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Abstract 
Current multi-epoch InSAR techniques heavily rely on the assumption of linear deformation. This can sometimes overlook crucial 
deformation signals when using velocities for evaluation. The process of interpreting InSAR time series is not only time-consuming 
and labor-intensive but also requires a certain level of expertise. This study refines existing InSAR deformation categories, such as 
stable, linear, step, piecewise linear, power, and undefined, to define 'canonical deformation time series patterns.' We propose an 
innovative approach for InSAR post-processing using Temporal Convolutional Networks (TCN) and transfer learning. Due to the 
limited availability of real data, we use simulated data to train a pre-existing model. We then assess the effectiveness of our method 
in identifying urban deformation patterns. This research could significantly improve our understanding of large-scale InSAR time 
series deformation and reveal the underlying patterns. 
 
1. Introduction 

Spaceborne InSAR technology, with its all-day, all-weather, 
large-scale observation capabilities, has become a crucial tool 
for monitoring ground deformation. Overcoming traditional 
InSAR technology's limitations—such as issues with time de-
coherence and atmospheric delay effects—time-series InSAR 
technology enables high-precision monitoring of ground 
deformation. However, the existing time-series InSAR 
technology operates on a linear deformation assumption, 
estimating ground deformation using a rate index. Consequently, 
potentially dangerous deformation signals like sudden 
deformation or deformation acceleration are retained in the 
time-series deformation during the observation period. The 
time-series InSAR dataset can supply millions of points for 
hundreds of observational moments of deformation. However, 
identifying InSAR time series deformation relies on manual 
interpretation, which is not only time-consuming and laborious 
but also requires expert knowledge. In order to address these 
issues, a number of machine learning and multiple hypothesis 
testing methods have been proposed.  
Clustering algorithm is an unsupervised machine learning 
algorithms that divide a dataset into several subsets without 
prior knowledge. It has widely used for exploring deformation 
patterns in InSAR time series. Clustering algorithms such as 
SOM ( Li and Ke 2015), k-means (Gagliardi et al. 2021), and 
DBSCAN (Schneider and Soergel 2021) have all been utilized 
for clustering InSAR time series data of the Earth's surface, 
enabling the analysis of spatiotemporal heterogeneity. However, 
a limitation of this approach is that the clustering outcomes are 
all linear trends, differing primarily in their rates of subsidence. 
Subsequently, clustering the vertical and horizontal components 
of deformation from LOS InSAR enhances the interpretability 
of the clustering results.(Schlögl, Widhalm, and Avian 
2021)(Festa et al. 2022). Since the results of clusters are often 
unknown, obtaining interpretable outcomes requires multiple 
experiments to adjust the final number of clusters. To some 
extent, this issue can be addressed by conducting principal 
component analysis before clustering (Festa et al. 2023) or 
performing hypothesis testing on clusters after clustering(Zhu, 
Hu, and Xu 2023). Compared to clustering InSAR time series, 
the classification of InSAR time series with predefined 
categories is easier to interpret. The earliest study on classifying 
potential patterns in InSAR time series aimed to detect 

deformation patterns of landslides. This study employed 
multiple hypothesis testing methods to categorize regional 
deformations into six types: uncorrelated, linear, quadratic, 
bilinear, discontinuous with constant velocity, and 
discontinuous with varying velocity(Berti et al. 2013). 
Subsequently, InSAR phase unwrapping errors (PUE) are 
included as a new category that requires hypothesis 
testing.(Mirmazloumi, Wassie, et al. 2022). Although multiple 
hypothesis testing methods can achieve good results, they 
require more specialized knowledge in the field of InSAR. 
Furthermore, with the enhanced ground observation capabilities 
of SAR satellites and the increasing volume of InSAR data, 
computational resource consumption is becoming increasingly 
high. Therefore, several supervised learning methods have been 
proposed for the classification of InSAR time series. Artificial 
Neural Networks (ANN)(Mirmazloumi, Gambin, et al. 2022), 
Long Short-Term memory(LSTM)(Kulshrestha, Chang, and 
Stein 2022)(Tiwari and Shirzaei 2024), and 
Sparse_AutoEncoder-Convolutional neural networks(SAE-
CNN)(Li et al. 2023) have been proposed for mining potential 
patterns in large-scale InSAR time series data. However, these 
methods often require a large amount of manually labeled real 
deformation data from the ground surface. Since InSAR time 
series exhibit complex deformation patterns, labeling sample 
data is even more challenging in areas with small deformations 
and noise interference.  
This study was initiated by defining what we term 'canonical 
deformation time series patterns', drawing upon our 
understanding of urban deformation and our expertise with 
InSAR data analysis. We have refined the previously proposed 
InSAR deformation pattern categories, expanding the bilinear 
pattern into piecewise linear, replacing quadratic deformation 
patterns with power deformation, and introducing a new 
'undefined' category to encompass complex InSAR 
deformations. This results in a total of six deformation patterns: 
stable, linear, step, piecewise linear, power, and undefined. 
Subsequently, we propose an innovative approach for InSAR 
post-processing, which involves exploring deformation time 
series using Temporal Convolutional Networks (TCN) and 
transfer learning techniques. Additionally, we address the 
challenge posed by limited real, ground-labeled InSAR data by 
leveraging simulated data to construct a pre-trained model. 
Finally, we evaluate the efficacy of our proposed method in 
accurately identifying deformation patterns in urban 
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environments. The paper is organized as follows: Section 2 
delineates the employed methods. Section 3 elucidates the 
research data. Section 4 presents the results and discussions, 
while Section 5 concludes the study. 
 
2. Methodology 
In this study, six deformation patterns in InSAR time series are 
identified, drawing upon insights from previous research on 
urban deformation and experiences in annotating real data. The 
Savitzky-Golay filter and Temporal Convolutional Network 
(TCN) were employed together to extract deformation features 
from the InSAR deformation time series. Furthermore, a 
transfer learning method was utilized to enhance the 
effectiveness of deformation pattern recognition. 

 

 
Figure 1. Framework of this study 

 

2.1 Canonical Time Series Deformation Patterns 

Our approach classifies time series deformation patterns into 
predefined types. These types are identifiable in any InSAR 
time series dataset and can be interpreted based on their 
associated physical processes. Six deformation patterns are 
defined: stable, linear, step, piecewise linear, power, and 
undefined. 
 Stable: The mathematical meaning of this deformation pattern 
is that the InSAR deformation is unrelated to time in the time 
series, and the deformation amount generally fluctuates 
randomly around a constant value. Physically, it usually 
represents stable InSAR coherent points with no significant 
deformation during the monitoring period(Berti et al. 2013). 
 linear: The mathematical meaning of this deformation pattern 
is that the InSAR deformation varies linearly with time at a 
constant rate, either increasing or decreasing. Physically, it is 

often associated with long-term ground deformation processes 
such as settlement. 
 Step: Its mathematical meaning is that the deformation 
velocity of InSAR undergoes a displacement step at a certain 
moment, indicating the existence of a jump-type discontinuity at 
that moment. The velocity before and after the step may be 
similar or change(Berti et al. 2013). Since some instantaneous 
events only cause one or multiple jumps on the surface, their 
physical meanings are related to activities such as earthquakes, 
fault slips, mining operations, and so on. 
 Piecewise Linear: This term refers to the division of the 
InSAR deformation time series into several linear domains with 
varying velocities, connected by segmentation points. When 
surface motion characteristics are directly linked with water or 
hydrocarbon reserves, the deformation pattern can be modeled 
as a combination of several different linear functions over a 
specific time period(Ketelaar 2009). In practical terms, bilinear 
and trilinear models are relatively common. For instance, during 
oil or natural gas extraction, a segmentation point can be 
established, with different linear domains potentially existing 
before and after this point. 
 Power: Mathematically, the InSAR deformation velocity 
signifies a trend characterized by varying deformation rates that 
change continuously over time. Physically, this is often linked 
to post-earthquake deformation(Savage, Svarc, and Prescott 
2003) , gradual deformation of landslides (Montgomery, 
Sullivan, and Greenberg 1998), , soil settlement or compaction 
processes (Wang, Deng, and Zheng 2020), and gradual 
deformation in mining areas. 
 Undefined: The deformation patterns in MT-InSAR can be 
quite complex. In addition to the five basic patterns mentioned 
earlier, there may also be low-quality time series due to 
processing errors, mixed sequences involving various basic 
patterns, and other complex patterns that do not align with the 
characteristics of the basic patterns. 
 
2.2 Deformation Patterns Recognition based on TCN and 
Transfer Learning 

In this section, the methodology of Temporal Convolutional 
Network (TCN) and Transfer Learning is introduced, adapted 
for InSAR time series analysis. 
Convolutional Neural Network (CNN) naturally possess the 
advantage of parallel processing, which can shorten the 
computation time. Although traditional CNN lack the ability to 
retain historical information, specifically designed CNN can 
still achieve good performance in time series analysis. Temporal 
Convolutional Network (TCN)(Bai, Kolter, and Koltun 2018) 
are a special type of CNN that can be used for modeling 
sequential problems. When dealing with InSAR deformation 
sequences, TCN treat them as one-dimensional objects (1×n 
matrices). Through multi-layer causal convolutions, TCN can 
obtain a large enough receptive field and trace historical 
information. Although this approach can make the neural 
network very deep, dilated convolutions can reduce the number 
of layers while maintaining the receptive field, saving a 
significant amount of time(Oord et al. 2016). Additionally, TCN 
benefit from the advantage of massive parallel processing.The 
hidden layer of a TCN is a basic module called TemporalBlock 
(Figure 1). The input to a TemporalBlock is a one-dimensional 
time series. The TemporalBlock mainly consists of two 
convolutional layers with the same dilation factor. Conv1d 
represents a one-dimensional dilated causal convolution. The 
WeightNorm layer is used to normalize the weight parameters 
and accelerate model training. The ReLU layer serves as a 
nonlinear activation function, enhancing the model's expressive 
ability. The Dropout layer is employed to prevent overfitting in 
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deep learning models. The input InSAR deformation time series 
x undergoes two layers of dilated causal convolutions and is 
then passed through a residual connection to output the current 
hidden state h(x). 
Transfer Learning is a machine learning approach that focuses 
on transferring knowledge learned from a solved task A to a 
related new task B, thereby aiding in the resolution of task B. 
This is particularly useful when data for task B is limited or 
difficult to obtain. The core objective of transfer learning is to 
leverage the accumulated experience from the source task to 
enhance the learning efficiency and performance of the target 
task. 
 

3. Experiments Data 

Our experimental data comprises both simulated and real data. 
The simulated data is utilized for pre-training, while the real 
data is employed for fine-tuning the model through transfer 
learning. 
 
3.1 Simulated Data 

The construction of simulated data is primarily based on the 
primary deformation patterns mentioned in section 2.1. The 
temporal InSAR deformation simulations are primarily 
calculated using the following formula, which is derived from 
the mathematical significance of these patterns: 
 

2( ) ( ), ( ) ~ (0,0.83 )tD f t n t n t N= +  (1) 
 
In formula (1), Dt represents the InSAR deformation amount at 
time for a particular Persistent Scatterer (PS) point. To 
adequately simulate the characteristics of real data, Gaussian 
white noise is added to the simulated data. In this study, the 
Gaussian white noise follows a standard normal distribution 
with a mean of 0 and a variance of 0.832. This noise addition 
helps to mimic the inherent randomness and uncertainty present 
in real-world InSAR measurements, thereby enhancing the 
realism and reliability of the simulated data for pre-training 
purposes. In our study, the simulated data used for pre-training 
only needs to conform to the pre-defined first five deformation 
patterns (Figure. 2). 
 

 
Figure 2 Simulated deformation time series. 

 

3.2 Real Data 

The real data employed in our study is derived from Sentinel-1 
and covers a rectangular region near Kunming City, China. 
Kunming is situated in the north of the Yunnan province, with 
coordinates ranging from 102°10′ to 103°40′E and 24°23′ to 
26°22′N. Karst landforms dominate the study area, and 
lithologically silty and soft clay constitute the primary soil 
structure(Guo et al. 2020). Kunming is one of the cities in 
western China that exhibits relatively significant surface 
subsidence. The Sentinel-1 data provides valuable insights into 
the deformation patterns and subsidence characteristics of the 
region, enabling us to conduct accurate and reliable analysis for 
our research objectives. 

 
Figure 3 The top left figure shows the location of Yunnan province. The 
top right figure presents the collected SAR coverages, depicted with the 
topography of Kunming. The bottom figure displays the central districts 
of Kunming city. 

After processing the Sentinel-1 data using PS-InSAR techniques, 
we obtained 2,378,751 Persistent Scatterer (PS) time series. 
Each time series comprises 168 timestamps, representing 
deformations measured in millimeter resolution along the line 
of sight. For the purpose of transfer learning, we labeled 3566 
points as the training set, while 895 points were designated as 
the test set for the real data. The ratio between the training and 
test sets is 8:2, ensuring a balanced and representative 
distribution of data for model training and evaluation (Table1). 
 

Patterns Train Test 
stable 600 151 
linear 595 149 
step 592 149 

Piecewise linear 596 150 
pow 595 149 

undefined 588 147 
Table 1 Real dataset partitioning. 
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4. Results And Discussion 

4.1 Results  

 
Figure 4 (a) represents a deformation velocity map of Kunming City, 
while (b) represents a deformation pattern map of Kunming City. A1 to 
A7 are deformation zones that can be clearly identified from the 
deformation rate map. Conversely, B1 to B3 are deformation zones that 
are difficult to discern from the deformation rate map but can be easily 
identified from the deformation pattern map. The line DD' traverses a 
key subsidence area along the shores of Dianchi Lake. 
 
 
Fig.4(a) shows the deformation velocity in Kunming City with 
the deformation velocity of most points(3σ) ranging from -5 to 
5 mm/year, as shown in Fig.5. The key subsidence areas are 
concentrated along the shores of Dian Lake, with a few areas 
experiencing uplift. Fig.4(b) illustrate the identified deformation 
patterns in the study area, and various deformation patterns are 
also observed in other areas with lower velocity in the velocity 
map given in Fig.4(a). A1 experiences slight subsidence, 
primarily characterized by linear and piecewise linear 
deformation patterns. A2 exhibits more severe subsidence, with 
deformation patterns including piecewise linear, step, and 
power modes. A3 undergoes slight uplift, mainly in a piecewise 
linear mode, possibly related to self-built housing in the area. 

A4 is a key subsidence area around the Dianchi International 
Convention and Exhibition Center, encompassing various 
subsidence patterns. A5 is the xiaobanqiao key subsidence area, 
where severely subsiding regions are dominated by linear 
subsidence, while regions with slower subsidence show a mix 
of piecewise linear and step subsidence patterns. A6, located 
along the lake, experiences severe subsidence primarily in a 
linear mode. A7 is the area with the most severe uplift in 
Kunming City, associated with linear and piecewise linear 
deformation patterns. Regions B1, B2, and B3 appear relatively 
stable in the velocity map, but our analysis reveals that their 
deformation patterns remain complex. 
 
 

 
Figure 5 (a) demonstrates the distribution of ground deformation rates 
across Kunming City, while (b) illustrates the proportion of various 
deformation patterns throughout Kunming City. 

 

In region A4, the cross-section DD' traverses a severe 
subsidence area along the northern shore of Dianchi Lake. As 
the distance extends from the lakeside to the land, the surface 
elevation gradually increases, with a change of approximately 
45 meters. In areas with higher elevations, the deformation rates 
are smaller, and there are more instances of stable deformation 
patterns. in contrast, lower elevations are dominated by non-
stable deformation. Within a distance of 0 to 4000 meters from 
the lake, linear subsidence patterns are most common. Between 
4000 and 6000 meters from the lake, piecewise linear 
subsidence patterns prevail. Within 7000 to 8000 meters from 
the lake, there are tall building clusters, and most of the 
deformation patterns within these clusters are stable. Finally, 
within 9000 to 11000 meters from the lake, the deformation 
patterns are primarily step subsidence (Fig. 6). 
 

 

 
Figure 6 Changes in elevation, deformation rate, and deformation 
patterns along the DD' line (Figure. 4). 
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Figure 7 The detail deformation patterns map of area A4. The p1 to p6 
represent the main clustering areas for stable, linear, step, piecewise 
linear, power, and undefined deformation patterns, respectively. 

 

In the key subsidence area A4, we selected typical regions P1 to 
P6 (Fig. 7). We plotted their main deformation time series S1 to 
S6 (Fig. 8). S1 indicates that region P1 experiences stable 
deformation patterns. S2 demonstrates that region P2 exhibits a 
linear subsidence pattern with a cumulative settlement of up to 
40mm in six years. S3 reveals that region P3 is primarily 
characterized by a step deformation mode, with an 
instantaneous step of 10mm occurring around September 2018. 
S4 shows that region P4 is dominated by a piecewise linear 
deformation pattern, which can be divided into three linear 
segments. The first linear segment, from January 2017 to March 
2018, has a relatively small settlement rate. The second segment, 
from April 2018 to October 2020, exhibits a higher settlement 
rate, possibly due to intense human engineering activities. The 
third segment, from October 2020 to December 2022, 
approaches a stable deformation rate. S5 represents region P5, 
which experiences a power deformation mode with a 
cumulative settlement of approximately 50mm. The 
deformation rate gradually decreases during the monitoring 
period and may stabilize in the future. This pattern may be 
related to changes in groundwater in the area. S6 indicates that 
the InSAR deformation in region P6 is a deformation mode 
beyond the five typical ones. The InSAR time series in this 
region is significantly affected by noise and exhibits a complex 
deformation pattern. Before September 2020, the deformation 
approximated a power decrease, followed by a large step change 
around September 2020, and then stabilized. 
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Figure 8 S1-S6 represent the main deformation patterns in the region 
from P1 to P6 in Fig. 7. 

 

 
Figure 9 (a) represents the deformation rate in the V1 region, and (b) 
represents the deformation pattern in the V1 region. 

 

In the B2 region (Figure 4), we selected the V1 neighborhood (Fig. 9) to 
explore its deformation patterns. Although the deformation rates in this 
area are relatively small, the deformation patterns remain complex. We 
plotted five typical InSAR deformation pattern clusters, S1 to S5 (Fig. 
10), for this neighborhood. The upper and lower boundaries of each 
cluster represent the maximum and minimum deformation values 
observed at that particular time, respectively, while the balck line in the 
middle indicates the median deformation value for that time. Evidently, 
S1 represents a stable deformation pattern, with deformations 
fluctuating randomly around zero. Due to noise, even stable 
deformations can exhibit significant jumps, resulting in a range of 
approximately 40mm. S2 corresponds to a linear deformation pattern 
cluster, showing a lift of approximately 5 to 10mm over the monitoring 
period. S3 comprises step deformation patterns, with potential step 
moments occurring in May 2018, January 2020, July 2021, and January 
2022. The variation in step moments across different time series within 
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a small area suggests that these steps may be caused by surface human 
activities rather than underlying physical processes. S4 represents a 
piecewise linear deformation pattern. The first linear segment, from 
January 2017 to May 2018, is relatively stable. The second segment, 
from May 2018 to March 2021, exhibits a higher rate of uplift. Finally, 
the third segment indicates a decrease in the uplift rate compared to the 
second segment. S5 depicts a power deformation pattern. The median 
InSAR deformation rates generally show an increasing trend over the 
six-year period. Additionally, the maximum values suggest that the 
corresponding surface coherent points undergo seasonal fluctuations 
during the power uplift process. 
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Figure 10 S1-S6 represent the InSAR Deformation Time Series Cluster 
in the region of Fig. 10 V1. 

 

we analyze the relationship between different InSAR 
deformation patterns, deformation velocity, and coherence for 
all coherent points. Fig. 11 (a) reveals that most deformation 
patterns exhibit velocities concentrated between -5 and 5 
mm/year, consistent with the overall velocity distribution. 
Non-stable deformation patterns show a higher density of 
velocity distribution between Q2 and Q3 compared to Q1 and 
Q2. Negative velocities are more scattered among outlier data 
points compared to positive velocities. 
Stable deformation points have a unimodal distribution with 
velocities ranging from -5 to 5 mm/year, peaking near 0 
mm/year. Linear, piecewise linear, and power deformation 
patterns show a bimodal distribution with peaks in both positive 
and negative velocity segments. Median velocities for linear and 
piecewise linear deformations are greater than 0 mm/year, while 
for power deformations, it is less than 0 mm/year. Step and 
undefined deformation patterns also exhibit a bimodal 
distribution with medians near 0 mm/year, and a significant 
density of data points near 0 mm/year. 
From Fig 11 (b), Coherence values for each deformation pattern 
are concentrated between 0.6 and 1, with medians falling within 
the range of 0.6 to 0.8.Outlier coherence values for each 
deformation pattern are clustered between 0 and 0.3. Stable 
deformation pattern has the highest density of data points 
between 0.6 and 0.8.Linear, piecewise linear, and power-law 
deformation patterns show similar coherence distribution shapes, 
with the highest concentration of data points between 0.8 and 
1.Step and undefined deformation patterns also exhibit similar 

coherence distribution shapes, with the highest density of data 
points between 0.7 and 0.9. 
 

 
Figure 11 (a) displays the distribution of deformation rates for different 
patterns in Kunming City, while (b) illustrates the distribution of 
coherence for different patterns. 

 
These observations suggest that different deformation patterns 
exhibit distinct characteristics in terms of their velocities 
distributions and coherence values. Stable deformations tend to 
have low rates and high coherence, while other deformation 
patterns, such as linear, piecewise linear, and power, may 
exhibit a wider range of velocity and varying degrees of 
coherence. Step and undefined deformation patterns show more 
variability in their velocity distributions but tend to have similar 
coherence levels. These observations provide valuable insights 
into the characteristics and underlying mechanisms of 
deformation in the studied areas, which can contribute to better 
understanding the geological processes driving these 
deformations. 
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4.2 Discussion 

The results of our study demonstrate that the proposed method 
is highly effective in exploring the temporal deformation of the 
built environment using InSAR time series and uncovering 
potential patterns. This notable achievement is primarily 
attributed to the deep learning model we have constructed. In 
the following, we delve into the training specifics of the deep 
learning model, evaluate its performance, and identify areas for 
potential improvement. 
 

Hyperparameter Search space 

Learning rate 1e-1,1e-2,1e-3 

Batch size 16,32,64,128,256 

Hidden layers [1,10] 

Hidden layer 
neurous 

15,25,50,100,168,200,301,400 

Dropout 0.01,0.05,0.01,0.5 

Table 2 hyperparameters search space in this experiment. 

4.2.1 Model hyperparameters: For deep learning models, 
hyperparameter adjustment is crucial, often determining the 
success or failure of a given task. Regarding the TCN neural 
network selected for our research, there are no available model 
parameters for reference in the context of InSAR time series 
classification. Therefore, we identified a set of commonly used 
empirical hyperparameter search spaces (Table 2). Initially, we 
randomly sampled each hyperparameter value range within the 
search space to construct hyperparameter combinations, 
resulting in 4800 unique combinations. Subsequently, we 
employed real data and utilized a random search approach 
(Bergstra and Bengio 2012) to conduct extensive exploratory 
training of the model. Through this process, we ultimately 
identified a relatively effective set of hyperparameters. Our 
model's initial learning rate is set to 0.001, and a learning rate 
decay strategy is adopted, where the learning rate is reduced to 
10% of its current value every 10 epochs. The batch size is set 
to 256, with 10 hidden layers, 100 neurons per hidden layer, and 
a dropout rate of 0.05. As for the optimizer, we chose the Adam 
optimizer, which is relatively insensitive to hyperparameter 
settings and can yield similar results within a wide range of 
hyperparameters, facilitating the adjustment process. 
 
4.2.2 Model performance: Equations must be numbered 
consecutively throughout the paper. The equation number is 
enclosed in parentheses and placed flush right. Leave one blank 
lines before and after equations:  
 

 
Figure 12 (a) displays the recall rates of different experimental methods, 
while (b) shows their precision rates. M1 represents training the model 
with simulated data and testing it with simulated data. M2 represents 
directly training the model with real data and testing it with real data. 
M3 represents training the model with simulated data, performing 
transfer learning with real data, and then testing it with real data. 

 
Our study compares the performance differences among models 
trained under three distinct scenarios. We denote the five-class 
classification pretrain model trained directly on simulated data 
as M1, the six-class classification model trained directly on real 
data as M2, and the model that undergoes pre-training on 
simulated data followed by transfer learning and fine-tuning on 
real data as M3. Model M1 is designed specifically for five-
class tasks and must be tested using simulated data. In contrast, 
M2 and M3 are evaluated using real data. The final accuracy 
rates are as follows: M1 achieves 99.1%, M2 achieves 80.3%, 
and M3 achieves 89.3%. Notably, M1 exhibits the highest recall 
and precision rates, validating the TCN model's effectiveness in 
recognizing deformation patterns from simulated InSAR time 
series data. Compared to M2, M3 demonstrates significant 
improvements in recall rates for linear, step, and piecewise 
linear deformation patterns. Additionally, M3 outperforms M2 
in precision rates across all deformation modes (Fig. 12). These 
results suggest the feasibility of our proposed approach, which 
involves pre-training on simulated data followed by transfer 
learning on limited real data. The pre-trained model acquires the 
ability to represent features from simulated time series, and 
through weight transfer, the model initializes with a certain 
capability to extract features from real time series data. 
Consequently, the model converges more easily to a superior 
performance. 
 
While the recall rates of M3 for stable, linear, and step 
deformation patterns range from 80% to 90%, its recall rate for 
piecewise linear patterns is only 78%, indicating room for 
improvement. Future research could explore enhancing the 
model's performance by increasing the number of training 
samples from real data and diversifying the samples for each 
deformation mode, ultimately leading to further improvements 
in model accuracy. 
 

5. Conclusion 

This study employs deep learning techniques to extract 
deformation patterns from extensive InSAR time-series data. 
Initially, a pre-trained model is trained using simulated data, 
followed by fine-tuning with real data through transfer learning. 
The resulting TCN deformation pattern recognition model, 
capable of six-class classification, exhibits high accuracy when 
applied to real datasets. Particularly, the model proves effective 
in detecting deformations in Kunming City. This research is 
instrumental in efficiently analyzing large-scale InSAR time-
series data, offering valuable insights for deformation analysis 
and monitoring. 
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