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Abstract

The technology for 3D reconstruction of tree models based on point clouds has been extensively researched, necessitating effective
datasets for the study of branch and leaf separation, skeleton point extraction, and tree parameter extraction methods. However,
existing datasets for 3D tree models face several challenges, including insufficient data volume for deep learning network training,
low accuracy of model ground truth impeding effective method precision evaluation, and a lack of dataset richness to satisfy
the needs of multi-type method assessments. In response to these challenges, This paper introduces, for the first time, a fully
automated method for generating structured three-dimensional synthetic tree models, and constructs a large-scale 3D synthetic
tree dataset enriched with comprehensive structural information. This method facilitates automated computation across several
processes, including the mass generation of simulated trees, separation of branches and leaves, noise generation, extraction of
skeleton points, and volume calculation. To validate the usability of this dataset across various applications, this paper employs
state-of-the-art (SoTA) algorithms to verify the accuracy of methods in 3D tree model reconstruction and carbon stock calculation,
thereby thoroughly demonstrating the dataset’s effectiveness.

1. Introduction

The technology for 3D reconstruction of tree models based
on point clouds has been extensively studied, involving com-
plex processes such as branch and leaf separation (Ferrara et
al., 2018), skeleton point extraction (Vega et al., 2014, Liu et
al., 2021), and tree parameter extraction(Putman and Popescu,
2018). Effectively evaluating the accuracy and effectiveness of
various methods in the tree 3D reconstruction process is cru-
cial for continually enhancing algorithm precision and usability.
Three-dimensional tree datasets, fundamental to tree-related
applications, offer vital reference information for the train-
ing processes and accuracy assessment of various algorithms.
Different algorithms, however, have varying requirements for
the volume and richness of dataset information. For instance,
the precision of deep learning-based tree part segmentation al-
gorithms significantly depends on the dataset size(Liu et al.,
2021), while tree volume calculations require datasets contain-
ing volume ground truth(Kankare et al., 2013). Similarly, ac-
curate tree point cloud ground truth is essential for assessing
the geometric precision of trees in 3D. It can be said that large-
scale tree datasets are instrumental in enhancing the accuracy
and reliability of algorithms related to 3D tree computation and
analysis.

There are many current studies on point cloud reconstruction.
AdTree (Du et al., 2019) uses Dijkstra’s shortest path al-
gorithm to build a minimum spanning tree to obtain an initial
tree skeleton, then prunes the initial tree skeleton and performs
an optimization-based method to fit a series of cylinders to ap-
proximate the geometry of the tree branches. The algorithm is
validated using publicly available point cloud datasets, which
come from different sources, have different formats, contain
noise, and suffer from missing data. Hu et al. (Hu et al.,
2017) proposed an efficient tree modeling to enrich sparse point
clouds by adding new backbone points and simulating direc-
tion fields, thus realizing reconstruction of natural tree skeleton
from sparse data. The data set of this method were acquired by
an airborne LiDAR scanning system, which required manual

acquisition and processing of single tree segmentation. Mei et
al. (Mei et al., 2017) present a L1-minimum spanning tree
(MST) algorithm to refine tree skeletons from the optimized
point cloud, which integrates the advantages of both L1-median
skeleton and MST algorithms. In this study, a single tree col-
lected by ground-based laser scanning was used for qualitative
and quantitative evaluation, and the tree samples collected were
small, with few species and not comprehensive.

Addressing the aforementioned challenges, this paper presents
the structured generation method of 3D synthetic tree models
for precision assessment. The paper first outlines an automated
method for hierarchical construction of simulated tree models,
allowing for the mass reconstruction of large-scale synthetic
trees. Subsequently, for individual tree models, a technical sys-
tem is developed to provide comprehensive outputs including
tree point clouds, skeletons, and volume data. As the first large-
scale, multi-type synthetic tree model dataset, this paper val-
idates the accuracy of methods for 3D tree model reconstruc-
tion and carbon stock calculation using state-of-the-art (SoTA)
algorithms, thereby thoroughly demonstrating the dataset’s ef-
fectiveness.

2. Methodology

2.1 Overview of the framework

This paper introduces a novel fully automated method for gen-
erating structured three-dimensional synthetic tree models and
constructs a large-scale 3D synthetic tree dataset with compre-
hensive structural information. As shown in Figure 1, in the
realm of 3D synthetic tree model construction, an integrated
and automated technological process has been established. This
process encompasses the mass generation of 3D synthetic trees,
separation of branches and leaves, noise generation, and extrac-
tion of skeleton points (including diameter calculation and hier-
archical relationship restoration), leading up to volume calcula-
tion. Initially, a parametric structural description is employed,
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along with an adaptive parameter adjustment method, to build a
library of batch 3D synthetic tree models. Building on this, the
paper delves into the separation of branches and leaves, the di-
vision of tree hierarchical structures, and explores methods for
the automatic generation of tree point clouds, automatic extrac-
tion of skeleton structures and parameter information, as well as
the computation of volume ground truth. Utilizing this method-
ology, a dataset comprising tens of thousands of 3D synthetic
tree models has been constructed for the first time.

2.2 Synthetic tree generation

Generation of single synthetic tree: As shown in Figure 2, to
acquire three-dimensional tree models with hierarchical struc-
tures, this paper adopts a manual modeling approach for para-
metric modeling of individual trees. Following the distinct
growth logic of different tree species, a hierarchical organiz-
ation method is employed, ranging from the tree’s main trunk
through multiple levels of branching to the leaves, facilitating
adaptive growth and the acquisition of complete 3D tree mod-
els. Since the tree models constructed in this study are gener-
ated based on parametrization, various tree parameters, includ-
ing phototropism, leaf quantity and distribution, droop, height,
and thickness, can be adjusted. This adaptability lays a critical
foundation for subsequent automated batch generation. Each
tree model encompasses five levels of branches and foliage in-
formation, along with detailed bark and leaf texture mapping.

Batch generation of synthetic trees using parameterized ad-
justments: Based on manually modeled trees, this paper pro-
poses a batch generation method for tree models using para-
meterized adjustments. As illustrated in Figure 3 starting with
an individual tree, random adjustments are made to parameters
such as phototropism, noise, gravity, height, angle, and sparsity.
This process allows for the batch generation of 3D models of
the same tree species, each exhibiting varying morphologies
and structures. For a single tree species, the method automatic-
ally generates 1,300 trees, with each tree containing approxim-
ately 100-3,000 branches and 700-40,000 leaves, depending on
the species. The batch-generated synthetic tree models, created
using this method, will be utilized in the subsequent construc-
tion of datasets.

2.3 Generation of semantically rich tree point clouds

Branch and leaf separation and point cloud generation:
Utilizing the parametric simulation method for tree reconstruc-
tion, this paper achieves the acquisition of complete three-
dimensional tree models. These models possess detailed hier-
archical structural information, including the tree trunk, leaves,
branch sequence, and texture details. Leveraging the rich se-
mantic and hierarchical information within these models, this
study conducts individualized segmentation of all branches and
performs branch and leaf separation. The result is the gen-
eration of three-dimensional point cloud data with separated
branches and leaves, as well as individualized branches.

To achieve these objectives, the paper first traverses the leaf
and branch components within the triangular mesh model. By
interpreting the semantics of the triangular mesh, all branches
and leaves are merged to create a separated triangular mesh
model of branches and leaves. Subsequently, for accurate tree
point cloud data acquisition, the paper utilizes the triangular
mesh as a base to voxel-fill (with a filling density of 0.01m) the
3D models of branches and leaves, thereby obtaining corres-
ponding dense 3D point cloud data. The point clouds obtained

for different tree species vary, with the number of branch and
leaf point clouds ranging approximately between 800,000 and
10,000,000. Considering the errors inherent in actual meas-
urement processes, Gaussian noise was added to the gener-
ated branch and leaf point clouds, and noisy point cloud data
was concurrently produced to enhance the realism of the point
clouds.

Attribution of semantic information to tree branches: To
meet the requirements of precise tree reconstruction accuracy
assessment and clustering accuracy evaluation, this paper ef-
fectively extracts and outputs information about each point’s
corresponding branch and the hierarchical relationship of the
branch point clouds, in addition to the complete point clouds
of branches and leaves. Specifically, while traversing the 3D
model of each branch, the study records the index informa-
tion of each branch and its hierarchical level. During the voxel
sampling of the point cloud, the corresponding attributes are as-
signed to the cloud. As shown in Figure 4, different colors in
(c) represent different branch information, which can be used
to evaluate the effectiveness of branch clustering methods. In
(d), different colors indicate the hierarchical levels of branches,
determined by the branching of the tree, with the lowest level
being 1 and the highest level being 5 in this study.

2.4 Skeleton Generation and Annotation

To meet the requirements for precise extraction of three-
dimensional tree reconstruction skeleton points and accurate as-
sessment of carbon storage calculation methods, this paper pro-
poses an automated and accurate method for generating skel-
eton points of synthetic tree models. This method, based on the
original tree models, automatically extracts the central axis of
the branches to obtain accurate skeleton points, and slices the
branches to acquire precise radius information. Subsequently,
branch indices, hierarchical relationships, and radius informa-
tion are output as attributes of the skeleton points.

Skeleton point extraction: For the branch structures in the tree
models, each branch’s point cloud is computed through prin-
cipal component analysis. The normal information of the sli-
cing plane is determined based on its maximum eigenvector,
which represents the growth direction of the tree. This plane
orientation ensures that the skeleton points conform to the tree’s
growth trend. As depicted in Figure 5(a), (b), (c), and (d), start-
ing from the bottom of the branch, the branch is sliced at inter-
vals of 0.01 meters, and the resulting point clouds are projected
onto the slicing plane. The center coordinates of the projected
point cloud are calculated and used as the skeleton point for that
segment. This slicing process continues from the bottom to the
top of the branch until all skeleton points are calculated. The
same method is applied to obtain skeleton information for other
branches.

Attribute information generation: Section 2.2 provides each
branch’s index and hierarchical information, which can directly
serve as attributes for the branch’s skeleton points. However,
precise carbon storage calculation requires accurate volume
information, making the tree’s radius crucial. Therefore, as
shown in Figure 5 (e), based on the point cloud data obtained
from slice projections, the distance between each projected
point and the center point is calculated, and the average dis-
tance is taken as the radius of the current tree skeleton point.
This radius information will serve as the radius attribute of the
tree skeleton.
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Figure 1. Overview of the proposed tree reconstruction method.

Figure 2. Branch and leaf structure of small-leaved olive.

Figure 3. The process of batch tree generation.
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Figure 4. Adding noise to the point cloud and recording
attributes to the point cloud. (a)Original point cloud. (b)Noise

point cloud. (c)Point Cloud-Branch Index. (d)Point
Cloud-Branch Hereditary Relations.

Figure 5. Calculation process for skeleton points and radius.
(a)Tree mesh model . (b)Traverse the branches. (c)Cut in the

optimal direction. (d)Local cross section . (e)Acquired center of
mass and radius.

Figure 6 displays the results of skeleton point generation, show-
ing the original tree model, skeleton points with radius attrib-
utes, skeleton points with trunk hierarchical relationship, and
skeleton points with branch index. Attribute values are differ-
entiated by various colors.

Figure 6. Calculation of skeleton points based on branch mesh
model. (a)Mesh model. (b)Skeleton-Radius. (c)Skeleton-Branch

Hereditary Relations. (d)Skeleton-Branch Index.

3. Experiments and Analysis

In order to assess the effectiveness of the large-scale synthetic
3D tree model dataset constructed in this study for various ap-
plications and algorithm performance evaluations, the paper
will utilize two types of applications including tree 3D recon-
struction and tree volume calculation to evaluate the usability of
the information in the dataset. Additionally, using this dataset
as a foundation, the study will accurately assess the precision
of different algorithms within the same application scenarios.

3.1 Synthenic Tree Reconstruction

This comprehensive dataset features simulation models of ten
common tree types, including fir (Cunninghamia lanceolata
(Lamb.) Hook.), camphor (Camphora officinarum Nees ex
Wall), small-leaved olive (Ficus obliqua), ajang olive (Ter-
minalia arjuna), flamboyant tree (Delonix regia), agarwood
(Aquilaria malaccensis), flooded gum (Eucalyptus grandis),
lemon tree (Citrus × limon (Linnaeus) Osbeck), Lombardy
poplar (Lombardy poplar), and Tibetan cherry (Prunus serrula

Franch. var. tibetica (Batal.) Koehne). Each unique in mor-
phology and structure, with leaves, branches, and bends cre-
ated through parametric manipulation. Figure 7 illustrates ex-
amples of three species: flamboyant tree, camphor tree, and
ajang olive. The dataset provides a comprehensive suite of data
for each tree species, including complete point clouds, noise-
added point clouds, leaf meshes, branch meshes, leaf point
clouds, branch point clouds (each with attributes to distinguish
individual branches), and skeleton points with attributes such
as radius, branch hereditary relations, branch index, and total
branch volume. Additionally, two types of point clouds, with
and without noise, are included to facilitate the evaluation of
computational accuracy in processes like tree skeleton point
computation, tree reconstruction, tree carbon storage calcula-
tion, and tree part segmentation.

3.2 Accuracy evaluation of tree reconstruction methods

Data description: This study selected five tree species for test-
ing: fir, camphor, small-leafed olive, ajang olive, and flamboy-
ant trees. Two trees from each species were chosen, incorpor-
ating both real and noisy point clouds. This resulted in a total
of 20 tree branch point clouds for tree reconstruction tests. All
data were downsampled to 100,000 points per tree, with an av-
erage of approximately 900 branches per tree. The test trees
varied in height, ranging from 10m to 150m.

Method: The validity of the dataset was assessed using three
prevalent algorithms: AdQSM (Fan et al., 2020), AdTree (Du
et al., 2019) and TreeQSM (Raumonen et al., 2013), for com-
puting Tree Models, Tree Skeletons, and Tree Carbon Storage.
AdTree employs the Dijkstra shortest path algorithm for initial
tree skeleton extraction from point clouds, followed by prun-
ing redundant components and fitting cylindrical models to ap-
proximate tree branch geometry. AdQSM refines this process
by using the average radius of three non-overlapping trunk sec-
tions to establish the initial cylindrical radius. TreeQSM, on
the other hand, reconstructs the visible tree surface with a flex-
ible cylindrical model, recording the tree’s topological branch-
ing structure in its quantitative model.

Metrics: The study utilized the Hausdorff distance algorithm
for a quantitative comparison of the reconstructed mesh mod-
els against ground-truth skeleton points and tree mesh models.
The Hausdorff distance, a measure of the extent to which two
subsets of a metric space diverge, is defined as:

H(A,B) = max {(A,B), h(B,A)} (1)

Among them,

h(A,B) = max
a∈A

{
min
b∈B

∥ a− b ∥
}

(2)

h(B,A) = max
b∈B

{
min
a∈A

∥ b− a ∥
}

(3)

The algorithm’s performance was evaluated in terms of both
relative and absolute errors.

3.2.1 Results of Tree model

In this study, we conducted a comprehensive evaluation of
three-dimensional tree reconstruction accuracy using point
clouds from five synthetic tree species, applying three distinct
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Figure 7. TreeNet3D dataset. (a)Original Mesh. (b)Complete Point Cloud. (c)Noise Point Cloud. (d)Leaf Mesh. (e)Branch Mesh.
(f)Leaf Point Cloud. (g)Branch Point Cloud-Part Segmentation. (h)Branch Point Cloud-Hereditary Relations. (i)Skeleton-Radius.

(j)Skeleton-Hereditary Relations. (k)Skeleton-Branch Index.

reconstruction methods: AdQSM, AdTree, and TreeQSM. The
precision of each reconstruction method was meticulously as-
sessed to demonstrate the capability of our dataset in evaluating
3D tree reconstruction algorithms.

The accuracy of tree reconstructions was primarily evaluated
against the ground-truth Mesh model of each tree.To facilit-
ate this, all meshes were sampled into point clouds containing
100,000 points. The nearest neighbor distances between the
actual ground results and the reconstructed results were com-
pared to measure accuracy. Table 1 presents a detailed analysis
of the absolute and relative errors in tree model reconstruction
accuracy for various tree species, both in the absence of noise
and under its influence. It was observed that the Phoenix tree,
having the highest average height, exhibited the poorest over-
all modeling accuracy, while the Small-Leafed Olive tree, with
the lowest average height, showed better results. This discrep-
ancy is attributed to the height variation among tree species.
Hence, the modeled error distances are normalized by divid-
ing by the height of the tree itself. The TreeQSM method
displayed higher calculation accuracy overall. However, dis-
crepancies in reconstruction accuracy were noted among differ-
ent tree species, potentially due to variations in tree morpho-
logy or specific optimization decisions within the reconstruc-
tion algorithms. Generally, trees with more branches and trunks
tended to have poorer modeling accuracy, whereas those with
fewer mid-trunks showed relatively better accuracy. The im-
pact of noise on tree reconstruction varied across different tree
species and reconstruction methods. For instance, noise had a
relatively minor effect on the reconstruction of camphor trees
across all methods, whereas it significantly increased the aver-
age error for all reconstruction algorithms when reconstructing
Ajeng olive trees. The sensitivity of reconstruction methods to
noise is dependent not only on the algorithm itself but also on
the specific tree type.This analysis substantiates the proposed
dataset’s capability to effectively assess tree reconstruction al-
gorithms, highlighting the varying influences of tree complex-
ity, height, and noise on algorithm performance.

3.2.2 Results of Tree Skeleton

We conducted an in-depth evaluation of the accuracy of skel-
eton point modeling in three-dimensional tree reconstruction
using point clouds from five synthetic tree species. This evalu-
ation utilized three different reconstruction methods: AdQSM,
AdTree, and TreeQSM. Our goal was to assess the precision

of skeleton points in the reconstructed trees and to demon-
strate the capability of our dataset for evaluating the accuracy
of tree skeleton point algorithms. To verify the accuracy dif-
ferences among AdQSM, AdTree, and TreeQSM for skeleton
point modeling, we performed a comparative analysis between
the real skeleton points provided in the dataset and the results
computed during the tree reconstruction process.

Table 1 details the mean absolute error for each tree skeleton
point, both with and without added noise. To account for the
influence of tree height on nearest proximity distance error, the
modeling error distance was normalized by dividing by the re-
spective tree height, enabling the calculation of relative error
for skeleton point computation. From the results, it is evid-
ent that different methods yielded similar accuracy to the tree
Mesh model. However, the modeling error for the fir tree was
larger, while the Phoenix canariensis exhibited the best overall
modeling accuracy. This variance is consistent with the previ-
ous conclusion that the simplicity of branches affects modeling
accuracy. TreeQSM demonstrated higher precision in calcu-
lating skeleton points, whereas AdTree showed the least preci-
sion. When examining the impact of noise on algorithm accur-
acy, camphor trees were less affected by noise, whereas fir trees
were the most affected. This outcome aligns with the mesh
model results, primarily due to differences in the basic shape
of trees. Overall, AdQSM displayed better resistance to noise
compared to the other two algorithms.

4. Conclusions

This study presents the structured generation method of 3D
synthetic tree models for precision assessment. Based on the
parametrically generated tree models, different parameters were
randomly adjusted to batch generate 3D models of different
tree species. Based on the detailed semantic and hierarchical
information, pioneering large-scale synthetic tree dataset was
generated. The dataset stands as the first artificial tree dataset
of this scale and detail, providing a substantial contribution to
the field. The dataset’s versatility extends to a wide array of
deep learning tasks, offering a realistic training set for object-
ives such as tree segmentation, species classification, branch
and leaf separation, part segmentation, skeleton point extrac-
tion, tree reconstruction, and carbon stock prediction. Bey-
ond tree reconstruction, the dataset supports a variety of down-
stream applications, significantly enhancing the realm of 3D
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Table 1. Tree model accuracy and Tree Skeleton Accuracy

Error Tree Index Tree model accuracy Tree Skeleton Accuracy
AdQSM AdTree TreeQSM AdQSM AdTree TreeQSM

Absolute error

Small-Leafed Olive Avg(m) 0.0192 0.1045 0.0094 0.0352 0.1312 0.0337
Small-Leafed Olive noise Avg(m) 0.0193 0.1067 0.0139 0.0467 0.132 0.0419
Flamboyant Tree Avg(m) 0.262 0.2433 0.3421 0.199 0.2496 0.54
Flamboyant Tree Avg noise(m) 0.2876 0.2411 0.3491 0.1703 0.2482 0.6145
Fir Tree Avg(m) 0.0539 0.0573 0.0543 0.0878 0.1213 0.0597
Fir Tree Avg noise(m) 0.0524 0.0765 0.0855 0.5154 0.1762 0.0819
Ajiang Olive Avg(m) 0.1592 0.1264 0.107 0.1074 0.3869 0.1706
Ajiang Olive Avg noise(m) 0.2167 0.1896 0.1614 0.1435 0.5692 0.2232
Camphor Tree Avg(m) 0.1314 0.1421 0.0725 0.18 0.2693 0.0984
Camphor Tree Avg noise(m) 0.0955 0.1288 0.0643 0.1695 0.3025 0.0791
tree Avg(m) 0.1297 0.1416 0.126 0.1655 0.2586 0.1943

Relative error

Small-Leafed Olive Avg 0.0019 0.0103 0.0009 0.0035 0.0129 0.0033
Small-Leafed Olive noise Avg 0.0019 0.0105 0.0014 0.0046 0.013 0.0041
Flamboyant Tree Avg 0.0018 0.0017 0.0024 0.0014 0.0017 0.0037
Flamboyant Tree Avg noise 0.002 0.0017 0.0024 0.0012 0.0017 0.0043
Fir Tree Avg 0.0029 0.0031 0.0029 0.0048 0.0066 0.0032
Fir Tree Avg noise 0.0028 0.0042 0.0046 0.028 0.0096 0.0044
Ajiang Olive Avg 0.0035 0.0028 0.0024 0.0024 0.0086 0.0038
Ajiang Olive Avg noise 0.0048 0.0042 0.0036 0.0032 0.0126 0.0049
Camphor Tree Avg 0.0032 0.0034 0.0018 0.0044 0.0065 0.0024
Camphor Tree Avg noise 0.0023 0.0031 0.0016 0.0041 0.0073 0.0019
tree Avg 0.0027 0.0045 0.0024 0.0057 0.0081 0.0036

vegetation reconstruction. Extensive validations were conduc-
ted using 10 selected tree species from the dataset, employing
both noisy and noise-free data, to assess the computational ac-
curacy of Three state-of-the-art algorithms: AdTree, AdQSM,
and TreeQSM. These tests covered tree reconstruction, skeleton
point extraction, and quantitative structure calculation, affirm-
ing the dataset’s efficacy in algorithmic evaluations.
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