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Abstract

Simulating land use and land cover changes (LUCC) is important for urban planning and environmental studies. In this study, we
introduce a neural cellular automata (NCA) model that integrates biological principles and convolutional neural networks (CNNs)
for land use simulation. We conduct experiments in the city of Wuhan, China. The NCA model achieved the highest performance
with an OA of 0.858, F1 score of 0.753, Kappa coefficient of 0.799, and FOM of 0.427. Comparisons of land use data of Wuhan
city from 2000 and 2010 with the simulated optimal results indicate that forest areas closer to urban centers are more susceptible to
modernization processes, showing the advantage of NCA in accurately simulating land use changes in the central urban area.

1. Introduction

Land use and land cover changes (LUCC) is an important com-
ponent of Earth system dynamics that not only alters biophys-
ical surface characteristics (Homer et al., 2020) but also has
significant impacts on the environment in terms of climate, hy-
drological systems, biodiversity, ecosystem services, etc (Chai
and Li, 2023). The mechanism of LUCC is extremely complex,
and it is useful to take advantage of simulation models to under-
stand the driving factors and to project future land use changes
(Xu et al., 2021).

Land use simulation models are developed to project future land
use consumption under different scenarios. Conversion of Land
Use and its Effects Model (CLUE) is a model used to simulate
and analyze land use changes and their environmental impacts,
focusing on how to integrate the effects of multiple drivers.
As a spatial version of CLUE, CLUE-S achieved good results
in applications in Europe (Wu et al., 2022a). However, there
are still some shortcomings in the measurement of process ef-
fects and the balance of land supply and demand. Agent-Based
Model (ABM) provides a way to simulate the behavior and in-
teraction of individuals or agents from a microscopic perspect-
ive. This model is particularly useful for studying the complex
interactions between human activities and the natural environ-
ment, and how these interactions influence changes in land use
patterns. The model takes into account interactions between
macro (environmental) and micro (human) factors, without in-
teractions between human agents (Xu et al., 2020).

Cellular Automata (CA) is one of the most popular models ad-
opted for LUCC simulation (Zhai et al., 2020). CA is a discrete
dynamic system, which consists of a rule, grid, cells, and states.
Each cell is in a finite set of states. This state changes over time,
and the change is controlled by the state of the cell itself and
the states of its surrounding neighbor cells. The essence of the
CA simulation model is that it uses simple transform rules to
change the local state, thereby changing the global state (Liu et
al., 2023). CA applies simple interaction rules at a local level
and can simulate very complex and unpredictable system beha-
vior(Jjumba and Dragićević, 2016). Therefore, CA has become

a powerful tool for modeling and understanding the dynamic
behavior of natural and artificial systems (Siddiqui et al., 2018).

Previous research has explored various methods to enhance the
performance of CA models. Improvements have been made
at the cell and grid levels, developing CA based on land nat-
ural evolution unit (Xu et al., 2023) and urban Vector-based CA
(Li et al., 2017). The transition rule is at the core of the CA
model, which determines how a cell updates its state based on
the current states of itself and its neighbors. The logistic re-
gression method (Wang et al., 2021) leverages statistical tech-
niques to model the relationship between input variables and
land use changes, providing valuable insights into the driving
factors of LUCC. Markov model (Subedi et al., 2013) utilizes
transition probabilities to predict future land use based on his-
torical data, making them particularly useful for long-term fore-
casting. Heuristic algorithm (Feng et al., 2011) and random
forest algorithm (Kamusoko and Gamba, 2015) excel at hand-
ling complex datasets and nonlinear relationships, enhancing
the predictive power of CA models in dynamic environments.
Artificial neural networks (ANNs) (Fei He and Xia, 2022) offer
the ability to capture intricate patterns and dependencies within
data, allowing for more nuanced predictions. Patch-generating
land use simulation(PLUS) model (Liang et al., 2021) integ-
rates a land expansion analysis strategy and multi-type random
patch seeds to understand the drivers of land expansion. In-
tegrating these methods with CA further enhances model per-
formance by leveraging the strengths of each approach while
mitigating their limitations.

LUCC is a nonlinear process involving complex connections
and feedback between land use and driving factors with spatial
correlation effects (Geng et al., 2022). It is difficult to compre-
hensively analyze the driving mechanism of LUCC using the
traditional CA model. In the past few years, researchers have
gradually begun to shift their attention to deep learning due to
the great development of large datasets and computer techno-
logy. The deep learning framework excels in exploring deep
relationships between underlying factors (LeCun et al., 2015).
Convolutional neural networks (CNNs) as a typical deep learn-
ing method is suitable for processing high-dimensional data by
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Figure 1. Location of study area in the city of Wuhan, China

adopting convolutional operations to extract features from in-
put data. The structure is flexible to different tasks and data to
achieve better performance. When processing data with spa-
tial characteristics or involving image information processing,
CNN can capture the spatial dependence within the data by
taking advantage of its hierarchical structure of convolutional
layers (Wu et al., 2022b). Neural Cellular Automata (NCA)
(Mordvintsev et al., 2020) is proposed to create a self-repairing
system that emulates biological properties. NCA is based on
biological principle that cells often rely only on chemical gradi-
ents to guide the organism’s development and the principle that
they renew themselves at regular intervals, using CNN to ex-
tract transform rules.

The aim of the present paper is to explore the potential of NCA
for land use changes simulation. In NCA, the Sobel filter is ad-
opted to calculate the perception of the central cell from land-
use data and driving factors, and convolutional layers with dif-
ferent sizes of kernels are considered to extract the transform
rules for the simulation. We perform experiments in urban area
of Wuhan city in China with relevant factor data. The model
takes advantage of biology knowledge and shows strong ad-
vantages in digging deep information and self-learning.

2. Materials

2.1 Study Area

Wuhan City is located at longitudes 113°41’ to 115°05’ East
and latitudes 29°58’ to 31°22’ North, in the eastern part of
Hubei Province, China. It is situated at the confluence of the
Yangtze River and Han River, making it a vital transportation
hub in the central region of China, serving as a crucial link
connecting the eastern coastal region and the western inland
provinces. Wuhan City is not only the political, economic, and
cultural center of Hubei Province but also one of the core cit-
ies of the Yangtze River Economic Belt. In recent years, it has

Factors name Source

DEM ASTER Global Digital Elevation Map
(https://asterweb.jpl.nasa.gov/gdem.asp)

Slope Derived from DEM

Distance to water Derived from land-use data

Population WorldPop(https://www.worldpop.org/)

Distance to railway OpenStreetMap
(https://www.openstreetmap.org/)

Distance to expressway OpenStreetMap
(https://www.openstreetmap.org/)

Distance to national highway OpenStreetMap
(https://www.openstreetmap.org/)

Table 1. Impact Factors and Their Source

developed rapidly and become an important driving force for
regional economic development. The urban building complex
in the center of Wuhan and its surroundings are selected as the
research area (Figure 1).

2.2 Data Source

In this study, land-use data from GlobalLand30 is considered
for the period of 2000 to 2010. The Globalland30 dataset is a
high-resolution global land cover dataset developed by the State
Key Laboratory of Resources and Environmental Information
System at the Chinese Academy of Sciences. It utilizes time-
series Landsat data and other ancillary data to generate land
cover classifications using a 10-category classification system,
providing 30-meter resolution land cover information across the
entire globe. The Globalland30 dataset has been widely applied
in various fields, including land use and land cover change re-
search, climate change studies, and natural resource manage-
ment. GlobalLand30 data is obtained from PIE-Engine (ht-
tps://engine.piesat.cn/).

A range of natural and socioeconomic factors listed in Table 1
are chosen including DEM, slope, distance to water, population,
distance to railway, distance to expressway, and distance to na-
tional highway. DEM and slope factors reflect the topographic
characteristics of the study area, which influence the spatial dis-
tribution patterns of human activities and consequently the spa-
tial patterns of land cover change. The distance to water bodies
is a crucial determinant of the distribution and change of the
agricultural land. Population density is a key socioeconomic
factor that reflects the intensity of human activities within a
given area. Proximity to transportation infrastructure greatly
influences accessibility and connectivity, facilitating the move-
ment of people, goods, and resources. These factors are res-
ampled to a uniform spatial resolution of 30 meters and nor-
malized as shown in Figure 2.

3. Methodology

3.1 Structure of NCA

The structure of NCA is shown in Figure 3. It can be divided
into two parts: the perception part and the rule-learning part.
The perception part describes each cell’s perception of the sur-
rounding area. We use the Sobel filters to calculate the percep-
tion matrix. The Sobel filter, also known as the Sobel oper-
ator, is a discrete differentiation operator with the advantage
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Figure 2. Collected factors of Wuhan city in this study. (a) DEM. (b) Slope. (c) Population. (d) Distance to water. (e) Distance to
railway. (f) Distance to expressway. (g) Distance to national highway.

Figure 3. Structure of NCA. In the first part, the perceptual
matrix is calculated using the Sobel filter and fed into the next

part along with the input data. The second part uses multi-layer
convolution and activation to extract transformation rules.

that it combines Gaussian smoothing and differential deriva-
tion, which can reduce the impact of noise. In this part, it is
used to smooth errors in input data and calculate the perception
value of the central cell in horizontal and vertical orientations.
Then, we concatenate the perception matrix with the input data
and feed it into the next section.

The second part is to obtain the transform rules. Six combina-
tions of convolution layers with ReLU activation are employed.
The combination is often used to capture local information from
the input data. Specifically, the first four convolutional lay-
ers have a kernel size of 3, aiming to extract information from
around the central pixel. The subsequent two convolutional lay-
ers have a kernel size of 1, achieving the effect of a fully con-
nected layer.

By leveraging the strengths of convolutional neural networks
and incorporating spatial context through the perception mat-
rix, NCA can effectively capture the complex interactions and
dependencies within the land use data.

3.2 NCA for Land Use Simulation

As depicted in Figure 4, the training of land use change us-
ing NCA involves three steps: data preparation, model training
and evaluation using validation samples. Firstly, land-use data
and seven factors obtained from different sources are stacked
to obtain the 8-band input data. Then, data augment is per-
formed through random angle rotation and random mirror flip
to improve the generalization ability of the model, reduce over-
fitting and enhance the robustness. After that, the input data is
split into training and validation samples at a ratio of 8:2. For
the training step, data is ingested into the model to obtain the
output, and then determine whether the simulation is complete
based on the number of iterations. The model is trained using
the backpropagation method. The final step involves evaluating
performance using validation samples using several metrics.

It is necessary to set the number of simulation iterate times
before training the model, which is related to the simulation
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Figure 4. Workflow using NCA for land use change simulation.

interval. For example, the present study investigates land use
changes in Wuhan city from 2000 to 2010 with a period of ten
years. The period is divided into different intervals, such as 1
year, 2 years, 5 years, or 10 years, with each interval considered
as a cycle. A cycle of 1 year means that 10 iterate times need to
be performed.

The experimental environments are NVIDIA GeForce GTX
1660Ti, Python3.9, and PyTorch 1.12.0. During the training
process, we set hyperparameters as follows: the optimizer in all
the experiments is Adam, the batch size is 4, the epoch is 300,
and the learning rate is initially set to 0.0001 and adjusted in
different experiments.

3.3 Model Evaluation

The overall accuracy (OA), F1 score, Kappa coefficient, and
Figure of Merit (FOM) are used to evaluate the NCA model.
OA is the most common metric used to evaluate land use change
models. It calculates the proportion of all correctly predicted
samples to the total number of all predicted samples, ranging
from 0 to 1. F1 score considers both precision and recall of the
model. The F1 score was originally designed for binary classi-
fication problems but can be extended to multi-class classific-
ation problems. F1 score can be calculated on each class and
then take the average as the overall performance metric. This
approach is known as the macro-average F1 score, which is the
case in our study. It also ranges from 0 to 1, where a value closer

to 1 indicates better performance of the model. The formula for
OA and F1 score are:

OA =
TP + TN

TP + TN + FP + FN
(1)

F1 =
2× TP

2× TP + FP + FN
(2)

where TP (True Positives) represents that the model correctly
predicts the positive class; TN (True Negatives) represents the
model correctly predicts the negative class; FP (False Posit-
ives) represents the model incorrectly predicts the positive class
when it’s actually negative; FN (False Negatives) represents the
model incorrectly predicts the negative class when it’s actually
positive.

The Kappa coefficient is a metric that shows the relationship
between the simulation results and the ground truth. The calcu-
lation of the kappa coefficient is based on the confusion matrix
and the value ranges from -1 to 1. Typically it is greater than
0. The closer the value to 1 means the better the simulation
performance (Monserud and Leemans, 1992). The formula for
Kappa is:

Kappa =
Po − Pe

1− Pe
(3)
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n∑
i=1
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∑n

j=1
xij)(

∑n

j=1
xji)

(
∑n

i=1

∑n

j=1
xij)2

(4)

Po =

∑n

i=1
xii∑n

i=1

∑n

j=1
xij

(5)

where Po represents observed agreement probability, reflecting
the frequency of correct predictions; Pe represents the expected
consistency probability, which reflects the probability that the
prediction result is consistent with the true label under random
prediction; i and j respectively represent the rows and columns
of the confusion matrix; xij represents the element in the i-th
row and j-th column of the confusion matrix.

FOM measures the consistency between simulated changes and
actual changes, ranging from 0 to 1. A value closer to 1 indic-
ates better simulation performance (Pontius et al., 2008). The
formula for FOM is:

FOM =
B

(A+B + C +D)
(6)

where A represents the number of pixels where there is a change
in ground truth but the simulation remains unchanged; B de-
notes the number of pixels where both ground truth and simula-
tion changed and the change is correct; C signifies the number
of pixels where both ground truth and simulation changed, but
the change is incorrect; D stands for the number of pixels where
there is a change in simulation but the ground truth remains un-
changed.

4. Results

Figure 5. Comparison of land use in 2000, simulation in 2010,
and reference in 2010. (a), (d), and (g) are land-use in 2000, the

simulation result, and land-use in 2010, respectively. (b), (e),
(h), and (c), (f), (i) are the magnified details of the areas far and

near from the central urban building complex, respectively.

Figure 5 illustrates land use in 2000, 2010, and simulated 2010
data in Wuhan City under the setting of iterate times as 1. Gen-
erally, forested areas closer to urban centers appear to be more
susceptible to modernization processes. The simulation cor-
rectly reflects forest degradation in proximity to cities. More
specifically, (c), (f), and (i) depict the perimeters of the cent-
ral urban building complex in Wuhan city. It is evident that
the majority of forests have undergone degradation. In contrast,
forests in (b), (e), and (h) situated away from the central city
buildings show minimal change or remain relatively unchanged.

In this study, the effect of iterate time is explored by setting to 1,
2, 5, and 10 times, corresponding to simulations conducted over
periods of 10, 5, 2, and 1 year respectively. The quantitative
evaluation results for the four settings are presented in Table 2.
As the number of iterate time increases, OA, F1 score, Kappa,
and FOM show a downward trend, indicating a decline in the
performance of NCA. Specifically, when the number of iterate
time is 1, OA reaches 0.858, F1 reaches 0.753, Kappa reaches
0.799, and FOM reaches 0.427, making it the best-simulated
performance of NCA among the four settings.

Iterate time OA F1 score Kappa FOM

1 0.858 0.753 0.799 0.427

2 0.834 0.635 0.765 0.388

5 0.672 0.459 0.521 0.239

10 0.653 0.430 0.496 0.239

Table 2. Evaluation Metrics for NCA Simulation Results

Figure 6. Comparison of results of different iterate times. (a),
(b), (c), and (d) respectively represent the results for iterate times

set to 1, 2, 5, and 10.

Figure 6 shows the results under four settings. Consistent with
the performance metrics, when the number of iterate time is
set to 1, the simulation results are most reasonable. However,
with iterate time setting as 2, some errors exist but the overall
simulation result is acceptable. In contrast, with iterate time
setting as 5 or 10, the performance of NCA is poor and fails
to accurately simulate the changes of water and impermeable
surfaces. In summary, when the value of iterate time is set as 1,
the NCA model achieved the best land use changes simulation
result.

5. Conclusion

In this study, we present the NCA model for land use changes
simulation using GlobalLand30 dataset and factor data from
different sources. Based on the biological principle that cells
alter their states according to the surrounding environment and
regularly self-update, NCA calculates and incorporates the per-
ception vector as part of the network’s input, which allows the
CNNs to extract the transform rules for cellular automata, en-
abling the simulation of land use change in the study area. This
method combines the characterization of local interactions by
cellular automata and the powerful feature extraction capability
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of convolutional neural networks, providing a novel and effect-
ive approach for land use change simulation. The results show
that NCA performs well in simulating land use changes in dif-
ferent regions under the background of urbanization.
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