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Abstract: Progress has been made in the community of photogrammetry and 3d computer vision in addressing the mathematical 

challenge posed by the collinearity equation. We introduce a new method for establishing the coordinate reference for 2d pixels and 

3d landmarks using 'angular coordinates'. The mathematical relationships required for converting 3d landmarks, expressed in angular 

coordinates, to the camera framework are presented. The landmarks are then projected using perspective projection to obtain 2d 

pixels represented in angular coordinates. This framework is formally nominated as the 'Polar-vision1', which has been developed 

and integrated into the commercial software G3D-Cluster. Its application to pinhole camera image processing has demonstrated 

superior efficiency and admission rates of tie points, as well as reconstruction detail capabilities, compared to OpenMVG, achieving 

approximately a 1.4x improvement. The project 'Key Technologies and Tool System for Realistic 3D Modeling through Integration 

of Multi-Source Information in the Space-Air-Ground Domain' was awarded First Prize at the 2023 Surveying Science and 

Technology Awards, with Polar-vision1 as one of the innovative points. 
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1. Introduction 

1.1 Motivation 

The collinearity equation, also known as the projection matrix 

(Hartley & Zisserman, 2003) in 3d computer vision, is a 

fundamental theory in Photogrammetry. It serves to connect 2d 

images with the 3d physical world, allowing us to extract and 

optimize 3d metric information from 2d images using various 

technologies such as camera calibration (Zhang, 1998), 

structure from motion (Schonberger & Frahm, 2016), and multi-

view stereo (Goesele et al., 2006). It is important to note that the 

well-known collinearity equation conveys the concept of 

Euclidean geometry (Ryan, 1986), describing a bundle of rays 

that connect the center of projection, 2d pixels (image points), 

and 3d landmarks (object points) determined by the Euclidean 

coordinate. 

 

In reality, a bundle of optical rays is better represented in the 

formula of polar coordinate due to its directional property. 

Instead of using mutually perpendicular axes, angles are more 

suitable for describing the vector nature of hitting positions of 

optical rays. The hitting points of an optical ray on the focal 

plane and the object are referred to as 2d pixel and 3d landmark, 

respectively (Rosenfeld, 1988). This inspires us to redefine 

those 2d-3d points and their mathematical relationship using the 

concept of "angular coordinate". That is a novel principle of 

collinearity equation to serve the community of 

Photogrammetry, nominated as Polar-vision1. 

 

1.2 Related Works 

The collinearity equation consists of three components that can 

be parameterized: pixel, landmark, and rotation. By optimizing 

these components non-linearly across different spatial domains, 

it has a significant impact on the accuracy of calculations 

related to camera distortions, interior-exterior orientation 

parameters, and the quality of 3D reconstruction (Triggs et al., 

2000). 

1.2.1 Pixel 

In situations where GPS, IMU, and laser altimeters are 

unavailable, 2d pixels basically serve as the only observation 

constraint for photogrammetry. According to research, the 

majority of work in the fields of photogrammetry and 3d 

computer vision parameterizes the position of pixels into 

Euclidean coordinates (x, y). It estimates all camera states 

during photogrammetry by constructing observation equations 

for x and y and reconstructs 3D sparse scenes (Li, 1995; Mikhail 

and Bethel, 2001). 

 

The camera lens deviates from the ideal pinhole model, causing 

light to refract through lenses of various shapes. This refraction 

results in the "bending" of light rays (though this term is used 

figuratively for ease of understanding, not to imply physical 

bending). Consequently, the pixels calculated by the 

observation equation represent ideal positions, disregarding 

distortion effects caused by lens imperfections. When using 

pixels with distortion effects in photos as observation 

constraints to estimate the camera state, significant systematic 

errors may be introduced in the estimation results. Therefore, it 

is necessary to model the distortion effect to accurately 

parameterize the pixels in the photo. In the 20th century, the 

Brown Conrady model was widely regarded as the "standard" 

radial and tangential distortion model (Brown, 1996; Conrady, 

1919). However, its inconsistency between the Euclidean 

parameterization of pixel coordinates and the polar forms of 

distortion effects (radial and tangential) rendered it incapable of 

adapting to the complex distortion effects of wide-angle, ultra-

wide-angle, and fisheye lenses. It wasn't until the early 21st 

century that a breakthrough occurred with the introduction of 

the Kannala Brandt model, published in the TPAMI journal 

(Kannala, Brandt, 2006). This model marked the first successful 

replacement of the Brown Conrady model in a century. It 

characterized the distortion effect as a function of the incident 

angle of light passing through the lens. Some key advantages of 

this model include: (1) The parameterized distortion function 

based on the incident angle (denoted as θ) is smoother and more 

amenable to modeling as a power series. (2) The formula can be 

adjusted according to θ to support various types of projections. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1-2024 
ISPRS TC I Mid-term Symposium “Intelligent Sensing and Remote Sensing Application”, 13–17 May 2024, Changsha, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-917-2024 | © Author(s) 2024. CC BY 4.0 License.

 
917



 

 

In simpler terms, photogrammetry begins with the observations 

captured in photos and then reconstructs the process of 

translating a 3d scene into a 2d photo through collinearity 

equations. The goal is to recover the depth information lost in 

the 2d photo. This translation process is known as projection, 

where the 3d scene is rigidly transformed into the camera frame 

and then projected onto the photo following specific rules. This 

forms the underlying construction logic of collinearity equations. 

The projection rules supported by the Kannala-Brandt model are 

as follows: (1) Perspective: θ is parameterized as tan-1（r/f） 

(Yang et al., 2005). (2) Stereographic: θ is parameterized as 

2tan-1（ r/2f）  (Chang et al., 2013). (3) Equisdistant: θ is 

parameterized as r/f (Hughes et al., 2010). (4) Equisolid: θ is 

parameterized as 2sin-1（r/2f）(Eichenseer et al., 2015). (5) 

Orthogonal: θ is parameterized as sin-1 (r/f) (Zhang et al., 2015). 

 

Inspired from (1) the Kannala-Brandt model's parameterization 

design of distortion effects, and (2) a method presented at ICCV 

conference that uses 'angular coordinates' to parameterize 

reprojection errors (Lee and Civera, 2019). we propose an 

angular parameterization method for pixel coordinates. This 

involves replacing 'Euclidean coordinates' with 'angular 

coordinates' to parameterize the position of 2d pixels, thus 

adapting to the polar coordinate form of distortion effects and 

the angular distance definition of reprojection errors. At this 

stage, the camera state and the 3d scene are no longer restricted 

by the x and y observation equations. Instead, they are limited 

by a new set of angular coordinate constraints. The observation 

equations may benefit from the unique properties of angular 

coordinates. Unlike Euclidean coordinates, which are defined in 

two specific directions of the photograph, angular coordinates 

exhibit isotropy and are independent of photograph orientation. 

Moreover, compared to the Euclidean distances (d0, d1), the 

distance between two pixels measured in 'angular coordinates' 

(θ0, θ1) exhibits intrinsic rotational invariance. This property 

makes the objective function defined by it more robust against 

outliers encountered during the optimization process. 

1.2.2 Landmark 

According to research, almost all studies (Wang, 2007; Zhang, 

2007; Liu, 2013; Wang, 2016) in the field of photogrammetry 

parameterise the positions of 3d landmarks in Euclidean 

coordinates (X, Y, Z). However, this parameterisation is no 

longer sufficient to address certain specific 3d tasks in the field 

of computer vision. We focus mainly on monocular vision (Mur 

Artal et al., 2015) and does not currently address SLAM tasks 

based on binocular vision (Mur Artal and Tardós, 2017) and 

LiDAR (Cole and Newman, 2006). In the absence of range 

sensors, bearing only localisation and mapping (BOLAM) tasks 

based on monocular vision assume that the target moves 

linearly in a Euclidean coordinate system. However, the 

orientation information of the target observed by the sensors is 

expressed in polar coordinates. Continuing with conventional 

parameterisation would introduce significant nonlinear 

challenges into the observation equation (Deans, 2005). In 

addition, it would prevent BOLAM systems based on Extended 

Kalman Filter (EKF) from achieving real-time (no delay) 

initialisation mapping (Chiuso et al., 2002; Bailey, 2003). 

 

The initial mapping phase is crucial and challenging for 

BOLAM tasks. Monocular vision provides an irreversible rank-

deficient measurement, making it difficult to estimate camera 

trajectories and scene maps through subsequent EKF filtering. 

There are two main types of methods: (1) Delayed initialization 

occurs when the camera motion acquires sufficient parallax 

before initialization begins. During this motion, low-parallax 

observations are entirely disregarded, leading to inconsistency 

in the mapping process and potentially resulting in filter failure 

(Davison, 2003). (2) Undelayed Landmark Initialization (ULI) 

involves initializing points either in the direction of camera 

motion or located very far from the camera upon the first 

observation. These landmarks may remain visible throughout 

the entire motion process. ULI is employed to constrain the 

camera direction and enhance consistency throughout the 

mapping process (Sola et al., 2005; 2008). 

 

If the landmarks utilized by ULI are represented as Euclidean 

points, the uncertainty interval of their depth information (Z-

coordinate) remains unbounded and cannot be resolved using 

EKF (Terejanu, 2008). At the 2008 ICCV conference, a novel 

parameterization method was proposed, which involves 

parameterizing the depth of landmarks (unobservable degrees of 

freedom) into inverse depth. This approach transforms the 

uncertainty interval from unbounded to bounded (Civera et al., 

2008). Another parameterization method, similar to inverse 

depth but distinct from it, is inverse distance. Inverse distance is 

defined as the reciprocal of the distance to the origin of the 

world reference frame (Sola et al., 2012), and it is expressed in 

a homogeneous manner as (m, ρ). Note that when transformed 

into the camera frame, the inverse distance becomes the 

reciprocal of the distance to the camera center. Compared to 

Euclidean points, while the uncertainty interval of the inverse 

distance point is bounded, bilinearity is introduced into the 

equations when transformed into the camera framework. This 

introduces some unfavorable factors to the performance of the 

EKF, which requires a reasonably linear system (Hartley and 

Zisserman, 2003). Therefore, inspired by the reference (Eade 

and Drummond, 2006), the concept of anchor (the initial camera 

center) was introduced to alleviate the adverse effects of 

bilinearity. Compared to the inverse depth defined by three 

specific directions in space, the inverse distance has the 

advantage of isotropy and is independent of the direction of the 

spatial reference frame. It is expressed as (p0, m, ρ). Since m 

represents the directional vector of landmarks relative to anchor 

points, expressing it as Euclidean coordinates is clearly 

redundant. Therefore, the direction vector is parameterized as 

the azimuth and elevation angles of the landmarks relative to 

the anchor. The homogeneous expression of the inverse distance 

is then refined to (p0, α, β, ρ). Compared to Euclidean points, 

the use of inverse distance parameterization leads to improved 

consistency in EKF-SLAM mapping based on monocular vision. 

It is important to note that EKF is not the only option for SLAM 

systems. However, while inverse distance is tailored to EKF, it 

exhibits poor performance in Bundle Adjustment (BA). In BA, 

landmarks in the direction of camera motion can result in ill-

conditioned normal equations (Konolige and Agrawal, 2008). 

 

To address the issue of inverse depth in BA, (Zhao et al., 2015) 

proposed a parameterization of landmark depth using parallax 

angle defined by two anchors, expressed homogeneously as (pm, 

pa, α, β, γ). Their open-source project surpasses the performance 

of SBA (Lourakis and Argyros, 2009) and sSBA (Konolige and 

Garage, 2010) projects, which use Euclidean points. (Zhao et al., 

2015) analysed the effects of parallax angle, inverse depth, and 

Euclidean parameterisation of landmarks on BA performance in 

a 2d BOLAM system. In contrast, (Zuo et al., 2023) 

investigated the impact of parallax angle parameterisation of 

landmarks on BA performance in a 3d BOLAM system. (Sun, 

2015) extended the parameterisation of parallax angle from the 

BOLAM system to the UAV photogrammetry based on the 

pinhole camera model. The IEEE standard for this method was 

published in 2023 (IEEE 1937.11-2023). Additionally, (Zuo, 
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2023) applied the parameterization of parallax angle to satellite 

photogrammetry using the linear pushbroom model. All of these 

investigations have shown a significant decrease in the 

correlation coefficients of 3d structural variables parameterized 

by parallax angles. This reduction significantly relaxes the strict 

geometric requirements imposed by adjustment models in 

photogrammetric measurements. 

 

However, the pixel coordinates are still represented in the 

Euclidean domain, resulting in a semi-angular domain 

transformation from the landmark to the pixel. This causes 

inherent dimensional inconsistency between the observational 

constraints and the state estimations, making the rigid 

transformation difficult and complicating the collinearity 

equation. As a result, numerical instabilities and suboptimal 

convergence properties occur during the adjustment and 

optimization processes. Therefore, we parametrize the pixel 

coordinates and the rigid transformation in the angular domain. 

 

1.2.3 Rotation 

The concept of rotation is typically classified into two 

categories. The first involves rotating a target object within a 

fixed spatial reference frame, such as the movements of the 

seven joints of a robot (ankle, knee, hip, shoulder, elbow, wrist, 

finger) or the rolling, pitching, and yawing actions of an aircraft. 

The second category involves rotating the spatial reference 

frame around a fixed target object (Foley, 1996). 

 

In photogrammetry, data collection usually involves rotating the 

aircraft and camera gimbals. Data process, however, involves 

rotating a spatial reference frame. We focus solely on the latter 

type of rotation, which is the initial step in establishing a 

connection between the physical and digital worlds. 

 

Euler angles were first proposed by (Euler, 1765). The concept 

was originally presented in Latin and can be referenced in 

(Weisstein, 2009). Any rotation of a rigid body can be 

parameterized by rotating three angles around three orthogonal 

axes (θx, θy, θz) in a specific order. Therefore, it is necessary to 

clarify the rotation sequence of the three axes before using Euler 

angles. However, this introduces the problem of universal 

deadlock, as noted by (Brezov et al., 2013). 

 

In 1840, French mathematicians (Rodrigues, 1840) proposed the 

concept of the Axis angle parameterization to represent rotation 

as (n, θ). The original version was in French and can be referred 

to (Gray, 1980; Caccavalle et al., 1999). The Rodrigues rotation 

formula, described by (Murray et al., 2017), can rotate any 3d 

vector around the unit axis n by an angle θ. This formula was 

also adopted by the OpenMVG framework, as noted by 

(Moulon et al., 2017). The angle θ can be decomposed into 

three orthogonal directions of the rotation axis n, similar to the 

Euler angle rotation around three orthogonal axes. However, 

unlike Euler angles, the Rodrigues rotation formula does not 

require a predefined rotation sequence, which mitigates the 

issue of gimbal lock. (Craig, 2005) proposed a parameterization 

method for the rotation vector by multiplying the angle θ by the 

axis n. This method uses a 3d vector to represent the rotation 

axis and angle. The OpenMVG framework does not directly 

involve the axis angle in gradient calculation. Instead, it 

indirectly updates the axis angle by computing the partial 

derivative of the observation equation with respect to the 

rotation vector. The landmark is then rotated to the camera 

frame using the Rodrigues formula. 

 

In 1840, the Irish mathematician Hamilton introduced the 

concept of Quaternions (Hamilton, 1840), which parameterizes 

rotations into a pair of conjugate quaternions (q, q*). To rotate 

any 3d vector v around the unit axis n by angle θ, it is written as 

a pure quaternion v, left-multiply by q and right-multiplied by 

q*. This concept is similar to the axis-angle representation, as 

conjugate quaternions can be transformed equivalently using the 

Rodrigues formula. Quaternions are not used directly in 

gradient calculations. Instead, they are first converted to axis 

angles and then to rotation vectors to compute correction 

increments. These updated rotation vectors are subsequently 

converted back to quaternions. The landmarks are transformed 

to the camera frame by multiplying them with conjugate 

quaternions. 

 

Rotation matrix (Weisstein, 2003) is necessary to directly rotate 

landmarks to the camera frame, as Euler angles cannot achieve 

this. The rotation matrix shares similarities with the Rodrigues 

formula and conjugate quaternions. It was first developed based 

on research conducted by the French mathematician (Cauchy, 

1815). Deriving the rotation matrix directly to estimate the 

camera rotation is not possible due to the addition and 

subtraction operations involved in gradient calculations, which 

lack closure. To address this issue, Lie group and Lie algebra 

theory (Lie, 1880; 1888) can be introduced. For further details, 

please refer to the original work in French (Sola et al., 2018). 

 

Indeed, these rotation methods are developed in the Euclidean 

space domain, which is not suitable for rotating landmarks in 

the angular domain. Therefore, we propose a new method to 

rotate landmarks in the full angular domain. 

 

2. Methods 

2.1 Parameterization for Pixel in Angular Domain 

We define two angles, namely the viewing-angle and the polar-

angle, to parameterize the positions of pixels, instead of using 

Euclidean coordinates (x, y). The viewing-angle θ is defined as 

the angle between the ray passing through the pixel and the 

principal axis, which is equivalent to the distance of the pixel 

from a pole. The polar angle φ represents the angle of the pixel 

from the pole axis. As shown in Figure 1, homonymous pixels 

xi and xj are parametrized in angular domain as 

 
i j;x x

ji

ji





  
= =   
   

,                        (1) 

 

Figure 1. Concept of pixel in angular domain. 

2.2 Parameterization for Transformation in Angular 

Domain 

In the angular domain, the transformation from landmarks 

parameterized by three angles (α, β, γ) to pixels parameterized 

by two angles (θ, φ) is defined as 

 
1 2;

ji

ji

 


 


 

   
      

=  =       
      

   

,                  (2) 
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As shown in Figure 2, the left camera is a main anchor, and the 

right is an associate anchor. 
1  and 

2  represent the mapping 

relationships from the landmark (α, β, γ) to homonymous pixels 

(θi, φi) and (θj, φj) respectively. 

pole

γ

β

α

landmark

pole pole
pixel j

pixel i

camera center j

 

Figure 2. Concept of transformation (αβγ→θφ) in angular 

domain. 

2.3 Geometric Relationship between Pixel and 3D Rotation 

in Angular Domain 

As shown in Figure 3, we can get the geometric relationship 

between the pixel (θ, φ) and the 3D rotation (ey, ex, ez) by 

rotating the plane (that the landmark lies on) in the order of ey→

ex→ez to the plane (that the pixel lies on). It can be observed 

that the construction of the plane (that the pixel lies on) only 

requires twice rotations (ey→ ex) from the plane (that the 

landmark lies on), as shown in Figure 3a. Then, this plane is 

rotated by an angle ez to form the final image plane, as shown in 

Figure 3b. This is a significant difference between our method 

and traditional methods that use Euclidean coordinates (x, y) to 

parameterize the pixel. 

a

pixel

pole

camera center

θ

landmark

ey

X

Y

Z

x

y

1st rotate

2nd rotate
ex

z

 
b

rotation-invariance

x

y

pixel

camera center

θ

y

x

pole

3rd rotate
ez

 

Figure 3. Geometric relationship between the pixel (θ, φ) and 

3D rotation (ey→ex→ez) in angular domain. 

2.4 Derivative for View-angle Observation Equation in 

Angular Domain 

Based on Figure 4, the observation from the view-angle θ is 

finally derived as 

( )1

2 1sin cos sin sin cos cose e v     −= + +  
,  (3) 

 

where  θ = view-angle of the pixel p 

 α, β = azimuth and elevation angle of the landmark P 

 ey, ex = two rotation angles from the plane (that the 

landmark P lies on) to the plane (that the pixel p lies on). 

 e, v= functions of ey and ex 

( )1cos cos cosy xe e e−= ,                        (4) 

( )1sin tan / tanyv e e−= ,                        (5) 

 σ1, σ2 = two constants 

1

0 0

1 0

/ 0

y

x

y x y x y x

e

e

e e e e e e



 =


= − =

− 

,                        (6) 

2

/ 0

/

y y x

x x

e e e

e e otherwise


− =
= 

−

,                        (7) 

2.4.1 Derivative in Angular Domain 

We use Figure 4 to derive the Equation 3-5. Firstly, we give 

some notations as following: 

(1) Vertex O, p and P are the camera center, the pixel and 

the landmark, respectively.  

(2) Segment O-o and O-p are the main optical axis of the 

camera and the ray passing through the pixel p, 

respectively. 

 

Secondly, we indicate some geometric relationships in this 

figure: 

(1) Angle τ is the complementary angle of angle β. 

(2) Angle u is the dihedral angle between the plane SAC 

and the plane OAP. 

(3) The dihedral angle between the plane SBA and the 

plane SBC is the right angle. 

(4) Segment S-C is parallel to O-o. Segment O-E is 

parallel to A-P. Segment O-F is parallel to A-D and G-H as 

well as B-C. 

(5) Segment O-A is not parallel to G-K. 

(6) Angle DAB is equal to α. Angle ACB is equal to v. 

Angle ASC is equal to e. Angle ABC is the right angle. 

(7) Distance of the segment A-B is tan(ey). Distance of the 

segment A-C is tan(e). 

 

Finally, based on the formula for the solid angle of a 

tetrahedron, we derive the Equation 3 as 

cos cos cos sin sin cose e u  = + ,             (8) 

We derive the Equation 4 as 

( )cos cos cos sin sin cos / 2y x y xe e e e e = + ,      (9) 

Based on the 7th geometric relationship that we indicate in 

Figure 4, we derive the Equation 5 as 

sin tan / tanyv e e=                          (10) 

θ

u

β

α

e

τ 

1

v

O

P

p

o

S

A B

C

D

E

F

G

H

K

 

Figure 4. Derivative for view-angle observation equation. 
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3. Experiments 

3.1 Comparative Method 

The Open Multiple View Geometry (OpenMVG) is an 

internationally renowned open-source C++ framework for 

Structure from Motion (SfM) (https://github.com/openMVG). 

We utilize it as a comparative method to validate the accuracy 

and efficiency of our method in processing the pinhole imaging 

datasets. 

3.2 Satellite Dataset 

We utilized data from the Rosetta OSIRIS (Optical, 

Spectroscopic, and Infrared Remote Imaging System) released 

by the Max Planck Institute for Solar System Research, sourced 

from the European Space Agency's Rosetta Mission. The data 

was acquired using a frame CCD (Charge-Coupled Device) 

reflecting telescope mounted on the spacecraft, as shown in 

Figure 5a. This mission marks the first controlled landing of a 

lander on the surface of a comet, with the target comet being 

67P/Churyumov-Gerasimenko, as shown in Figure 5b. 

a b  

Figure 5. Rosetta mission (Image source: 

https://www.open.ac.uk/science/research/rosetta/mission, 

Copyright: ESA-J. Huart, 2013). 

3.3 Results 

We used 631 comet images, as shown in Figure 6a, to estimate 

the photographic orbit composed of satellite positions at 

different times. The resulting orbit is shown in Figure 6b.  

a b  

Figure 6. Photographic orbit constructed from 631 images. 

 

Table 1 compares the processing accuracy and efficiency of 

OpenMVG and ours on this dataset. The evaluation metrics are 

the average reprojection error of all tie points (measured in 

pixels, denoted as "px") and the total runtime of the incremental 

SfM (measured in minutes, denoted as "m"). 

 

Indicators OpenMVG Ours Improving 

Accuracy (px) 0.482 0.481 Equivalent 

Efficiency (m) 77 56 ↑21 m (×1.4) 

#Tie point 200,355 200,708 ↑353 

#Reprojected px 1,086,356 1,089,739 ↑3,383 

Table 1. Comparison on Rosetta dataset 

 

It can be observed that on this dataset, our method achieves 

processing accuracy comparable to OpenMVG, both converging 

to the sub-pixel level (0.48 px). However, our method reduces 

the processing time by 21 minutes compared to OpenMVG (an 

improvement of about 1.4 times). Additionally, our method 

computes more tie points (an additional 353) and reprojected 

pixels (an additional 3,383) than OpenMVG, enhancing the 

admission rate of tie points and reconstruction detail capabilities. 

Moreover, our method demonstrates higher efficiency than 

OpenMVG even with an increase in observation equations, 

validating the effectiveness and efficiency of our method, 

particularly when applied to satellite pinhole imaging models. 

 

Furthermore, the result of the 3D model of the comet 

constructed using our methods is shown in Figure 7. Figure 7a 

displays a sparse point cloud resulting from the forward 

intersection of 200,708 tie points. Figures 7b and 7c show a 

dense point cloud and a mesh model, respectively. 

a b

c  

Figure 7. (a) Sparse point cloud (b) Dense point cloud (c) Mesh 

model of the comet constructed from 631 images. 

 

3.4 UAV Datasets 

We used data collected from the Unmanned Aerial Vehicle 

(UAV), which can be downloaded from the following websites: 

https://dashboard.aerosurvey.co.nz/files/shared/245.tar.gz and 

https://drive.google.com/u/0/uc?id=1Spu1F713Tw-

z1XMdnrlD6NT4EhhFy2Lj&export=download. 

 

3.5 Results 

We used 857 images from the Poets_park_flats dataset, as 

shown in Figure 8a, to construct the sparse point cloud using 

our method. The resulting point cloud is shown in Figures 8b 

and 8c from different perspectives, which is from the forward 

intersection of 2,728,281 tie points. 

 

a b  

c  

Figure 8. Sparse point cloud constructed from 857 images. 

 

It can be seen from Table 2 that our method achieves a 

processing accuracy that is comparable to that of OpenMVG, 
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with both converging to the sub-pixel level (0.92 px vs. 0.93 px). 

Compared to OpenMVG, however, our method reduces the 

processing time by 444.2 minutes. It also computes more tie 

points (an additional 3,666) and reprojected pixels (an 

additional 14,648) than OpenMVG, improving the tie point 

acceptance rate and reconstruction detail capabilities. 

 

Indicators OpenMVG Ours Improving 

Accuracy (px) 0.93 0.92 Equivalent 

Efficiency (m) 1688.9 1244.7 ↑444.2 m 

#Tie point 2,724,615 2,728,281 ↑3,666 

#Reprojected px 12,026,356 12,041,004 ↑14,648 

Table 2. Comparison on Poets_park_flats dataset 

 

We also constructed the sparse point cloud using our method 

with 493 images from the MapPilot dataset, as shown in Figure 

9a. The resulting point cloud is shown in Figures 9b and 9c 

from different perspectives. These perspectives are from the 

forward intersection of 671,331 tie points. 

 

a b  

c  

Figure 9. Sparse point cloud constructed from 493 images. 

 

Table 3 shows that our method achieves processing accuracy 

comparable to OpenMVG, both converging to the pixel level 

(1.01 px). However, our method reduces processing time by 

38.7 minutes compared to OpenMVG. It also computes 976 

more tie points and 5,328 more reprojected pixels than 

OpenMVG, improving tie point acceptance rate and 

reconstruction detail capabilities. 

 

Indicators OpenMVG Ours Improving 

Accuracy (px) 1.01 1.01 Equivalent 

Efficiency (m) 164.1 125.4 ↑38.7 m 

#Tie point 670,355 671,331 ↑976 

#Reprojected px 1,760,356 1,765,684 ↑5,328 

Table 3. Comparison on MapPilot dataset 

 

Therefore, the effectiveness and efficiency of our method, 

especially when applied to UAV pinhole imagery models, is 

confirmed by the fact that our method is more efficient than 

OpenMVG even with an increase in the number of observation 

equations. 

4. Discussion 

4.1 Potential Significance of Polar-vision1 

In the proposed theory of Polar-vision1, 

(1) the formula of angular coordinate (viewing angle, polar 

angle) is better to represent (modeling) position of 2d pixel 

with distortion in radial and tangential directions that are 

often associated with polar coordinates or circular motion. 

(2) the numerical differences of angular coordinate of 2d pixels 

are much less than Euclidean coordinate, improving the 

stability of numerical computation; 

(3) the formula of angular coordinate (azimuth angle, elevation 

angle, parallax angle) is better to represent and be used to 

estimate the depth of 3d landmark via the 3rd element in the 

view of narrow parallax angle; 

(4) 2d pixel and 3d landmark are both represented in angular 

coordiate, consistent with attitude angles (roll, pitch, yaw) 

of the camera in the unit of measurement, degree or arc. 

This improves the stability of numerical computation in 

bundle adjustment to refine camera poses and positions of 

3d landmark simultaneously; 

(5) the mathematical relationship between 2d pixel and 3d 

landmark in angular coordinate is more concise and clearer 

to reveal the geometry of perspective projection and 

transformation to camera frame; 

(6) Unlike x or y coordinate, which is defined with respect to a 

particular direction in image space, viewing angle has the 

advantage of being isotropic, that is, its properties are 

independent of the orientation of the image; 

(7) The mathematical relationship between the “viewing angle” 

coordinate of 2d pixel and angular coordinate of 3d 

landmark is independent of the yaw attitude of the camera. 

That allows us define the observation equation for the 

“viewing angle” coordinate of the 2d pixel to refine the roll 

and pitch attitude of the camera, which makes the block of 

unknown parameters shrinks for more effective estimation 

of camera attitudes. 

 

5. Conclusions 

5.1 Contributions 

The main contributions of this work are 

(1) the parameterization of 2d-3d points via the angular 

coordinate and 

(2) the construction of their mathematical relationship in polar 

coordinate system; 

 

We nominate these two items of work as Polar-vision1, in 

which the superscript 1 reveals a series of potential works to do. 

That is to regain most theories of 3d computer vision in the 

perspective of polar coordinate system to exploite their potential 

significances so as to solve hard problems rooted in the 

primitive theories based on the Euclidean coordinate system. 

We will nominate those future works as Polar-vision2, Polar-

vision3, etc. 

 

5.2 Limitations 

There are several limitations in this work: 

(1) The derivative for the polar-angle observation equation in 

the angular domain is more challenging than for the view-

angle equation. Thus, we only add the view-angle 

observation equation as the additional constraint for the 

ParallaxBA project. 
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(2) The mathematical proof for the performance of the 

ParallaxBA project in 3d photographic geometry is currently 

unclear. 

 

5.3 Future Works 

Polar-vision1 represents a novel collinearity equation 

formulated via angular coordinates to connect 2d pixels and 3d 

landmarks. Then, Polar-vision1 as a basic equation is replaced 

of the Euclidean coordinate version in the framework of 

structure from motion. That serves the pinhole camera model. 

 

In the basis of Polar-vision1, 

(1) Polar-vision2 will explore the potential significance of 

distortion modeling via angular coordinate of 2d pixel to 

serve the technology of camera calibration with distortion. 

(2) Polar-vision3 will investigate the advantage of depth 

estimation via angular coordinate of 3d landmark to serve 

the linear pushbroom camera model. 

 

Inspired from those series works of Polar-vision, we will 

integrate it to the community of LiDAR. A more ambitious idea 

is to introduce the concept of Riemannian geometry (Petersen, 

2006) to regain the principals of 3d computer vision. We will 

nominate those series of works as Riemannian-vision. 
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