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Abstract 

Retrieving UAV images that lack POS information with georeferenced satellite orthoimagery is challenging due to the differences in 

angles of views. Most existing methods rely on deep neural networks with a large number of parameters, leading to substantial time 

and financial investments in network training. Consequently, these methods may not be well-suited for downstream tasks that have 

high timeliness requirements. In this work, we propose a cross-view remote sensing image retrieval method based on transformer and 

visual foundation model. We investigated the potential of visual foundation model for extracting common features from cross-view 

images. Training is only conducted on a small, self-designed retrieval head, alleviating the burden of network training. Specifically, 

we designed a CVV module to optimize the features extracted from the visual foundation model, making these features more adept 

for cross-view image retrieval tasks. And we designed an MLP head to achieve similarity discrimination. The method is verified on a 

publicly available dataset containing multiple scenes. Our method shows excellent results in terms of both efficiency and accuracy on 

15 sub-datasets (10 or 50 scene categories) derived from the public dataset, which holds practical value in engineering applications 

with streamlined scene categories and constrained computational resources. Furthermore, we initiated a comprehensive discussion 

and conducted ablation experiments on the network design to validate its efficacy. Additionally, we analyzed the presence of 

overfitting within the network and deliberated on the limitations of our study, proposing potential avenues for future enhancements. 

1. Introduction

Oblique UAV images have become increasingly pivotal in 

applications such as urban modeling and scene understanding 

(Verykokou et al., 2016, Sheppard and Rahnemoonfar, 2017). 

Determining the geo-location of oblique UAV images 

accurately is the fundamental basis of these applications. When 

oblique UAV images lack POS information, we usually retrieve 

and subsequently register these images with georeferenced 

satellite orthoimagery. It is a cross-view remote sensing image 

retrieval task, and is challenging due to the substantial 

differences in angles of view between oblique UAV images and 

satellite images. Traditional handcrafted feature-based image 

retrieval methods struggle to capture common features between 

such cross-view images. Nowadays, most cross-view image 

retrieval methods are grounded in deep learning approaches. 

However, many methods aim to enhance retrieval performance 

by stacking learning modules. This augmentation increases the 

number of model parameters and poses challenges in fine-

tuning tasks when the scene changes, thereby limiting the 

practical applicability of these methods in engineering. 

Recently, Meta AI Research introduced DinoV2 (Oquab et al., 

2023), a large visual foundation model that demonstrates robust 

generalization and zero-shot transfer capabilities in downstream 

tasks such as semantic segmentation and depth estimation. The 

latent features extracted by DinoV2 exhibit exceptionally strong 

common feature representation capabilities in contrast to the 

backbones utilized for single tasks, such as image matching. 

Thus DinoV2 can provide a solid foundation for initializing 

image features in cross-view remote sensing image retrieval, 

thereby facilitating accurate model regression. Furthermore, the 

use of DinoV2 for cross-view remote sensing image retrieval 

obviates the need for weight fine-tuning, thus avoiding 

extensive training during the fine-tuning task and reducing 

computational costs. The key to effectively leveraging DinoV2 

lies in the design of an effective downstream task head. 

Therefore, in this work, we investigate a novel cross-view 

remote sensing image retrieval method based on a visual 

foundation model DinoV2, and a transformer-based retrieval 

head. In summary, our contributions include: 

1. We employed zero-shot transfer learning on the backbone

network. We introduced the vision foundation model as the

backbone for the cross-view image retrieval task and froze its

weight, thus circumventing the additional cost from the

backbone network training.

2. We designed a retrieval head, a small network based on

transformer with only a few parameters. We not only alleviated

the burden on network training but also enhanced the features

from DinoV2, rendering them more adept for retrieval tasks.

3. We proposed a novel deep learning approach for cross-view

image retrieval, which combines contrastive learning,

supervised learning, and transfer learning, integrating these

latest techniques in the field of deep learning.

2. Related Work

2.1 Cross-View Remote Sensing Image Retrieval 

Cross-view image retrieval is widely used for rough positioning 

of query images. Most methods for cross-view image retrieval 

follow a standard data processing pipeline. First, features of 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1-2024 
ISPRS TC I Mid-term Symposium “Intelligent Sensing and Remote Sensing Application”, 13–17 May 2024, Changsha, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-821-2024 | © Author(s) 2024. CC BY 4.0 License.

 
821



 

query and gallery images are extracted individually, then the 

similarities between these images are measured, and finally, the 

gallery image with the highest similarity score is selected as the 

retrieval result. Some researchers employed handcrafted 

features for cross-view image characterization. Cheng et al. 

(2018) used SIFT descriptors for retrieval between cross-view 

ground images. Luo and Ye (2023) designed the SDS 

(Segments Direction Statistics) feature pattern, and used it in 

the oblique-view UAV image-based retrieval task. Owing to the 

significant advantages of neural networks in feature extraction 

and the continual development of cross-view image datasets like 

University-1652 (Zheng et al., 2020), cross-view image retrieval 

research has predominantly relied on deep learning 

methodologies over the past decade. 

 

Zemene et al. (2019) designed a retrieval method for querying 

in a city-wide reference image database with known absolute 

coordinates, thereby determining the geo-location of the query 

image. Similarly, Rodrigues and Tani (2022) performed 

retrieval between ground images and a large geotagged aerial 

image database. Some methods enhance the retrieval 

capabilities of the network by improving training strategies or 

modifying the framework of the model. Zhang et al. (2022) 

proposed a deep neural network that introduced a spatial scale 

attention mechanism for cross-view image feature extraction, 

strengthening the scene spatial information representation. Lin 

et al. (2022) presented a feature learning approach based on 

joint learning, leveraging a single network to acquire 

discriminative features. They also introduced a key point 

detection model to emulate human visual perception, thereby 

enhancing the feature's capability to represent key areas. Zeng et 

al. (2022) designed a peer learning-based parallel retrieval 

method incorporating two siamese networks. They utilized 

UAV images as intermediaries between ground images and 

satellite images to facilitate retrieval between the two views. Hu 

et al. (2018) developed a global feature generation module to 

further optimize the local features extracted by the backbone 

network. Additionally, they introduced a weighted soft margin 

ranking loss to accelerate model convergence. 

 

Some recent studies have opted for transformer-based backbone 

networks instead of CNNs. For instance, the FSRA (Dai et al., 

2021) automatically divided the original image into multiple 

regions based on the heat distribution of the feature map, and 

achieved feature alignment based on region consistency. 

Zhuang et al. (2022) introduced semantic constraints based on 

FSRA to enhance the effectiveness of feature alignment. 

However, a limitation shared by all the above methods is that 

the training process still involves the backbone network, 

resulting in increased computational and time overhead for the 

retrieval task. Therefore, in this study, we introduce an 

approach by incorporating a visual foundation model with 

robust generalization capabilities as the backbone network of 

our model. 

 

2.2 Visual Foundation Model 

The effectiveness of a neural network lies in the proper 

initialization of its parameters. In the field of deep learning, this 

initialization process necessitates a substantial amount of high-

quality training data. However, many downstream tasks lack 

access to such data. Therefore, a common approach for most 

tasks is to fine-tune foundation models that have been pre-

trained on large datasets. Vision foundation models are widely 

used for transfer learning (Zhou et al., 2023). Initially, these 

models referred to pre-trained weights of backbone networks 

obtained by training CNN networks (for example, ResNet) on 

general and labeled datasets (including ImageNet). These pre-

trained weights were then transferred to downstream tasks to 

expedite convergence. However, due to the expense of data 

annotation, the size of these datasets is limited, and the 

network's generalization performance cannot be guaranteed. 

Most subsequent research has concentrated on semi-supervised 

learning or self-supervised learning methods, as weakly labeled 

or unlabeled data is generally more accessible. 

 

The visual foundation model typically consists of an encoder 

and a decoder. In transfer learning, fine-tuning the encoder part 

is generally focused, while the task-specific heads are connected 

to various downstream tasks. CNNs were previously utilized to 

construct visual foundation models. Context (Doersch et al., 

2015) is a self-supervised learning method that learns the 

contextual information in the image through random sampling 

patches, thus enhancing the semantic attributes of features. The 

vision transformer (ViT) has emerged as a prominent research 

focus in recent years due to its capability to achieve superior 

training results on large datasets. BEiT (Bao et al., 2021) 

introduced patch random masking based on the classic ViT, 

forcing the network to strengthen the representation ability of 

latent features. SAM (Kirillov et al., 2023) is a visual 

foundation model for segmentation tasks. It has achieved 

extremely robust semantic segmentation performance by 

training on the SA-1B dataset which contains 1 billion masks. 

Although visual foundation models demonstrate strong 

generalization capabilities and have been widely employed in 

various downstream tasks, their application in the field of cross-

view image retrieval remains unexplored. DinoV2 (Oquab et al., 

2023) presently stands as one of the most widely adopted visual 

foundation models for downstream tasks. It has acquired robust 

generalization capabilities through training on the extensive 

LVD-142M dataset and is capable of achieving zero-shot 

transfer. Therefore, in this work, we designed a cross-view 

retrieval method based on DinoV2. 

 

3. Methodology 

The overall framework of our model is shown in Fig. 1. We 

designed a siamese network, comprising three parts: 1) The 

visual basic model functions as the backbone network, 

extracting local and global features from UAV and satellite 

images. 2) The cross-view ViT (CVV) module serves as the 

feature adaption module, enhancing the features extracted from 

the backbone to align with the requirements of the cross-view 

image retrieval task. 3) The classification head receives two sets 

of image features and is responsible for identifying geospatial 

relations. Since we use both supervised and contrastive learning, 

we also illustrate our loss function design. 

 

3.1 Visual Foundation Model Backbone 

DinoV2 consists of both an encoder and a decoder, and 

performs discriminative self-supervised pre-training on the large 

LVD-142M dataset, achieving robust zero-shot transfer 

generalization capabilities. In this work, we transfer the DinoV2 

encoder as the backbone network. The original DinoV2 encoder 

is a ViT model containing 1 billion adjustable parameters, 

which places high demands on the hardware even for the 

inference process. Therefore, the unsupervised distillation 

method is employed in DinoV2, where the original model 

serves as a teacher model and is compressed into three student 

models of varying sizes to accommodate different downstream 

task application scenarios. Since the patch size is set to 14 in 
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Figure 1. Research framework. 

 

DinoV2, these four models are called ViT-G/14, ViT-L/14, 

ViT-B/14, and ViT-S/14 respectively. 

 

The generalization performance of the student models is similar 

to that of the teacher model, despite the significant reduction in 

the number of parameters. Considering the limited hardware 

resources in engineering and the real-time requirements of 

cross-view retrieval tasks, we opt to utilize ViT-S/14 (21m 

params) as our backbone network. Ibrahimovic et al. (2023) 

asserted that in ViT, the number of patches significantly impacts 

the model's performance in downstream tasks. Excessive 

patches can lead to increased computational costs and potential 

overfitting on the training set. Therefore, we ultimately decide 

to set the number of patches to 16×16. Since the patch size is 14, 

our image input size is determined to be 224×224. The author 

of University-1652 noted that the input size has few impacts on 

cross-view image retrieval performance. The difference in 

Recall@1 performance between the 224×224 input size setting 

and the best setting is less than 3%. Therefore, it is believed that 

setting the input size to 224×224 will not significantly affect 

model performance. However, it can substantially reduce the 

computational burden during model training and inference. To 

inherit all the prior knowledge from DinoV2 and achieve a 

comprehensive representation of cross-view images, we 

simultaneously extracted both global features (size of 1×384) 

and local features (size of 256×384) of the image, as illustrated 

in formula (1):  

  

 
14, ( )cls patch vitsF F Enc X ,    (1) 

 

where  
clsF ,

patchF  = global features and local features 

 
14vitsEnc  = ViT-S/14 backbone from DinoV2 

 X = input image 

 

3.2 Cross-view Feature Adaptation Module 

Although DinoV2 has demonstrated strong zero-sample transfer 

capabilities, conducting downstream tasks directly based on the 

global features extracted by the DinoV2 encoder presents 

challenges (Lu et al., 2019). Therefore, optimization of the 

latent features obtained through DinoV2 encoding is necessary 

to adapt to cross-view image retrieval tasks. In certain research 

based on visual foundation models, a feasible approach involves 

adding a feature adaptation module after the backbone network 

to align features with downstream tasks (Houlsby et al., 2019). 

We adopt this feature optimization technique. Given the 

exceptionally strong generalization abilities of features obtained 

from DinoV2, we freeze the weights of the backbone network 

during feature optimization. Consequently, we preserve the 

zero-shot transfer characteristics of DinoV2. Since the encoder 

of DinoV2 is constructed using ViT architecture, to ensure 

consistency in feature representation, our feature adaptation 

module is also constructed based on ViT, named cross-view 

ViT (CVV), as shown in Fig. 2. 

 

 

Figure 2. Architecture of CVV 

 

Our design draws inspiration from existing work utilizing visual 

foundation models (Cheng et al., 2022), comprising a ViT 

module and a MLP head. This configuration facilitates the 

optimization of both global and local features extracted from 

DinoV2, resulting in the generation of new global features. The 

ViT module is composed of only one transformer block. This 

decision is informed by the fact that the latent feature extracted 

by DinoV2 already possesses strong generalization capabilities. 

Therefore, a simplified network suffices to optimize the feature 

space, aligning it with the requirements of the cross-view 

retrieval task. Furthermore, this design ensures the minimization 

of trainable parameters in the network, thereby effectively 

reducing computational and time costs in the subsequent 

training process. A classic ViT network initially divides the 

input image into image patches, and then converts each image 

patch into an embedding vector through a linear transformation. 

In CVV, we directly utilize global features and local features 

from the backbone network as embedding vectors. These 

embedding vectors, along with position codes, are concatenated 

into a sequence to generate a new embedding, which is 

subsequently input into the transformer block. Then, the 

embedding vectors containing global features, local features and 

position codes interact and undergo nonlinear transformations 

through self-attention mechanisms and feed-forward neural 
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networks. This process facilitates the capture of global 

contextual information. Finally, the embedding vector at a 

specific position in the output sequence is sent to the MLP head 

for a nonlinear change to obtain optimized new features. The 

above process can be written as a formula (2). 
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where  
pE  = position codes 

 'E  = input embedding sequence 

 
clse  = output embedding of transformer block 

 
outF  = optimized global feature  

 

In cross-view image retrieval, as it essentially boils down to a 

classification task, our primary objective is to capture global 

features from the CVV module. Given variations in angles of 

views, feature representations of satellite and UAV images may 

differ, thus the CVV module in both the satellite and UAV 

branches don't share weights. 

 

3.3 Classification Head 

After obtaining the global features corresponding to satellite 

and UAV images respectively, it is necessary to determine the 

geospatial relation of the two images based on these features to 

complete the retrieval task. In many studies, discrimination 

based on cosine similarity or Euclidean distance serves as a 

prevalent method, where the group of images with the highest 

score is selected as the retrieval result. These methods still 

require additional similarity evaluation operations after feature 

extraction based on neural networks, thus we design an end-to-

end method. We simplify the cross-view image retrieval task 

into a classification task and employ an MLP head to perform 

similarity evaluation. As the scenes in the training data may 

differ from those encountered during actual usage encoding the 

geographical location of the scene as a classification label 

proves challenging. Consequently, implementing a multi-

classification-based cross-view retrieval model becomes 

difficult. Inspired by (Zhou et al., 2023), we designed the 

network as a binary classification model, as shown in Fig. 1. 

The positive category signifies that the UAV image and the 

satellite image describe the same geographical space, while the 

negative category indicates that they were captured at distinct 

geospatial locations. To achieve feature interaction, we adopt 

feature subtraction between the features extracted from the 

UAV and satellite images, thus obtaining the new 

discriminative feature that represents the differences between 

the two views. The new feature is then fed into the MLP head 

for spatial relationship discrimination. We utilize a linear layer 

to compress the feature into a one-dimensional representation, 

followed by normalization using the sigmoid to express the 

probability of a positive class. This process can be expressed as 

formula (3).  
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,    (3) 

 

where  ,cvu cvsF F  = global feature of UAV and satellite 

 
diffF = discriminative feature 

 
pS  = similarity score 

 

Due to potential Internal Covariate Shift issues, the distribution 

of varying discriminative features may be inconsistent, leading 

to difficulty in retrieval. In order to enhance the robustness and 

accelerate convergence in the training process, we incorporated 

layer norm for feature normalization before inputting the linear 

layer, following the design of the MLP module in CVV. 

 

3.4 Loss Function  

Contrastive learning is a widely applied deep learning technique 

utilized in siamese networks. It enables the acquisition of a 

more discriminative feature representation method to assist 

downstream tasks by learning the consistencies between 

positive samples and mining the differences among negative 

samples. However, recent studies predominantly integrate 

contrastive learning with supervised learning. This is attributed 

to the availability of geospatial location labels in cross-view 

image retrieval datasets used for training, and numerous 

research have shown the performance enhancements achievable 

through supervised learning. Hence, our method also combines 

contrastive learning and supervised learning, and sets 

corresponding loss functions respectively. Contrastive loss aims 

to minimize the Euclidean distance between positive samples 

and optimize the Euclidean distance between negative samples 

to a fixed value, thereby augmenting the differentiation between 

positive and negative samples. Since we have designed a binary 

classification head, we adopt the classic Binary Cross-Entropy 

Loss (BCELoss) as the loss function for supervised learning. 

Our final loss function incorporates both contrastive loss and 

BCEloss. Balancing model performance and generalization, we 

set the weight coefficients of both losses to 1. The loss function 

is shown in formula (4).  
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,    (4) 

 

where  N  = number of training samples 

 
iy = label of i th sample, 1 represents positive 

 
id  = Euclidean distance of i th sample 

 
ip  = predicted probability of i th sample 

 margin  = distance threshold hyperparameter 

 

The contrastive loss is employed to optimize the feature space 

of UAV and satellite global features obtained by the CVV 

module, thereby making these features more discriminative to 

better adapt to retrieval tasks. The BCELoss optimizes the 

similarity score output by the classification head. As the 

contrastive loss involves the setting of a hyperparameter margin, 

given the size of the global feature which output by the CVV 
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module is 1*384, and considering that the feature is also layer 

normed, we set the margin to 10. 

 

4. Experiments 

4.1 Experimental Setup 

4.1.1 Dataset: We chose the University-1652 dataset (Zheng 

et al., 2020), which is widely recognized as a benchmark dataset 

for cross-view image retrieval tasks. The University-1652 

dataset comprises images captured from three different 

viewpoints: UAV, satellite, and ground, each tagged with a 

four-digit geospatial label. The UAV images are simulated 

using Google Earth and collected from various scenes. Our 

experiments only selected images from UAVs and satellites, as 

shown in Fig. 3. In the dataset configuration, both the training 

set and the test set comprise images of 701 distinct buildings. 

Additionally, images of another 250 buildings are included in 

the test set as interference. For each building, there are 54 UAV 

images from various view angles and one corresponding 

satellite image. Some UAV images exhibit large oblique angles, 

which poses a challenge. Since our model employs supervised 

learning and utilizes supervision types of positive and negative, 

we transformed the two original geospatial labels in a set of 

images into a discriminative label of 1 or 0. Here, 1 represents 

positive samples and 0 represents negative samples. We 

randomly selected 15 sub-datasets from the test set to evaluate 

our method, forming 2 evaluation sets respectively. 10 sub-

datasets (evaluation set1) each contain 10 scenes, while the 

remaining 5 sub-datasets (evaluation set2) consist of 50 scenes 

each. Evaluation set2 contains more scene categories than 

evaluation set1, and the composition is more complex. The 

scenes in different sub-datasets do not overlap. We devised this 

setting with a focus on engineering application scenarios. Some 

applications entail fewer scene categories, while others involve 

relatively more. Our setting considered both application 

scenarios (10 and 50 scenes), thereby ensuring a comprehensive 

evaluation of our method. 

 

 

Figure 3. An example of University-1652 

 

4.1.2 Evaluation Protocol: Recall@k is the most widely 

used evaluation metric in cross-view image retrieval tasks. 

Compared to Recall@k, Average Precision (AP) is a more 

comprehensive evaluation metric that considers both Precision 

and Recall across various thresholds. Therefore, we employed 

Recall@k and AP for evaluation. Recall@k indicates that at 

least one of the top k retrieval results, ranked by similarity score, 

corresponds to a positive sample. AP is computed by 

calculating the area under the Precision-Recall curve. We 

focused on Recall@1 and Recall@3 in this work. 

 

4.1.3 Implementation Details: We balanced model 

performance and training cost, and the size of all input images 

was adjusted to 224×224. Given that the original image size is 

512×512, to preserve the details, we utilized cubic interpolation. 

We normalized the input to minimize the disparity between 

samples, enhance model stability and generalization, and 

expedite convergence. Additionally, to further enhance the 

model's generalization capability, we applied data augmentation 

on both UAV and satellite images in the training set, including 

random cropping, padding, horizontal and vertical flipping, etc. 

Since we only train the CVV module and classification head, 

we froze the backbone network from DinoV2. To minimize 

additional computational cost, we utilized ViT-S/14 to pre-

extract global and local features of the image and store them in 

memory. We configured the batch size to 256 and utilized the 

AdamW optimizer for training. The weight decay was set to 

0.0005, while the initial learning rate was set to 0.001. We 

employed a learning rate scheduler that reduced the learning 

rate to 10% of its previous value every 50 epochs, and the 

training process spanned a total of 200 epochs. 

 

4.2 Experiments Results 

We initially analyzed the evaluation set 1. As depicted in Tab. 1, 

our method attained a Recall@1 exceeding 80% across the ten 

sub-datasets within evaluation set 1. Notably, five of these sub-

datasets exhibited Recall@1 values surpassing 90%, with the 

average Recall@1 across all ten sub-datasets reaching 89.29%.  

Regarding the AP metric, all sub-datasets demonstrated an AP 

exceeding 80%, with over half of them surpassing 90%. The 

average AP across all sub-datasets reached 89.86%. Thus, our 

method achieved superior retrieval performance for cross-view 

image retrieval across ten different scenes. Our method 

demonstrated robustness, with the highest sub-dataset Recall@1 

reaching 94.52%, and even the lowest sub-dataset Recall@1 

reaching 80.89%. The variance in Recall@1 and AP metrics 

across different sub-datasets can be attributed to variations in 

the distribution of each subset. 

 

Dataset Recall@1 AP 

Sub-dataset1 92.87 94.35 

Sub-dataset2 93.28 93.02 

Sub-dataset3 87.73 88.93 

Sub-dataset4 84.23 80.16 

Sub-dataset5 92.66 90.60 

Sub-dataset6 91.22 89.24 

Sub-dataset7 86.49 91.72 

Sub-dataset8 94.52 94.85 

Sub-dataset9 88.91 91.29 

Sub-dataset10 80.98 84.40 

Average 89.29 89.86 

Table 1. Results of evaluation set1 

 

In evaluation set2, only one sub-dataset's Recall@1 fell below 

60%, with sub-dataset14 achieving a Recall@1 of 74.14%, and 

the average Recall@1 across the five sub-datasets reaching 

64.50%. For the AP metric, all sub-datasets exhibited AP values 

exceeding 60%, with the average AP across all sub-datasets 

reaching 68.67%. Even more surprising is the Recall@3 metric, 

as all sub-datasets exhibited Recall@3 values surpassing 80%, 

with the highest achieving an AP of 92.24% in sub-dataset14. 

We specifically evaluated Recall@3 in this context due to the 

complex scene composition in evaluation set2. A high 
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Recall@3 metric addresses the requirements of engineering 

applications effectively. The presence of a greater number of 

scene categories within each sub-dataset in evaluation set2, 

accentuates the disparity in sample distribution among the sub-

datasets. This discrepancy is also evident in the Recall@1 and 

AP. The results reflected the randomness of our experiments 

and verified the robustness and effectiveness of our method. 

 

Dataset Recall@1 Recall@3 AP 

Sub-dataset11 58.30 84.39 61.22 

Sub-dataset12 60.29 80.83 68.84 

Sub-dataset13 60.58 85.68 68.12 

Sub-dataset14 74.14 92.24 71.86 

Sub-dataset15 69.21 88.57 73.32 

Average 64.50 86.34 68.67 

Table 2. Results of evaluation set2 

 

Overall, our method showed excellent retrieval performance, 

effectively meeting the requirements of engineering with scene 

categories less than 50. We also present the performance of 

several classic methods for cross-view image retrieval tasks on 

the University-1652 dataset in Tab. 3. The direct comparison of 

our method with these classic methods may not be appropriate 

due to differences in the datasets used for evaluation. Among 

the listed methods, FSRA's demonstrates significantly superior 

performance compared to others. This is attributed to its 

utilization of a large backbone network (21 million parameters) 

and the adoption of ViT instead of CNN. These factors enable 

FSRA to better capture global features, a crucial aspect in cross-

view image retrieval tasks. However, the number of trainable 

parameters of these methods exceeds 20m, while our method 

comprises only 2.8m parameters. This significant reduction in 

parameters greatly diminishes both the training and the 

inference time of the network. Therefore, our method possesses 

distinct advantages in engineering. 

 

Method Recall@1 AP 

Zheng et al. 52.39 57.44 

LCM 66.65 70.82 

LPN 75.93 79.14 

FSRA 84.51 86.71 

Table 3. Classic methods performance on University-1652 

 

5. Discussions 

5.1 Enhanced feature discrimination with introduced CVV 

The CVV module stands out as the cornerstone of our work, as 

it plays a pivotal role in inheriting latent features from the 

DinoV2 backbone network and facilitating feature adaptation to 

suit cross-view image retrieval tasks. As we calculate the 

similarity between satellite and UAV images and ascertain 

geospatial relations based on the global features extracted by the 

CVV module, the effectiveness of the CVV module profoundly 

influences the performance of the network in cross-view image 

retrieval tasks. To evaluate the effectiveness of CVV in 

improving feature discrimination is necessary. Here we compile 

statistics on the distribution of Euclidean distances between the 

global features of positive and negative samples. We randomly 

selected 10,000 sets of cross-view images from the test set, 

comprising 5,000 positive examples and 5,000 negative 

examples. To validate the enhancement achieved by CVV 

adaptation in the feature space, we assessed the distribution of 

global features directly from DinoV2 and the global features 

after CVV adaptation. Results are shown in Fig. 4 and Fig. 5. 

 

 

Figure 4. Distribution of Euclidean distance between global 

features from DinoV2 backbone 

 

Figure 5. Distribution of Euclidean distance between global 

features after CVV’s adaption 

 

Although the DinoV2 backbone network underwent pre-

training using entirely different datasets and deep learning 

techniques, an examination of the positive and negative class 

distributions reveals distinct patterns between the two 

distributions. This observation suggests that DinoV2 already 

possesses certain discriminative capabilities in cross-view 

image retrieval tasks. This result also confirms that it is 

reasonable to choose DinoV2 as the backbone network of our 

cross-view image retrieval model. Nevertheless, the global 

features extracted by DinoV2 still exhibit a big overlap in the 

spatial distribution between positive and negative classes. This 

observation elucidates the challenge of conducting direct 

retrieval solely based on the global features derived from 

DinoV2. Following the application of the CVV module for 

feature adaptation, the overlap between the two distributions 

notably diminishes, and two peaks are clearly discernible, 

consequently enhancing the differentiation between classes. 

Due to the use of layer norm in the CVV module, notable scale 

differences are observed in the statistical values of the two sets. 

Comparatively, the Euclidean distance between positive and 

negative classes relatively increased after the utilization of CVV 

adaptation. The effectiveness of our CVV module, as evidenced 

by the distribution results of positive and negative classes in the 
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two sets of statistics, can be attributed to our incorporation of 

contrastive learning techniques. While some overlap between 

positive and negative samples persists even after CVV 

adaptation, it is reduced notably. Meanwhile, our geospatial 

relation discrimination relies on a neural network and doesn't 

solely depend on the Euclidean distance between samples. 

 

5.2 Ablation of sharing weights in CVV 

Although the backbone of our cross-view retrieval model shares 

weights across its two branches, in the feature adaptation 

process, the CVV modules in the two branches do not share 

weights. We hypothesize that the substantial difference in 

viewing angles leads to distinct feature representation between 

cross-viewing images. To validate the rationale behind our 

design, we established a control group where we configured the 

CVV modules of the two branches in the model to share 

weights, while keeping other components unchanged. We 

subsequently retrained the model and conducted tests on sub-

datasets 11-15 to calculate the average Recall@1 and AP. The 

results are shown below. 

 

Method Recall@1 AP 

ViT-S/14+1CVV 40.31 43.37 

ViT-S/14+2CVV(ours) 64.50 68.67 

Table 4. Comparison between sharing CVV weights and not 

sharing CVV weights 

 

On the Recall@1 metric, the group that didn’t share CVV 

weights demonstrated a 24.19% improvement compared to the 

control group that shared CVV weights, while AP increased by 

25.30%. This disparity is quite evident, hence we opt not to 

share CVV weights in our method. Although our experimental 

results do not elucidate the relationship between feature 

representation and viewing angle, our design significantly 

enhances performance, as evidenced by the test outcomes. 

 

5.3 Analysis of overfitting in the proposed model 

Despite the promising performance on the sub-dataset, we 

acknowledge that our method still exhibits shortcomings when 

evaluated across the entire test set. During the training process, 

we observed that after a certain number of epochs, the recall on 

the validation and test sets ceased to improve, while the recall 

on the training set had already converged to a very high level. 

This suggests that our model may be experiencing overfitting. 

One of the most common and effective strategies is to mitigate 

overfitting by reducing the complexity of the network and 

opting for a more lightweight architecture. Therefore, we 

devised a control experiment wherein we eliminated the 

transformer block from the CVV module, retaining only the 

MLP head. This reduction in complexity significantly decreased 

the number of trainable parameters in the model from 2.8 

million to 0.3 million. Subsequently, we retrained the modified 

model and evaluated its performance on sub-datasets 11-15, 

calculating the average Recall@1 and AP. The results are 

shown in the Tab. 5. 

 

Method Recall@1 AP 

ViT-S/14+2MLP 49.37 54.81 

ViT-S/14+2CVV(ours) 64.50 68.67 

Table 5. Comparison between complete CVV and CVV 

removing transformer block (retaining only MLP) 

Despite the considerable reduction in model complexity, there 

was a decline of over 10% in both Recall@1 and AP 

performance. During the training process of the control group 

model, we observed that it could still converge to very high 

recall on the training set. However, the recall plateaued at a low 

level on both the validation set and test set, indicating that for 

our model, there isn't a straightforward correlation between 

overfitting and model complexity. In addition, we have 

attempted various methods to address overfitting, including 

incorporating dropout, utilizing regularization techniques like 

Batch Normalization and L2 regularization, applying data 

augmentation, reducing the training batch size, etc. However, 

these measures did not significantly enhance performance on 

the test set. We speculate that this might be indicative of a non-

standard form of overfitting, or potentially overfitting 

specifically to the training set. 

 

5.4 Limitations of the proposed model 

Our experiments validate that the visual foundation model is 

helpful for cross-view retrieval tasks. However, the 

representation performance of global features on the test set 

does not match that of the training set, indicating potential for 

further improvement in model generalization. In comparison 

with some of the latest cross-view image retrieval methods, 

although supervised learning is integrated, our supervision 

relies on positive and negative classes while discarding absolute 

position labels during the process. This approach constitutes 

relatively weak supervision, which may limit the model's ability 

to learn optimal features. Additionally, researchers have 

suggested that in contrastive learning, the generalization of 

contrastive loss might be slightly weaker than loss functions 

such as triplet loss. Hence, for future research, we propose 

improvements in three main areas: transfer learning, contrastive 

learning, and supervised learning. Specifically, we aim to 

enhance the CVV module to extract more generalizable global 

features, refine the loss function to further optimize the 

distribution of positive and negative class samples in feature 

space, and integrate absolute position information of cross-view 

images into supervised learning to reinforce geospatial 

supervision. 

 

6. Conclusions 

The retrieval of satellite images based on oblique UAV images 

poses a significant challenge due to the considerable difference 

in angles of views between the two types of imagery. To address 

this challenge, we propose a deep learning method based on a 

visual foundation model and ViT. Our method integrates 

transfer learning, contrastive learning, and supervised learning 

to tackle cross-view image retrieval tasks. 

 

Most cross-view image retrieval methods based on deep 

learning often utilize a large and complex architecture, leading 

to considerable costs in training time and computation. This 

limitation severely restricts the practical application of these 

methods in engineering tasks. In our work, we explore the 

potential of the visual foundation model in cross-view image 

retrieval tasks. By leveraging prior knowledge acquired by 

DinoV2 on large-scale datasets, we achieve effective network 

initialization, and maintain the zero-shot transfer feature of 

DinoV2. Consequently, we only need to train the lightweight 

feature adaptation module and classification head, significantly 

reducing the complexity of the cross-view image retrieval model 

and enhancing the method's feasibility in engineering tasks. 
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Additionally, we harness ViT's capabilities in capturing global 

features, rendering our features more suitable for retrieval tasks. 

 

Experiments on public datasets demonstrate that our method 

excels when the number of scene categories is under 50 and 

satisfactorily meets the requirements of cross-view image 

retrieval in engineering applications with streamlined scene 

categories and constrained computational resources. 

Nevertheless, there is still potential for improvement in the 

generalization ability of our method to non-training data. For 

future enhancements, we plan to focus on three aspects: feature 

adaption, loss function of contrastive learning, and supervised 

techniques. 
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