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Abstract 

The intrinsic connections between geographical elements are important for uncovering hidden geo-scientific laws. However, current 
research on terrain and landform analysis mainly focuses on the landscapes themselves, with insufficient attention to the connections 
between them. Therefore, this study proposes a knowledge graph approach based on geographical units (TUKG). Specifically, fi-ne-
grained geographical units are extracted based on three types of data: remote sensing images, DEM, and contour lines. These units 
serve as entity nodes in the TUKG and are described by their slope and aspect. Additionally, point-based and line-based connections 
between geographical units are proposed based on spatial topological relationships, serving as connections between entity nodes in the 
TUKG. Finally, inference rules for ridge landscape problems are extracted from typical cases of ridge land-scapes to support reasoning 
in the TUKG. Experimental results conducted in the Yarlung Zangbo Grand Canyon in southwest China demonstrate that the TUKG 
can accurately infer ridge landscapes and has the potential to identify more complex terrain landscapes. 

1. Introduction

In geographical research, while studying geographical elements, 
attention is also given to their intrinsic connections, aiming to 
uncover hidden patterns. Despite the importance of these 
connections in geographical research, current data processing 
tends to prioritize individual elements over their relationships 
(Murdoch, 2005). Terrain and landforms are crucial components 
of the Earth's surface, with their formation, evolution, and 
underlying mechanisms holding significant importance for 
geographic and environmental studies (Ma, 2022; Xu et al., 1993; 
Zhou et al., 2021) . However, current terrain studies often focus 
on extracting individual features while overlooking their intrinsic 
connections, hindering precise descriptions of terrain structures 
and mechanisms. 

Knowledge graphs , as advanced tools for relationship inference 
and knowledge discovery, have been introduced into 
geographical research (Deng et al., 2021; Fensel et al., 2020; Mai 
et al., 2020; Zheng et al., 2022; Zhou et al., 2021). For instance, 
Zhang et al. (2020) integrated spatiotemporal features with 
knowledge graph techniques, proposing a method for 
constructing a geographical knowledge graph that considers 
spatiotemporal characteristics. Jiang et al. (2018) addressed the 
issue of data heterogeneity in geoscientific research, proposing a 
technique for constructing large-scale geoscientific knowledge 
graphs based on heterogeneous data sources. Additionally, there 
are emergency knowledge graphs for specific tasks such as 
natural disaster response (Ge et al., 2022) and crowdsourced 
geographical knowledge graphs like the GeoNames Ontology 
(Yang et al., 2018) and the OSM (OpenStreetMap) Semantic 
Network (Ballatore et al., 2013). While significant progress has 
been made in theoretical methods and construction processes of 
geoscientific knowledge graphs, there is still some way to go 
before their practical application. 

Against this backdrop, this study focuses on terrain as a key 
natural geographical element. Leveraging the holistic, relational, 
and structural characteristics exhibited by various terrain units 
within landscapes, a knowledge graph of terrain structural units 
is constructed, with a specific application in ridge landscape 

inference. This research aims to enhance the accuracy of terrain 
analysis and improve the inference capabilities of terrain analysis 
techniques. 

2. Method

2.1 Framework 

The knowledge graph of terrain units (TUKG) represents terrain-
related knowledge in a graphical format. In this graph, entity 
nodes E correspond to terrain structural units, attribute A of the 
entity nodes represents the terrain features of the units, and 
relations R between entity nodes represent the relationships 
between terrain units. Therefore, the knowledge graph of terrain 
units can be denoted as G={E, R, A}. 

Figure 1. Topographic-unit-based knowledge graph construction 
and its task reasoning 
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Figure 1 illustrates the construction of TUKG and its inference 
tasks. Firstly, terrain units are constructed based on three types 
of data: remote sensing imagery, digital elevation models, and 
contour lines. These terrain units are used as entity nodes in the 
knowledge graph. Secondly, terrain features such as slope and 
slope length are extracted from the terrain units and serve as 
attribute descriptions for the entity nodes. Finally, the topological 
relationships between terrain units are used to establish 
connections between the entity nodes. By completing these three 
steps, the construction of TUKG is achieved, and it can be 
applied to various terrain analysis tasks by designing relevant 
inference rules. 
 
2.2 Construction of Entity Nodes in TUKG 

In this study, terrain units are defined as the smallest geographic 
units representing a single terrain feature, such as hillslopes or 
plains. Terrain units are used as the entity nodes in TUKG. Due 
to the complexity of terrain structures, extracting effective terrain 
information from a single type of sensor data is quite challenging. 
This study proposes a method that integrates remote sensing 
spectral imagery, digital elevation models (DEM), and contour 
line data to extract terrain units. As depicted in Figure 2, the 
process begins with semantic segmentation of remote sensing 
spectral imagery to extract valley and water body regions (Figure 
2(b)). Next, the DEM is cropped using the obtained valley and 
water body regions to acquire DEM data within mountainous 
areas, addressing issues where flat areas may cause hydrological 
analysis methods based on DEM to generate small or 
unreasonable polygons. Subsequently, hydrological analysis is 
conducted on the cropped DEM (Figure 2(c)) to extract 
watershed regions (Figure 2(d)), which serve as primary terrain 
units (Figure 2(e)). Finally, to ensure consistency in the terrain 
features encompassed by terrain units, a curvature segmentation 
process is performed on the primary terrain units using contour 
lines to obtain refined terrain units (Figure 2(f)) (Jones, 1998). 
Based on these operations, refined terrain units are proposed as 
entity nodes in TUKG. Additionally, for the attribute descriptions 
of entity nodes, this study utilizes slope and aspect features of 
terrain units. 

 

 
Figure 2 Construction of terrain units using as TUKD entity 

node 

2.3 Construction of Entity Node Relationships in TUKG 

The relationships between terrain structural units primarily rely 
on spatial topological relationships, which constitute a crucial 
aspect of geospatial research with numerous established 

methodologies (Theobald, 2001; Yu et al., 2016). This study 
employs two categories of topological relationships. The first 
category distinguishes the degree of contact, known as adjacency 
relationships. It requires setting a threshold ε to differentiate 
between adjacency at points (when the contact length is less than 
ε) (see Figure 3(a)) and adjacency along lines (see Figure 3(b)). 
The second category examines the three-dimensional spatial 
relationships between terrain structural units, specifically slope 
aspect relationships. This involves calculating the projection 
direction of their normal vector onto the base, determining 
whether the slopes are facing each other (see Figure 3(b)) or in 
opposite directions (see Figure 3(d)). 
 

 
Figure 3 Construction of relationship among TUKG entities 

based on 2D and 3D topological relation-ships of terrain units 
respectively 

2.4 Terrain Landscape Inference 

Terrain landscape analysis based on TUKG relies on the graph 
rules of terrain landscapes (see Figure 4). Firstly, typical terrain 
landscapes are geometrically analyzed. Then, graph rules tailored 
to specific terrain landscapes are established based on the 
geometric feature combination patterns of terrain units, namely 
the inference rules composed of terrain features, terrain unit 
relationships, and inference predicates. Finally, TUKG inference 
for terrain landscape analysis is conducted based on these graph 
rules. 
 

 
Figure 4 Terrain landscape inference process based on TUKG 
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Before specifying the inference rules based on the landscape 
pattern recognition inference framework (see Figure 4), it is 
necessary to establish the inference rule units expressed in first-
order predicate form based on the relationship between terrain 
structural units. This can be done by integrating the 
supplementary information on spatial adjacency relationships 
between opposing elements in Section 2.3 of this paper and 
transforming it into inference rule units, as shown in Table 1. 
 

Relation Specific meaning 
First-order 
predicate 

expression 

Connect at a 
point 

The terrain units (i.e., 
entity nodes) A and B are 
adjacent, with the adjacent 
area being a point feature. 

ECatPoint(A,B) 

Connect at a 
line 

The terrain units   A and B 
are adjacent, with the 
adjacent area being a line 
feature. 

ECatLine(A,B) 

Back to 

The normal vectors of 
terrain unit A and terrain 
unit B are opposite in 
direction when projected 
onto the plane. 

BackTo(A,B) 

Face to 

The normal vectors of 
terrain unit A and terrain 
unit B have opposite 
directions when projected 
onto the ground plane. 

FaceTo(A,B) 

Table 1 The formal expression of first-order predicates for the 
inference rule unit, where A and B correspond to the geospatial 

units in Figure 3 

3. Experiments 

This study selected the Yarlung Zangbo Grand Canyon in 
southwest China as the experimental area. The region is located 
between 94.68°E and 95.52°E, and 29.10°N to 29.98°N. It 
features significant terrain variations and complex terrain 
structures, including numerous mountainous landscapes. The 
experimental data consisted of remote sensing images and a 
DEM provided by the Geographic Spatial Data Cloud (Figure 
4(a) and (b)). The extraction of terrain units was conducted using 
remote sensing image classification tools and hydrological 
analysis tools provided by ArcGIS. A total of 2434 terrain 
structural units were extracted within the experimental area 
(Figure 4(c)), and the relationships between terrain units were 
stored in a Neo4j database. The TUKG (Figure 4(d)) was 
constructed using the method described in Section 2.3. 

 

 
Figure 5 Visualization of terrain units and TUKG 

 

3.1 Ridge Landscape Inference Based on TUKG 

The ridge landscape, a prominent feature in mountainous terrain, 
consists of elevated sections resembling the ridges of a house, 
formed by the combination of terrain features with opposing 
slope directions, extending in a ridge-like pattern. Figure 5 
illustrates the composition of ridge terrain units. The inference 
rules for ridge landscapes in TUKG can be summarized as 
follows (see Figure 6): (1) Identifying two slope surfaces with 
opposing slopes that are adjacent along a line as a ridge unit. (2) 
If the two terrain surfaces in a ridge unit are adjacent along a line 
to two terrain surfaces in another ridge unit, these two ridge units 
can be connected to form a ridge element. (3) Combining ridge 
elements pairwise based on shared ridge units to identify a 
complete ridge. Conducting retrieval in TUKG based on these 
rules enables ridge landscape inference. 
 

 
Figure 6 Geometric schematic of terrain units in a ridge 

landscape 

 
Figure 7 Schematic diagram of ridge landscape inference rules 

based on TUKG 

Based on the previously defined inference rule unit, the first-
order predicate logic representation of the ridge landscape 
inference process is as follows: 
ሺ𝟏ሻ 𝐸𝐶𝑎𝑡𝐿𝑖𝑛𝑒ሺ𝑃1, 𝑃5ሻ⋀𝐵𝑎𝑐𝑘𝑇𝑜ሺ𝑃1, 𝑃5ሻ 
      → 𝑅𝑖𝑑𝑔𝑒𝑈𝑛𝑖𝑡ሺ𝑃1, 𝑃5ሻ 
 
ሺ𝟐ሻ 𝑅𝑖𝑑𝑔𝑒𝑈𝑛𝑖𝑡ሺ𝑃1, 𝑃5ሻ⋀𝑅𝑖𝑑𝑔𝑒𝑈𝑛𝑖𝑡ሺ𝑃2, 𝑃6ሻ 
        ⋀𝐸𝐶𝑎𝑡𝐿𝑖𝑛𝑒ሺ𝑃1, 𝑃2ሻ⋀𝐸𝐶𝑎𝑡𝐿𝑖𝑛𝑒ሺ𝑃5, 𝑃6ሻ 
       → 𝑅𝑖𝑑𝑔𝑒𝐸𝑙𝑒ሺ𝑅𝑖𝑑𝑔𝑒𝑈𝑛𝑖𝑡ሺ𝑃1, 𝑃5ሻ, 𝑅𝑖𝑑𝑔𝑒𝑈𝑛𝑖𝑡ሺ𝑃2, 𝑃6ሻሻ 
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ሺ𝟑ሻ 𝑅𝑖𝑑𝑔𝑒𝐸𝑙𝑒൫𝑅𝑖𝑑𝑔𝑒𝑈𝑛𝑖𝑡ሺ𝑃1, 𝑃5ሻ, 𝑅𝑖𝑑𝑔𝑒𝑈𝑛𝑖𝑡ሺ𝑃2, 𝑃6ሻ൯ 
⋀𝑅𝑖𝑑𝑔𝑒𝐸𝑙𝑒൫𝑅𝑖𝑑𝑔𝑒𝑈𝑛𝑖𝑡ሺ𝑃2, 𝑃6ሻ, 𝑅𝑖𝑑𝑔𝑒𝑈𝑛𝑖𝑡ሺ𝑃3, 𝑃7ሻ൯ 
⋀𝑅𝑖𝑑𝑔𝑒𝐸𝑙𝑒൫𝑅𝑖𝑑𝑔𝑒𝑈𝑛𝑖𝑡ሺ𝑃3, 𝑃7ሻ, 𝑅𝑖𝑑𝑔𝑒𝑈𝑛𝑖𝑡ሺ𝑃4, 𝑃8ሻ൯ 
→ 𝑅𝑖𝑑𝑔𝑒ሺ𝑆𝑒𝑡𝑃ሻ

Where ⋀ = Merge operation 
→ = Inference operation
𝑅𝑖𝑑𝑔𝑒𝐸𝑙𝑒 = Ridge element
𝑆𝑒𝑡𝑃 ൌ  ሼ𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5, 𝑃6, 𝑃7, 𝑃8ሽ

Based on the inference process of the ridge landscape 
abovementioned, the following rules for identifying ridge 
landscape patterns can be generalized: 

𝑅𝑖𝑑𝑔𝑒ሺ𝑆𝑒𝑡𝑃ሻ ← ሧ ሼ
ሺ,,,ௗሻ∈ௌ௧

𝑅𝑖𝑑𝑔𝑒𝐸𝑙𝑒ሺ𝑅𝑖𝑑𝑔𝑒𝑈𝑛𝑖𝑡ሺ𝑎, 𝑏ሻ, 

    𝑅𝑖𝑑𝑔𝑒𝑈𝑛𝑖𝑡ሺ𝑐, 𝑑ሻሻ⋀𝐸𝐶𝑎𝑡𝐿𝑖𝑛𝑒ሺ𝑎, 𝑏ሻ⋀𝐸𝐶𝑎𝑡𝐿𝑖𝑛𝑒ሺ𝑎, 𝑐ሻ 
    ⋀𝐸𝐶𝑎𝑡𝐿𝑖𝑛𝑒ሺ𝑎, 𝑑ሻ⋀𝐸𝐶𝑎𝑡𝐿𝑖𝑛𝑒ሺ𝑐, 𝑑ሻ 
    ⋀𝐵𝑎𝑐𝑘𝑇𝑜ሺ𝑎, 𝑐ሻ⋀𝐵𝑎𝑐𝑘𝑇𝑜ሺ𝑎, 𝑑ሻሽ

3.2 Ridge Landscape Inference Results 

The ridge inference rules from Figure 6 are applied to TUKG 
inference, and the TUKG query results are mapped to the terrain 
space (as shown in Figure 7(d)). First, the ridge units are 
identified (as shown in Figure 7 (b)). Then, based on the ridge 
units, the ridge elements adjacent along a line are recognized. 
Finally, ridge elements that are connected pairwise are merged 
(as shown in Figure 7(c)). As depicted in Figure 7 (c) and (d), the 
application of these geometric rules in TUKG accurately 
identifies the ridge landscape. 

Figure 8 Inference processes and results for ridge landscapes 

4. Conclusions

This study utilizes knowledge graph technology to investigate the 
field of terrain, an important subject in physical geography. The 
research focuses on the construction of knowledge graph models 
for terrain units, knowledge extraction methods, and ridge 
landscape inference techniques. Through experimental 
verification, the proposed TUKG demonstrates accurate 
identification of large-scale ridge landscapes, indicating a 
potential for generalization to more complex terrain landscapes. 

However, there are several areas that can be improved, including: 
(1) In the knowledge modeling of terrain structural units, this
study only considers spatial morphology knowledge, neglecting

important factors such as geological structures, rock properties, 
internal and external forces, human activities, and evolutionary 
time in terrain formation (Tucker and Hancock, 2010). Future 
research should enhance the knowledge of geomorphology to 
enrich the content of the knowledge graph. (2) Incorporating 
more types of terrain landscapes into the knowledge inference 
system and discussing different compositional patterns within the 
same type of terrain landscape. Overall, further advancements in 
these areas will contribute to the refinement and expansion of 
knowledge graph-based terrain research. 
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