ (𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
− 𝜌𝜌𝜌𝜌𝜌𝜌) 𝜕𝜕𝜕𝜕

𝜕𝜕𝑑𝑑
+ 𝑓𝑓                (1) 

 
Where T (unit: K) represents the internal temperature of firn 

to be solved; c (unit: J kg-1 K-1) is the ice heat capacity, which 
relates to the temperature: c=152.5+7.122T; k (unit: J m-1 s-1 ℃ -
1) is thermal conductivity: k = 2×9.828exp(-5.7×10-3T)ρ/(3ρI - 
ρ); v (unit: m a-1) is the vertical velocity: v=Am/ρ ,Am is the mean 
accumulation rate to indicate the upper pressure; f is the internal 
heating, it can be ignored in AIS. ρ（kg/m3）is the firn density 
at depth z, which is derived from the empirical formula for firn 
density: 𝜌𝜌 = 𝜌𝜌𝑖𝑖 − (𝜌𝜌𝑖𝑖 − 𝜌𝜌𝑠𝑠)𝑒𝑒𝑒𝑒𝑒𝑒( −𝐶𝐶𝐶𝐶) . The constant C is 
derived from: C=1.9/Zt, Zt is the depth with the density reaches 
830 kg m-3 according to Ligtenberg and others 2011 (Ligtenberg 
et al., 2011). 

 
We inputted the SMB to calculate the vertical velocity. In the 

actual computation process, the surface temperature product 
from RACMO2.3p2 is employed as the upper boundary 
condition for the heat conduction equation. The lower boundary 
condition is set to the annual average surface temperature, with 
the corresponding depth at 10 meters. The initial condition is 
established as the surface annual mean temperature. Considering 
the time required for heat transfer within the firn, the surface 
temperature from three years prior to the initial observation time 
is utilized as the input for the upper boundary condition. For 
setting the density boundary conditions, the surface density is 
fixed at 300 kg/m3 as the upper boundary, while the lower 
boundary condition at the 10 m depth is deduced using an 
empirical density formula for each site. 
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3.2 The firn temperature regression model of Tb 

In order to accurately retrieve the temperature variations 
within the firn layer, we assessed the performance of 28 different 
regression analysis models to find a better model for simulating 
firn layer temperatures. The models were evaluated using 75% of 
the data from all microwave bands (C-, X-, Ku-, K-, Ka-, and W-) 
under V polarization for model training, while the remaining 25% 
of the data were reserved for model accuracy validation. 
Evaluation metrics included Mean Absolute Error (MAE), Mean 
Squared Error (MSE), Root Mean Square Error (RMSE), and 
Correlation coefficient (R2). Following this evaluation, WNN is 
the closest proximity to the observed temperature at 4 depths 
because it has the least MAE, MSE, RMSE, and R2, as shown in 
the Table 2. So, we finally select the WNN regression model to 
retrieve temperature profiles at 4 depths. 

 
Table 2 The MAE, MSE, RMSE, and R2 between the retrieved 

temperature and observed temperature at 1m depth 

Model Name 
RMSE 

(℃) R2 
MAE 
(℃) 

MSE 
(℃) 

Linear Regression 5.68  0.63  4.21  32.21  
Interactions 

Linear Regression 4.27  0.78  2.84  18.27  

Robust Linear 
Regression 6.68  0.51  3.94  44.69  

Stepwise Linear 
Regression 4.32  0.77  2.92  18.70  

Fine Tree 4.03  0.80  2.54  16.25  

Medium Tree 4.06  0.80  2.61  16.51  
Coarse Tree 4.06  0.80  2.69  16.51  

Linear SVM 6.44  0.54  3.90  41.43  
Quadratic SVM 4.32  0.77  2.85  18.64  

Cubic SVM 14.92  0.19  9.04  222.5
1  

Fine Gaussian 
SVM 4.02  0.80  2.42  16.15  

Medium Gaussian 
SVM 4.20  0.79  2.63  17.62  

Coarse Gaussian 
SVM 4.64  0.74  3.39  21.53  

Efficient Linear 
Least Squares 12.45  0.00  10.99  155.0

3  
Efficient Linear 

SVM 12.47  0.00  10.94  155.4
3  

Boosted Trees 4.49  0.76  3.12  20.12  

Bagged Trees 3.98  0.81  2.47  15.87  
Squared 

Exponential GPR 3.93  0.81  2.48  15.43  

Matern 5/2 GPR 3.88  0.82  2.44  15.03  

Exponential GPR 3.85  0.82  2.41  14.79  
Rational 

Quadratic GPR 3.86  0.82  2.43  14.93  

Narrow Neural 
Network 3.87  0.82  2.43  14.98  

Medium Neural 
Network 3.88  0.82  2.43  15.08  

Wide Neural 
Network 3.81  0.82  2.33  14.53  

Bilayered Neural 
Network 3.86  0.82  2.41  14.92  

Trilayed Neural 
Network 3.81  0.82  2.34  14.55  

SVM Kernel 4.51  0.75  3.12  20.37  
Least Squares 

Regression Kernel 4.55  0.75  3.32  20.73  

 
The WNN regression model is a neural network architecture 

with a broader structure, featuring more hidden units. It excels in 
capturing complex relationships in data, particularly in 
regression tasks, offering automated feature learning and 
regularization techniques for improved performance. Besides, we 
applied 5-fold cross-validation to ensure robustness in model 
evaluation and reduce overfitting. 

 
4. Result 

To fairly evaluate the performance of FDMs and the WNN 
regression model, we calculated the daily temperature by 
averaging the observed temperature and simulated temperature 
closest to the passing time of AMSR-E/2 satellite in one day. 

 
We calculated the R2 between Tb at different frequencies 

and firn temperature at different depths, as shown in Figure 3. 
The results indicate that lower-frequency Tb data correlate more 
closely with firn temperature changes. The frequency band 
exhibiting the highest correlation is the lower-frequency C band, 
within which the temperature data at a depth of 5 meters shows 
the most significant correlation, with an R² value of 0.95. This is 
followed by the temperature data at a depth of 2 meters, which 
demonstrates a slightly smaller, correlation of 0.85. 

 

 
Figure 3. The R2 between Tb at different frequencies and 

temperature at different depths 
 

The retrieved firn temperature from Tb and the simulated 
firn temperature from FDMs on certain depths of 1 m, 2 m, 5 m, 
and 10 m are displayed in Fig. 4. Both of the retrieved and 
simulated firn temperature have larger bias, larger RMSE, 
smaller R2 with the observed temperature in the shallower depth. 
The bias, R2, and RMSE between retrieved/simulated firn 
temperature and the observed firn temperature decreases as the 
depth increase.  

 
The performance of the retrieved firn temperature from Tb 

is better than FDMs at all depths, with smaller bias and RMSE, 
and higher R2. Especially above 2 m temperature, the retrieved 
firn temperature have significant higher R2 and smaller bias, 
RMSE. However, the retrieved temperature from Tb has some 
retrieved temperatures with large deviation at 1m depth. Also, 
FDMs have some simulated temperatures with large deviation at 
the 10 m depth.  
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Figure 4. Retrieved/Simulated temperature and observed 
temperature of firn at 1m, 2m, 5m, and 10m (The blue solid dots 

is the retrieved firn temperature from the Tb; The red circle is 
simulated temperature from FDMs) 

 
5. Conclusions 

In the context of global warming, accurately predicting firn 
temperature is crucial for FDMs and AIS mass balance 
estimation. This study collected a temperature observation 
dataset with 18 single measured temperature profiles, 9 multiple 
measurements temperature profiles observations, and 1006 
temperature T10 observations over the AIS. Then, we both 
simulated the firn temperature from FDMs driven by the SMB 
and surface temperature product of RACMO2.3p2, and retrieved 
the firn temperature from the WNN model based on the 6 bands 
(C-, X-, Ku-, K-, Ka-, and W-) Tb at V polarization product of 
AMSR-E/2 data.  

 
After the evaluation experiments for the retrieved firn 

temperature from the Tb and the simulated firn temperature, it 
reveals that the retrieved firn temperature from the Tb data has 
better performance in predicting firn layer temperature changes 
at all 4 certain depths compared to the simulated temperature of 
FDMs. Additionally, the evaluation for the retrieved/simulated 
temperature at 10 m depth illuminates that we try to use the Tb 
data to retrieve T10 can improve the accuracy of the lower 
boundary of FDMs. 

 
This experiment offers a promising solution for the precise 

retrieval of firn temperature. Based on the post-2020 
observations, we aim to further enhance the ability to infer firn 
temperature change based on Tb data. This will provide valuable 
support for optimizing temperature parameters in FDMs. 
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