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Abstract 

 

HD Maps (High-Definition Maps) serve as crucial resources for the domain of autonomous vehicle. Because HD Maps can provide 

detailed and accurate road information, the generation of HD Maps has been a labour-intensive and high cost. This research presents 

an innovative and semi-automated approach for efficient HD Maps generation by using assure mapping tool with deep learning 

techniques and mobile laser scanned point cloud geometry. The proposed method starts with data collection from various sources 

such as images, LiDAR point clouds, and integrated INS/GNSS trajectory data. These data are labelled by using a pre-trained model. 

After finishing post-labelling, these data are subjected to deep learning training by using VoxelNet and Yolact++ framework and 

leading to the generation of an AI model. The tool effectively recognizes and categorizes features such as road surface markings, 

traffic signs, and traffic lights, which can be further expanded as per requirements. Finally, the output format can be converted to 

OpenDRIVE, Lanelet2, and other else. Hence, the extracted lane lines can compare to the manual mapping data for verifying the 

accuracy. This study demonstrates that the proposed approach can be instrumental in streamlining the HD Maps generation 

procedure, reducing manual labour, and enhancing efficiency. The assure mapping tool proves to be an effective instrument, 

particularly when powered by deep learning algorithms and point cloud geometries, in the creation of reliable, comprehensive, and 

application-ready HD Maps. 

 

 

1. Introduction 

With the development of autonomous vehicle technology, HD 

Maps (High-Definition Maps) are gaining considerable 

relevance for various applications such as intelligent 

transportation systems, autonomous driving and route 

optimization (Liu et al., 2019). In response to the demand for 

high-resolution mapping solutions, many companies have 

invested in HD Maps creation. For example, TomTom has 

pioneered the RoadDNA technology, a constituent of the 

TomTom HD Maps, which provides the precise positioning and 

robustness required for autonomous driving. RoadDNA 

achieves accurate lateral and longitudinal location data by 

processing sensor input in real time (TomTom, 2018). Similarly, 

HERE offers the HD Live Maps, a continuously updated cloud-

based service encompassing numerous map layers. This map 

includes a wealth of information such as road topology, 

geometry of the road centerline, road-level attributes, lane 

topology data, lane-level attributes, and localization strategies 

(HERE, 2017). 

 

However, there are significant challenges by using traditional 

methods of HD Maps creation because of their labour-intensive 

and time-consuming nature, struggling to fulfil large-scale data 

production needs. In the creation process, the MLS (Mobile 

Laser Scanning) system has the ability to accumulate high-

precision environmental data quickly. Despite this, subsequent 

stages such as map construction, digitization, and additional 

mapping tasks largely remain manual processes that consume 

considerable time and manpower (Mi et al., 2021). 

Consequently, cost reduction in HD Maps production emerges 

as an essential topic in the furtherance of autonomous vehicle 

technology (Chiang et al., 2022). 

 

To address this common issue, some studies have tried to use 

deep learning to extract road objects (Elhousni et al., 2020). 

Some methods in the literature use road surface extraction 

method based on curb structures using the height differences 

between sidewalks and roads to find the lane and further obtain 

the road surface (Yang et al., 2013). There are also research 

methods that use the intensity differences between road and 

sidewalk point clouds to extract road edge information (Zeng, 

2020). In summary, this study presents a semi-automated tool 

designed for the production of HD Maps. By leveraging MLS 

point clouds and machine learning algorithms, this tool aims to 

expedite the process of HD Maps generation and editing. First, 

this study outlines the central technologies and principles 

underpinning the automated HD Maps production tool; 

following this, the extraction accuracy of map objects and the 

outcomes of map production will be evaluated. Finally, this 

study delves into the strengths and limitations of tool and 

discuss its potential future directions. 
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2. Methodology 

2.1 Extraction architecture of assure mapping tools 

Figure 1 illustrates the structure employed when creating HD 

Maps, mainly divided into five iterative steps. Initially, the 

process starts with data collection, where the gathered 

information comprises images, LiDAR (Light Detection And 

Ranging) point clouds, trajectory data, and more. To streamline 

the process, a pre-set model is applied to automatically label the 

collected data, thereby accelerating the labelling speed. Human 

intervention is then introduced to refine the results of the 

automated labelling, ensuring that the labels are as precise and 

accurate as possible. Once the labelling phase is complete, the 

data is introduced to AI (Artificial Intelligence) for deep 

learning, resulting in the formation of an AI model. This model 

serves as a crucial tool in the process of map creation. The 

concluding step utilizes the newly trained AI model to conduct 

an automated extraction on the test data, effectively evaluating 

the performance of the AI model's extraction capabilities. The 

insights from this evaluation phase are harnessed to refine the 

model, driving continuous improvements in the accuracy and 

precision of the maps produced. This cyclical process is an 

integral part of creating high-precision maps. Each step is 

intricately connected, and improvements in one phase directly 

contribute to enhancing the entire process, thus refining the 

final output, i.e., the HD Maps. 
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Figure 1. HD Maps generation process. 

 

As demonstrated in Figure 2, the annotation stage begins by 

uploading both the LiDAR point cloud and image data to the 

annotation tool server developed by Dr.Hatem Darweesh. Each 

dataset is separately annotated, and appropriate categories are 

assigned to the labelled data. Post annotation, the point cloud 

dataset is trained with VoxelNet, while the image dataset is 

trained using Yolact++. 

 

The utilization of these two advanced deep learning models 

allows for the effective extraction of features from both the 

point cloud and image data. The use of VoxelNet for the point 

cloud data takes advantage of its ability to manage 3D data, and 

its capability of detecting objects in three dimensions. Similarly, 

the employment of Yolact++ for image data allows for high-

speed instance segmentation, making it an excellent tool for 

handling 2D image data. 

 

Following the deep learning training phase, the resultant 

pretrained models can be utilized to extract data from other 

unlabelled datasets. These pretrained models hold considerable 

value as they possess learned features that can be leveraged to 

identify and categorize similar instances in new, unseen data. 

This capability significantly expedites the extraction process, 

contributing to the efficiency and accuracy of the HD Maps 

creation process. The interface of the 2D annotation tool for 

images is illustrated in Figure 3, while the interface of the 3D 

annotation tool for point clouds is illustrated in Figure 4. 
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Figure 2. Annotation process. 

 

 

Figure 3. 2D annotation tool in semantic segmentation. 

 

 

Figure 4. 3D annotation tool in semantic segmentation. 

 

Once our model is trained, we will produce an initial map by 

processing Rosbag and PCD point cloud data through APIs 

(Application Programming Interfaces). As shown in Figure 5, 

the Rosbag contains data from LiDAR, camera, GNSS (Global 

Navigation Satellite System), and CAN (Controller Area 

Network). The PCD point cloud map undergoes colorization 

through camera imagery, infusing it with more context and 

visual details. However, achieving perfect accuracy in map 

generation through automation is challenging. Therefore, even 

after acquiring the initial map, manual inspection and editing 

are necessary to ensure its correctness and fidelity. We utilize 

assure mapping tools for this purpose. Upon completion of this 

manual editing process, we obtain the final map and an updated 

dataset. This iterative refinement process, combining 
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automation and human supervision, aims to optimize the quality 

and reliability of our mapping results. 
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Figure 5. Semi-automated map generation process. 

 

2.2 The extraction type of road elements 

This study concentrates primarily on the extraction of certain 

critical elements of the road infrastructure, as listed in Table 1 

and visually illustrated in Figure 6. Specifically, we target road 

surface markings, traffic signs, and traffic lights due to their 

fundamental role in providing guidance and ensuring safe 

navigation for autonomous vehicles. 

 

Road surface markings offer valuable information about the 

nature of the road, including lanes, turns, and other critical 

driving guidelines. Traffic signs, on the other hand, 

communicate important regulatory, warning, and informative 

instructions that influence driving decisions. Similarly, traffic 

lights regulate the flow of vehicles and pedestrians, providing 

clear signals to control movement at intersections. 

 

However, it's essential to note that the categories of extraction 

objects are not limited to these classes. The strength of our 

approach lies in its flexibility and scalability, as it can be readily 

expanded to include a wider array of objects as required. For 

instance, it could be further extended to extract more complex 

elements such as road barriers, pedestrian crossings, or different 

types of vehicles, among others. By doing so, we can continue 

to enrich the detail and comprehensiveness of our HD Maps, 

further enhancing their utility for autonomous driving systems. 

 

 

Figure 6. Example of map semantics drawn. 

Table 1. Map semantic components. 

Type Description 

Lane 

◼ The basic road network structure 

◼ Consists of waypoints 

◼ Points to branching lanes to form the navigational 

road network 

Line ◼ White line as lane boundaries 

Marking 

◼ Other signs on the road surface 

◼ Such as arrows, speed limits, and driving 

directions 

Stop Line ◼ Stopping indicator for signs and lights 

Curb ◼ Roadside and central curbs 

Boundary ◼ Boundary area border of defined space 

Crossing ◼ Boundary to a crosswalk area 

Traffic 

light 

◼ Traffic lights can be (red, green yellow, left 

arrow, right arrow, forward arrow, crossing red, 

crossing green) 

Traffic 

sign 

◼ Most common signs will be represented 

◼ Such as stop signs, speed limit, and no parking 

signs 

 

2.2.1 Yolact++: The main focus of this section is to 

introduce and evaluate Yolact++, an advanced real-time 

instance segmentation algorithm, and its application in tools for 

the automated creation of HD Maps. 

 

Yolact++ is an enhanced instance segmentation algorithm based 

on Yolact. It employs complicated image processing and deep 

learning techniques to perform object detection and 

segmentation on input images at a faster and more accurate rate. 

The advent of Yolact++ not only resolves the challenges that 

Yolact faced when segmenting complex images, but it also 

furthers the ability to identify and locate object shapes. This 

significant advancement offers substantive changes when 

applied to the tools for automated production of HD Maps 

(Bolya et al., 2019). 

 

Underlying Yolact++ is a carefully designed deep learning 

network architecture. This architecture integrates efficient 

object detection techniques, such as FPN (Feature Pyramid 

Network) and Fast(er) R-CNN (Region-based Convolutional 

Neural Networks), and employs a neural network known as 

Protonet to generate 'prototypes' of objects. This further 

enhances the speed and precision of segmentation. When 

compared to other methods, such as Mask R-CNN and Yolact, 

Yolact++ showcases noticeable advantages. First, Yolact++ 

substantially accelerates segmentation speed while maintaining 

high precision, made possible by the use of advanced 

integration techniques such as DCNv2 (Deformable 

Convolutional Networks v2) and Fast NMS (Non-Maximum 

Suppression). Furthermore, Yolact++ provides not only the 

bounding box for each object but also the complete 

segmentation map, thus offering more detailed information and 

aiding the creation of more accurate maps (Bolya, D. et al., 

2019). 

 

2.2.2 VoxelNet: VoxelNet was introduced in 2018. It 

employs a VFE (Voxel Feature Encoding) layer to learn local 

spatial features and subsequent volumetric representation. It 

employs a volumetric feature encoding layer to convert the 

unstructured point cloud data into a structured 3D feature map, 

which can be more easily processed by standard 3D 

convolutional layers. 
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Compared to other 3D object detection networks like PointNet 

and AVOD (Aggregate View Object Detection), VoxelNet 

shows a distinct advantage. PointNet operates directly on raw 

point clouds but struggles to capture local spatial features, and 

AVOD requires expensive pre-processing and conversion of 

LiDAR data to pseudo-images. 

 

In contrast, VoxelNet, with its voxel feature encoding layer, 

learns complex spatial features and eliminates the need for 

manual feature engineering, leading to improved accuracy and 

efficiency (Zhou et al., 2018). VoxelNet's ability to operate 

directly on raw point clouds makes it an effective tool for map 

production. As point cloud data often form the basis for such 

maps, VoxelNet's capabilities for high-accuracy object detection 

and feature extraction are a critical asset in the creation of HD 

Maps. Furthermore, the model's end-to-end architecture 

facilitates a streamlined workflow, from raw data input to object 

detection. 

 

2.2.3 Properties of Lane: The point clouds extracted 

through our automated HD Maps mapping tool subsequently 

undergo a modelling process. This allows us to acquire the 

necessary properties required for the map, as displayed in Table 

2, which shows the properties of lanes recorded by assure 

mapping tools. These properties include elements like ID of 

lanes, speed limit, width, and so forth. These pieces of 

information can also be visually represented when utilizing the 

tool's graphical interface. As depicted in Figure 7, when a lane 

is selected, the relevant details of that lane are displayed in an 

information panel. This feature not only enriches the user 

experience but also provides immediate and comprehensive 

insight into the selected object's properties. The inclusion of 

such properties is essential as it allows users to understand more 

intricate aspects of the mapped environment, fostering greater 

precision and utility in autonomous driving applications. The 

visual display of these properties also enhances user interaction, 

making the HD Maps mapping tool more intuitive and user-

friendly. 

 

Table 2. Attributes of lane. 

Attribute Description 

LaneID Unique number identifier 

LaneNumber 
Order from left to right in case of multiple parallel 

lanes 

Action Semantic lane direction 

Action cost 
Cost of choosing certain action (actions and costs 

are pairs) 

Width General width of the lane 

Speed Maximum driving speed of the lane in km/hr 

Type Lane type 

Lane change If lane change is possible of not 

From Lanes List of lanes ids that lead to this lane 

To Lanes List of lanes ids that branch from this lane 

LeftID ID of the parallel lane on the left 

RightID ID of the parallel lane on the right 

OppositeID 
ID of the opposite lane on the same road when no 

road is exists 

RoadID Related road section ID 

 

 

Figure 7. Lane supported properties. 

 

3. Results and discussion 

In this research, data acquisition utilizes the RIEGL VMX-250 

system, a cutting-edge technology graciously supplied by a 

professional surveying firm. The testing grounds for this 

exploratory study are strategically positioned within the 

boundaries of the Taiwan CAR Lab, nestled in Shalun, Tainan, 

Taiwan. As Taiwan's premier and pioneering closed-field 

testing site, this facility delivers a well-controlled environment 

for examining and calibrating algorithms pertinent to the future 

of autonomous transportation. 

 

The distinctive characteristics of the Taiwan CAR Lab make it 

an optimum hub for the progress and evolution of autonomous 

navigation technologies. The establishment is equipped with 

thirteen simulated traffic situations, which simulate challenging 

scenarios including railway level crossings, curved roads, and 

tunnels. This diversified simulation facilitates the production of 

invaluable data, contributing immensely to the respective 

research. 

 

A key attribute of this testing environment is the presence of 

clearly markings and the exclusion of interference from external 

vehicles. These factors significantly enhance the accuracy and 

reliability of the testing process. Additionally, the simulated 

traffic scenarios faithfully reproduce real-world conditions, 

ensuring the experiments' relevance and applicability. 

 

In short, the Taiwan CAR Lab offers an unparalleled platform 

for researchers to investigate and refine technologies associated 

with autonomous driving and map creation under controlled yet 

realistic circumstances. Refer to Figure 8 for a visual 

representation of this innovative site. 

 

 

Figure 8. The test field: Taiwan CAR Lab (CARTURE, 2019). 
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3.1 Efficient extraction of road elements through frame-

based processing 

As depicted in Figure 9, our HD Maps creating tool is designed 

to effectively identify and extract road elements utilizing a 

preset model. To achieve efficiency and computational 

manageability, this process implements a unique frame-based 

approach to dissect the large-scale data set. 

 

Initially, the data set, consisting of rich environmental details 

captured by Lidar sensors or cameras, is partitioned into 

numerous frames. This partitioning is executed based on the 

trajectory data, which represents the motion path of the sensor-

equipped vehicle. By breaking down the extensive data set into 

smaller, manageable frames, the tool significantly reduces the 

computational burden. This method is highly beneficial when 

dealing with massive amounts of data, as is typically the case 

with HD Maps mapping tasks. 

 

The radius or the size of these frames is not fixed but can be 

altered by adjusting specific parameters. This customizable 

feature allows for greater flexibility in data handling and 

analysis. It empowers users to tune the frame size according to 

the specific needs of their mapping project, offering a balance 

between computational efficiency and detail extraction 

precision. 

 

Once the frame partitioning is accomplished, the tool sets about 

extracting the targeted road elements sequentially from each 

frame. The targets include road surface markings, traffic signs, 

traffic lights, and any other features defined in the preset model. 

The extraction process employs sophisticated algorithms to 

recognize and segregate these features from the point cloud data. 

 

 

Figure 9. The procedure for flexible HD Maps production. 

 

3.2 Classification and Recognition of Road Elements 

Once the extraction process is completed, the tool assigns 

categories to the identified point clouds, reflecting their 

corresponding real-world features, as shown in Figure 10. The 

model's classification algorithm is good at identifying various 

road elements, enhancing the richness and accuracy of the 

extracted data. 

 

Crucial traffic infrastructure such as lane lines, crossing lines, 

and traffic signals, among others, are successfully detected and 

categorized. Lane lines, which serve as crucial guidance for 

vehicular movement, are detected with high precision, their 

positions and orientations accurately reflected in the categorized 

point cloud data. 

 

The detection and classification of crossing lines are equally 

accurate. Traffic lights, crucial for controlling vehicular flow 

and ensuring road safety, are also successfully identified, with 

each individual light signal accurately represented in the 

classified point cloud data. 

 

In conclusion, the tool effectively transforms raw sensor data 

into structured, classified point cloud data, where each point 

cloud represents a specific type of road element. This 

classification enhances the utility and interpretability of the 

extracted data, paving the way for automatic creating detailed, 

accurate HD Maps. 

 

 

Figure 10. Extraction of road elements by using assure mapping 

tools. 

 

3.3 Convert and output map into different kinds of format 

The assure mapping tool supports the map format conversion 

function. As Figure 11 shown, the tool can convert and out the 

map into vector map, OpenDRIVE, Lanelet2, and kml format. 

These maps can be used for autonomous vehicle simulators 

such as CARLA, VTD, Autoware Universe, and others. Figure 

12 to Figure 14 shows the simulation results. The map can be 

successfully input by simulator and provide the usability by 

using this method. 

 

(a) (b)Vector map OpenDRIVE Lanelet2 kml
 

Figure 11. Output map with different kinds format. 

 

 

Figure 12. CARLA simulator with OpenDRIVE format. 

 

 

Figure 13. VTD simulator with OpenDRIVE format. 
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Figure 14. Autoware Universe with Lanelet2 format. 

4. Conclusion

In response to the development of autonomous vehicle and the 

requirement of HD Maps, the car company in advanced 

countries have invested in the research for self-driving maps. 

Currently, many foreign countries prioritize the development of 

maps for highways and expressways because the complexity of 

road infrastructure with highway and expressway is lower than 

urban roads. When map companies try to make HD Maps in 

Taiwan, they have to referenced the HD Maps guidelines and 

standards to make sure that the quality and accuracy of map 

data are the same. The procedure costs lots of times and 

resources. In order to increase the capability and mileage of HD 

Maps, this study proposes two flexible surveying and mapping 

methods as diverse sources of GCP (Ground Control Point) and 

autonomous vehicle grade data with multi-sensor fusion engine 

system. The preliminary results show that the virtual ground 

control points and integrated LC-INS (Loosely Couple-Inertial 

Navigation System)/GNSS/LiDAR for SLAM (Simultaneous 

Localization And Mapping) can be used for HD Maps 

construction. Then, the proposed methods use for making 

National expressway in Taiwan. The total mileages are around 

458 km. The point cloud map also can be used as a base map to 

accomplish the concept of ground control point cloud. The 

ground control point cloud can be considered as ground control 

point so that the new collecting point cloud can implement the 

establishment, updating, and increasing density from original 

point cloud. On the other hand, integrated multi-sensor and 

point cloud map can provide SAE level 3 navigation of 

autonomous vehicle service. The positioning accuracy can 

achieve “where in lane (0.5 m)” level. These experiences will 

improve the efficiency and integrity for making map. 
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