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Abstract 
 
Synthetic Aperture Radar (SAR) holds significant potential for applications in crop monitoring and classification. Interferometric SAR 
(InSAR) coherence proves effective in monitoring crop growth. Currently, the coherence based on the maximum likelihood estimator 
is biased towards low coherence values. Therefore, the main aim of this work is to access the performance of Sentinel-1 time-series 
biased coherence and unbiased coherence in crop monitoring and classification. This study was conducted during the 2018 growing 
season (April-October) in Komoka, an agricultural region in southwestern Ontario, Canada, primarily cultivating three crops: soybean, 
corn, and winter wheat. To verify the ability of coherence to monitor crops, a linear correlation coefficient between temporal coherence 
and dual polarimetric radar vegetation index (DpRVI) was fitted. The results revealed a stable correlation between temporal coherence 
and DpRVI time-series, with the highest correlation observed for soybean (0.7 < R < 0.8), followed by wheat and corn. Notably, 
unbiased coherence of the VV channel exhibited the highest correlation (R > 0.75). In addition, we applied unbiased coherence to crop 
classification. The results show that unbiased coherence exhibits very promising classification performance, with the overall accuracy 
(84.83%) and kappa coefficient (0.76) of VV improved by 8.35% and 0.12, respectively, over biased coherence, and the overall 
accuracy (73.25%) and kappa coefficient (0.57) of VH improved by 7.56% and 0.14, respectively, over biased coherence, and all crop 
classification accuracies were also effectively improved. This study demonstrates the feasibility of coherence monitoring of crops and 
provides new insights in enhancing the higher separability of crops. 
 
 

1. Introduction 

Synthetic Aperture Radar (SAR) technology, operating under all 
day and all-weather conditions, acquires vegetation information 
from the ground using longer wavelength microwave signals. 
With its excellent penetration of the vegetation canopy and high 
sensitivity to crop structure, SAR greatly contributes to crop 
monitoring and classification (Mandal et al., 2019). In this regard, 
the freely accessible C-band Sentinel-1 imagery provides high-
quality Earth observation data globally on a 12-day revisit cycle 
(6 days within Europe), which is part of the Copernicus program. 
Dual-polarization SAR sensors have both polarization and 
interferometric features that allow the monitoring of crop growth 
changes in time-series, significantly promoting more relevant 
researches in agriculture (Bhogapurapu et al., 2021). 
 
The backscattering coefficient of polarimetric SAR directly 
reflects crop characteristics based on the different interactions 
between microwave signals and crops. This confers a certain 
advantage upon the backscattering coefficient and its derived 
features in crop monitoring and classification, including radar 
vegetation indices and polarization decomposition suitable for 
various scenarios. However, crop growth is dynamic, influenced 
by factors such as growth morphology, environmental conditions, 
and agricultural practices. To comprehensively capture the 
scattering mechanisms of crops at various phenological stages, 
interferometric SAR (InSAR) coherence quantifies the 
correlation between of the scattering mechanisms of vegetation 
attributes during two SAR imaging periods (Rosen et al., 2002), 
thereby providing valuable temporal insights for crop. The 
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Sentinel-1 coherence obtained through revisit cycles of 6 days 
and 12 days has been widely employed in crop classification 
(Mestre-Quereda et al., 2020), crop monitoring (Nasirzadehdizaji 
et al., 2021) and soil moisture retrieval (Barbouchi et al., 2022). 
 
Currently, coherence has been proven to serve as a useful 
indicator for crop monitoring (Villarroya-Carpio et al., 2022). By 
comparing temporal coherence of various crops with different 
phenological stages, a strong correlation has been observed 
between the dynamic behavior of coherence and the primary 
phenological periods of crops (Zhao et al., 2024). Recent 
researches have explored the relationship between Sentinel-1 
coherence and vegetation indices. For example, utilizing 
normalized difference vegetation index (NDVI), dual 
polarimetric radar vegetation index (DpRVI), and other 
vegetation indices as foundational indicators for monitoring 
vegetation growth. Among them, a linear relationship has been 
established between coherence and vegetation indices for 18 
different crops (Villarroya-Carpio and Lopez-Sanchez, 2023), 
and a mathematical relationship between NDVI and coherence 
was established as well (Cao et al., 2022). The quantitative 
assessment yielded a robust correlation between the temporal 
coherence and the vegetation indices across various crop growth 
seasons. Additionally, coherence plays a unique additional role 
in the field of crop classification. The synergistic use of 
coherence with backscattering coefficient significantly improves 
crop classification accuracy, indicating that the integration of 
interferometric coherence and polarimetric data constitutes a 
dependable information reservoir for crop monitoring and 
mapping purposes (Mestre-Quereda et al., 2020). 
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However, the coherence usually obtained is based on the 
maximum likelihood estimator (Touzi et al., 1999), and the 
estimated uncertainty is particularly pronounced in vegetated 
areas with frequent growth changes, leading to overestimation 
(Villarroya-Carpio et al., 2022). Consequently, in addition to the 
limitations of the Sentinel-1 temporal baseline, obtaining 
accurate coherence for vegetation may be another challenge in 
crop monitoring and classification. Motivated by the above 
challenges, the primary objective of this study was to evaluate the 
effectiveness of unbiased coherence as a useful indicator for crop 
monitoring and classification, while conducting comparative 
analyses with biased coherence. To achieve this goal, 
spatiotemporal Sentinel-1 data covering the major growing 
cycles of economic crops in 2018 were obtained, with a revisit 
cycle of 12 days. Initially, we established the linear relationship 
between coherence and DpRVI, and analyzing the relationship 
between temporal coherence and crop growth and agricultural 
behavior. Subsequently, on the basis of consolidating the 
effectiveness of coherence in crop classification, we evaluated 
the advantages of unbiased coherence over biased coherence in 
crop classification, providing novel insights for refined crop 
classification. 
 
The structure of the paper is as follows: Section 2 presents the 
study site and the acquired data. Then, Section 3 describes the 
preprocessing of coherence and the correction method for 
unbiased coherence, along with a brief overview of the random 
forest classification algorithm. A comparison of the results of 
unbiased coherence and biased coherence for crop monitoring 
and classification is presented in Section 4. Finally, Section 5 
offers a summary and draws conclusions based on the findings of 
the study. 
 

2. Study Materials 

The study area lies within the representative agricultural area in 
London, Ontario, Canada (42°47'N to 42°55'N, 81°30'W to 
81°40'W). Based on the local crop growth cycles, our study 
obtained 18 ascending Sentinel-1 datasets spanning from April 4, 
2018, to October 25, 2018. These datasets comprise single look 
complex images in dual- polarization mode (VV and VH), with 
a total of 17 interferometric pairs of 12-day revisit cycle. 
Specifically, the temporal Sentinel-1 images covering our study 
area exhibit an incidence range of 30.3°-42.8° and a pixel spacing 
of 2.33m13.94m (range*azimuth). The precise location of the 
study area is depicted alongside the Sentinel-1 dual-polarization 
SAR image captured on May 10, 2018, as shown in Figure 1. 
 
In 2018, the Geographic Information Technology and 
Applications (GITA) Laboratory at the University of Western 
Ontario (UWO) conducted monthly land cover surveys in the 
study area from April to October, and Figure 2 shows the ground 
truth data. The survey found that the crop types in the agricultural 
area were soybean, corn, winter wheat, alfalfa, grass, tobacco, 
and pumpkin. However, there were fewer fields for crops other 
than soybeans, corn, and winter wheat. Therefore, this study 
focuses on monitoring three primary economic crops, which are 
summer crops (soybean and corn) and winter crop (winter wheat). 
For summer crops, soybeans and corn have similar growth cycles, 
typically planted in May, matured in September, and harvested in 
October. In contrast, winter wheat, as a winter crop, is usually 
sown in October of the preceding year, matures in July, and is 
harvested from late July to early August of the following year. It 
is worth mentioning that the “others” category encompasses 
tobacco and pumpkin, and “forage” category consists of alfalfa 
and grass. 

 
Figure 1. The location of study area and dual-pol Sentinel-1 

image acquired on the 10/05/2018 (Red: VV, Green: VH, Blue: 
VV). 

 

 
Figure 2. Ground truth data of the study area. 

 
3. Methods 

3.1 Preprocessing 

The SNAP software serves as a toolbox for Sentinel data, with 
extensibility, portability, and a modular interface. In this study, 
preprocessing of Sentinel-1 images was carried out using the 
SNAP software (available online: http://step.esa.int/main/ 
toolboxes/snap/, accessed on 27 Aug. 2022). The preprocessing 
involved seven steps to generate the coherence of two SAR 
images: (1) TopSAR split; (2) Orbit correcting; (3) Radiometric 
calibration; (4) Image coregistration; (5) Speckle filtering and 
coherence estimation using a window of 4×19 (azimuth× range); 
(6) Deburst; (7) Terrain correction. Furthermore, DpRVI feature 
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was obtained based on SNAP as well. This enabled a quantitative 
assessment of coherence effectiveness in crop monitoring by 
analyzing the correlation between coherence and DpRVI. 
 
3.2 Coherence 

Coherence, as a fundamental feature of interferometric SAR, can 
reflect the extent to which vegetation has changed between two 
acquisition date intervals. The coherence's obtained from the 
above preprocessing steps are based on the maximum likelihood 
method estimated over a moving window, which can be 
calculated with equation (1) (Touzi et al., 1999). 
 

 𝛾௘௦௧ =
ห∑ ௌభௌమ

∗ಿ
೙సభ ห

ට൫∑ ௌభௌభ
∗ಿ

೙సభ ൯ ∙ ൫∑ ௌమௌమ
∗ಿ

೙సభ ൯

,   (1) 

 
where  𝑆ଵ and 𝑆ଶ = the master and slave images 
 N = the number of samples of the moving window 
 |  | = signify the absolute value operator 
 * = represents the complex conjugate 
 
The window size for coherence estimation is directly 
proportional to the precision of coherence estimation. Despite 
utilizing a window size of 4*19 to minimize the bias, the 
coherence values show low levels due to the rapid changes in 
vegetation during the growing season (Jacob et al., 2020). In 
particular, especially in low coherence regions, the coherence 
estimates obtained by the maximum likelihood estimator tend to 
be higher. The bias compensation for coherence is given by 
(Touzi et al., 1999), is represented by the probability density 
function corresponding to moments of order 𝑘=1 in equation (2): 
 

      𝐸(𝛾௘௦௧) =
௰(௅)௰(

య

మ
)

௰(௅ାଵ/ଶ)
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where  3𝐹ଶ = the generalized hypergeometric function 
 L = the equivalent number of looks (ENL) 
 
As indicated by equation (2), compensation for coherence bias 
requires the value of ENL. Here, ENL can be computed directly 
from the image by selecting a uniform region near the study area, 
typically from water bodies. equation (3) provides the method for 
calculating ENL using homogeneous regions from SAR intensity 
images: 
 

   𝐸𝑁𝐿 =
ఓమ

ఙమ
,    (3) 

 
where  𝜇 = mean of homogeneous regions 
 𝜎ଶ = variance of homogeneous regions 
 
In this work, ENL values for a homogeneous region under 18 
scenes of SLC images with dual polarization modes were 
obtained. When compensating for coherence bias, the 
interferometric pair with the lowest ENL values from the two 
scenes of SLC images was selected, which would avoid the 
problem of the region with low coherence value being zero after 
compensation as much as possible. Taking the VV polarization 
interferometric pair composed of June 15 and June 27 as an 
example, the relationship curve between the estimated coherence 
and the unbiased coherence can be obtained by using ENL = 41 
with Eq. (2) (Figure 3). It is evident from Figure 3 that a bias 
exists in the estimated coherence, particularly when the 
coherence values are low. Consequently, the coherence corrected 
for bias is referred to as unbiased coherence, denoted by 
𝛾௨௡௕௜௔௦௘ௗ , while the estimated coherence (𝛾௘௦௧), is referred to as 
biased coherence, denoted by 𝛾௕௜௔௦௘ௗ. 

 
Figure 3. Coherence bias for the VV polarization 
interferometric pair 0615-0627 (with ENL=41).  

 
3.3 Random Forest 

The Random Forest classifier (RF) integrates the classification 
decisions of all decision trees, selecting the most frequent class 
as the final output (Breiman, 2001). By introducing randomness 
in sample and feature selection for each tree, RF effectively 
mitigates overfitting and demonstrates robustness against noise. 
These advantages make RF stand out in machine learning and 
widely used in crop classification (Liao et al., 2020; Xie et al., 
2021). In this study, the random forest classifier has been 
implemented based on the scikit-learn toolkit of Python software, 
and the main settings classifier parameters are shown in Table 1. 
 

Number Hyperparameter Value 

1 
Number of decision trees 

(n_estimators) 
100 

2 
Minimum number of samples for the 

branch node (min_samples_split) 
2 

3 
Minimum sample size of the leaves 

(min_samples_leaf) 
1 

Table 1. The information of tuning parameters for the RF 
classifier. 

 
The input samples for the RF classifier are obtained by dividing 
the ground truth data into a training set and a test set based on the 
polygon level (field), since there is high correlation between 
neighboring pixels in the same field (Zhong et al., 2019). 
Specifically, the dataset was divided into five mutually exclusive 
subsets, each containing an equal number of pixels. Two subsets 
(40%) were selected as the testing set, while the remaining 
subsets (60%) formed the training set. In order to avoid any 
chance in classification, five repeated experiments were 
conducted, each employing different combinations of training 
and testing sets. 
 
The RF employs the testing set to assess the accuracy of the 
classification. Our classification uses Overall Accuracy (OA), 
kappa coefficient, Producer's Accuracy (PA) and User's 
Accuracy (UA) as the metrics for accuracy evaluation, and 
calculates the standard deviation (STD) of each metric in 
multiple classification. It is worth mentioning that the above 
classification metrics are all derived from the confusion matrix. 
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4. Results 

4.1 Crop Monitoring 

To highlight the differences between biased and unbiased 
coherence more clearly, ground truth data were introduced to 
calculate the average coherence values of all known fields of the 
three crops (soybeans, corn, and winter wheat) at each date. This 
facilitated the construction of corresponding time series curves. 
 

 
soybean-VV soybean-VH 

  
corn-VV corn-VH 

  

wheat-VV wheat-VH 

Figure 4. The temporal evolution of 𝛾௕௜௔௦௘ௗ and 𝛾௨௡௕௜௔௦௘ௗ  for 
major cash crops. 

 
Figure 4 compares the time-series dynamics of the mean values 
of 𝛾௕௜௔௦௘ௗ  and 𝛾௨௡௕௜௔௦௘ௗ  for the three crops throughout the 
growth cycle. Overall, there are similar temporal trends of 
unbiased coherence and biased coherence for both polarization 
channels (VV, VH), with 𝛾௨௡௕௜௔௦௘ௗ  consistently lower than 
𝛾௕௜௔௦௘ௗ . This difference arises due to the significant temporal 
decorrelation caused by crop growth, resulting in decreased 
coherence values. Notably, 𝛾௕௜௔௦௘ௗ  tends to overestimate in 
regions of low coherence, causing a loss of contrast and 
consequently leading to higher 𝛾௕௜௔௦௘ௗ  values compared to the 
actual coherence. 
 
It is noteworthy that there exists a correlation between coherence 
and crop phenology. This correlation is evident in the higher 
coherence values observed during the initial and harvesting 
stages of crop growth, while coherence values tend to decrease 
during the peak nutritional period of crop growth. However, there 
are significant differences in coherence values between VV and 
VH polarizations due to the phase difference, with VV coherence 
values being higher than VH coherence values. Besides, the 
temporal fluctuations in VV coherence are more pronounced, 
thus providing a better reflection of crop growth. This 
phenomenon can be attributed to the ability of co-pol (VV) to 
enhance volume scattering from vegetation and the dependence 
of the cross-pol (VH) in the C-band on the vegetation rather than 

the ground, making VH more susceptible to temporal 
interference effects than VV (Manavalan, 2018). 
 
Crop coherence time-series qualitatively reflect a correlation 
between coherence and crop growth. DpRVI plays a crucial role 
in time-series crop monitoring by accurately retrieving the 
biophysical parameters of crops through the effective integration 
of scattering wave information(Mandal et al., 2020). Hence, it is 
necessary to quantitatively evaluate the crop monitoring 
capability of coherence through linear correlation analysis with 
DpRVI. As illustrated in Figure 5, the time-series of DpRVI 
displays high values during early growth stages and harvest. This 
is similar to the behavior of time-series changes in coherence. 
 

 
Figure 5. Time series of DpRVI for major cash crops.  

 
Specifically, only 17 interference pairs (17 scene coherence) can 
be obtained from the 18 SAR images in this study, whereas 
DpRVI were available for all 18 dates. Therefore, the solution of 
linear interpolation is adopted to ensure the one-to-one 
correspondence between the two features. By analyzing the linear 
correlation between the coherence curves and DpRVI curves, the 
correlation coefficients (R) of three different crops under 
different polarizations were obtained, as presented in Table 2. 
This allowed for a quantitative assessment of the crop monitoring 
performance of both 𝛾௕௜௔௦௘ௗ and 𝛾௨௡௕௜௔௦௘ௗ . 
 

 𝜸𝒃𝒊𝒂𝒔𝒆𝒅 𝜸𝒖𝒏𝒃𝒊𝒂𝒔𝒆𝒅 

Crop VV VH VV VH 

Soybean 0.76 0.69 0.77 0.68 

Corn 0.76 0.41 0.75 0.44 

Wheat 0.75 0.49 0.76 0.43 

Table 2. Coefficient of determination (𝑅) for the linear 
regressions between coherence and DpRVI. 

 
Upon analyzing the results in Table 2, it becomes evident that 
VV coherence exhibits a higher correlation with the vegetation 
index, consistent with the findings of coherence time series 
analysis. Among them, the difference between 𝛾௕௜௔௦௘ௗ  and 
𝛾௨௡௕௜௔௦௘ௗ  is small, which means that whether coherence has been 
corrected or not can monitor the vegetation growth effectively. 
 
4.2 Crop Classification 

In order to compare the contribution of 𝛾௕௜௔௦௘ௗ and 𝛾௨௡௕௜௔௦௘ௗ  to 
crop classification, two schemes of experiments were conducted, 
employing 𝛾௕௜௔௦௘ௗ  and 𝛾௨௡௕௜௔௦௘ௗ  from different polarization 
channels as input features for the random forest classifier. It is 
noteworthy that to ensure comprehensive land cover 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1-2024 
ISPRS TC I Mid-term Symposium “Intelligent Sensing and Remote Sensing Application”, 13–17 May 2024, Changsha, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-903-2024 | © Author(s) 2024. CC BY 4.0 License.

 
906



 

classification in the study area, seven land cover categories were 
taken into account in the classification. However, due to the small 
sample numbers of build-up and others, these two classes were 
excluded from the analysis of the results. Tables 3 and 4 show 
the classification results for obtained when using 𝛾௕௜௔௦௘ௗ  and 
𝛾௨௡௕௜௔௦௘ௗ  individually. In Tables 3 and 4, PA, UA, OA, and 
Kappa coefficients represent the average accuracy based on five 
classification experiments conducted with mutually exclusive 
training and testing sets. The symbol "±" indicates the standard 
deviation. 
 

 γୠ୧ୟୱୣୢ − VV γୠ୧ୟୱୣୢ − VH 

Class PA (%) UA (%) PA (%) UA (%) 

Soybean 81.04±4.66 75.50±2.17 81.94±3.41 58.70±2.69 

Corn 83.65±3.81 80.96±2.27 78.29±6.65 74.77±1.02 

Wheat 62.69±12.10 80.83±6.40 2.77±0.70 36.16±12.01 

Forage 15.26±2.17 31.59±9.41 0.14±0.09 11.37±5.56 

Forest 76.57±3.78 67.76±5.03 3.42±0.64 31.46±4.29 

 
OA (%) 
Kappa 

76.48±2.12 
0.64±0.03 

OA (%) 
Kappa 

65.69±1.84 
0.43±0.03 

Table 3. Classification accuracy using biased coherence based 
on different polarizations. 

 
 γ୳୬ୠ୧ୟୱୣୢ − VV γ୳୬ୠ୧ୟୱୣୢ − VH 

Class PA (%) UA (%) PA (%) UA (%) 

Soybean 74.90±0.31 98.20±0.03 83.47±3.65 66.84±2.91 

Corn 98.87±0.02 74.40±0.20 82.66±6.08 77.25±1.57 

Wheat 73.76±0.43 98.14±0.16 24.53±3.41 88.14±7.21 

Forage 74.33±0.42 98.21±0.30 32.38±1.50 98.88±0.61 

Forest 73.27±0.72 97.91±0.22 34.48±1.03 95.30±1.11 

 
OA (%) 
Kappa 

84.83±0.15 
0.76±0.00 

OA (%) 
Kappa 

73.25±1.39 
0.57±0.02 

Table 4. Classification accuracy using unbiased coherence 
based on different polarizations. 

 
Overall, it is clear that unbiased coherence yields better 
classification results compared to biased coherence. The optimal 
classification scheme is based on the time-series feature set of 
𝛾௨௡௕௜௔௦௘ௗ  in VV polarization, achieving an OA of 84.83% and a 
Kappa coefficient of 0.76. Across both polarization channels, 
𝛾௨௡௕௜௔௦௘ௗ  consistently outperforms 𝛾௕௜௔௦௘ௗ, with an increase OA 
of 8.35% for VV and 7.56% for VH. These results underscore the 
ability of 𝛾௨௡௕௜௔௦௘ௗ  to provide more information about crops than 
𝛾௕௜௔௦௘ௗ , thereby enhancing crop distinguishability. Moreover, 
VV coherence facilitates more precise crop classification, the 
overall accuracy of VV is more than 10% higher than that of VH. 
Additionally, the accuracy of each crop in VV polarization 
surpasses that in VH polarization, attributed to the lower signal-
to-noise ratio in VH polarization. 
 
When considering PA and UA of individual crops, soybean and 
corn have always shown good classification accuracy, with only 
slight improvements compared with 𝛾௨௡௕௜௔௦௘ௗ  and 𝛾௕௜௔௦௘ௗ . In 
contrast, the most significant enhancement attributed to 
𝛾௨௡௕௜௔௦௘ௗ   features is observed for winter wheat, effectively 
reducing misclassification and omission errors present in 𝛾௕௜௔௦௘ௗ, 
resulting in PA and UA improvements of over 10%. Except for 
the three main cash crops, although the classification results 
among forage, forest and other crops are not ideal, the unbiased 
coherence can effectively distinguish them (UA > 95%). These 
findings underscore the valuable contribution of time-series 
unbiased coherence in crop classification. 
 

5. Conclusions 

In this study, we compared the abilities of biased and unbiased 
coherence in crop monitoring and classification. For this purpose, 
temporal coherence features of Sentinel-1 data were obtained, 
with the agricultural region in southwestern Ontario, Canada. The 
principal conclusions derived from the analysis conducted in this 
work can be summarized as follows: 
 
(1) The VV coherence of the Sentinel-1 time series exhibits a 
strong correlation with DpRVI (R > 0.75), confirming VV 
coherence as the optimal indicator for assessing crop evolution. 
Among them, 𝛾௨௡௕௜௔௦௘ௗ  and 𝛾௕௜௔௦௘ௗ  demonstrate similar trends 
and dynamic behavior, thereby sharing comparable levels of 
correlation with DpRVI. This suggests that the bias in coherence 
within vegetated areas has minimal impact on crop monitoring. 
 
(2) Unbiased coherence outperforms biased coherence in crop 
classification, facilitating refined crop classification. Both 
polarizations show an OA increase of over 7.5% compared to 
𝛾௕௜௔௦௘ௗ , leading to improved accuracy across all crop types. 
Notably, the temporal feature set ( 𝛾௨௡௕௜௔௦௘ௗ ) with VV 
polarization better reflects the differences between different 
crops, which yields the best classification results with an OA of 
84.83% and a Kappa coefficient of 0.76. 
 
In future studies, it is planned to consider more crop types and 
shorter temporal baselines to explore the additional role of 
unbiased coherence in crop growth monitoring and classification. 
Furthermore, bias compensation for coherence stands as a pivotal 
aspect in obtaining unbiased coherence, but low coherence values 
in certain regions may inevitably result in zero values after 
correction. Therefore, we aim to further investigate a more 
accurate method to obtain unbiased coherence, thereby 
mitigating the impact of zero coherence values. These will help 
to grasp the spatial and temporal changes of crop planting 
structure more clearly. 
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