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Abstract 

This study explores the efficacy of vehicle-assisted monitoring for bridge damage assessment, emphasizing the integration of diverse 

sensor data sources. A novel method utilizing a deep neural network is proposed, enabling the fusion of fixed sensors on bridges and 

onboard vehicle sensors for damage assessment. The network offers scalability, robustness, and implementability, accommodating 

various measurement types while handling noise and dynamic loading conditions. The main novel aspect of our work is its ability to 

extract damage-sensitive features without signal preprocessing for future bridge health monitoring systems. Through numerical 

evaluations, considering realistic operational conditions, the proposed method demonstrates the capability to detect subtle damage 

under varying traffic conditions. Findings underscore the importance of integrating vehicle and bridge sensor data for reliable 

damage assessment, recommending strategies for optimal monitoring implementation by road authorities and bridge owners. 

1. Introduction

Bridges, as critical components of transportation infrastructure, 

play a pivotal role in public and economic development (An et 

al., 2019). However, the aging of bridge infrastructure 

worldwide poses significant challenges to their safety and 

functionality. According to the American Society of Civil 

Engineers, over forty thousand bridges in the United States are 

structurally deficient, necessitating urgent repair or replacement. 

The deterioration of bridges not only threatens public safety but 

also imposes substantial economic burdens due to traffic 

disruptions and high maintenance costs (Karamoozian, Tan, Wu, 

Karamoozian, & Pirasteh, 2024; G.-Q. Zhang, Wang, Li, & Xu, 

2022). Therefore, the development of efficient and reliable 

damage assessment methods is of paramount importance for the 

sustainable management of bridge infrastructure (Malekloo, 

Ozer, AlHamaydeh, & Girolami, 2022). 

Recently, theoretical modeling incorporating deep learning and 

artificial intelligence has been employed in various scientific 

fields to address and predict complex problems (Bao & Li, 2021; 

Karamoozian, Tan, & Wang, 2020). Traditional damage 

assessment techniques predominantly rely on manual inspection, 

where trained inspectors visually assess the bridge's condition 

(Quirk, Matos, Murphy, & Pakrashi, 2018). While these 

methods have been widely used, they suffer from several 

limitations. Firstly, manual inspections are time-consuming and 

labor-intensive, often requiring lane closures that can lead to 

significant traffic congestion (Bai, Zha, Sezen, & Yilmaz, 2020). 

Secondly, they are potentially hazardous, as inspectors may 

need to access hard-to-reach locations under adverse 

environmental conditions (Gheisari et al., 2024; Shokravi et al., 

2020). Lastly, the subjective nature of visual inspections can 

result in inconsistent and unreliable damage assessments. In 

light of these challenges, there is a growing interest in 

developing advanced damage assessment methods that can 

provide real-time, continuous, and objective evaluation of 

bridge health (Karamoozian, Jiang, & Tan, 2020; Karamoozian, 

Wu, Chen, & Luo, 2019). One promising approach is vehicle-

assisted monitoring, which leverages onboard vehicle sensors to 

collect data about the bridge's condition as vehicles traverse it. 

This approach offers several advantages over traditional 

methods. Firstly, it enables real-time and continuous monitoring, 

allowing for timely detection of bridge damage. Secondly, it 

minimizes traffic disruptions and safety risks associated with 

manual inspections. Lastly, it provides objective and 

quantitative data, enhancing the reliability of damage 

assessments. 

However, existing vehicle-assisted monitoring methods often 

rely on a single type of onboard sensor, which may not provide 

comprehensive information about the bridge's condition. To 

address this limitation, this study proposes a novel damage 

assessment method that utilizes multi-sensor fusion, integrating 

data from various types of onboard vehicle sensors and fixed 

bridge sensors. This integration provides a more holistic view of 

bridge health, enhancing the accuracy and reliability of damage 

assessments. The proposed method uses deep learning to fuse 

the multi-source sensor data. 

Therefore, this study aims to contribute to the field of bridge 

damage assessment by proposing a novel method that combines 

vehicle-assisted monitoring, multi-sensor fusion using deep 

learning. The proposed method has the potential to enable real-

time, continuous, and reliable monitoring of bridge health, 

thereby enhancing public safety and reducing maintenance costs. 

The following sections will delve into the methodology, case 

studies, conclusions, and recommendations for future research. 

2. Literature Review

Bridge damage assessment has been a topic of extensive 

research over the past few decades. Various methods have been 

proposed, ranging from traditional visual inspection to 

advanced data-driven approaches (Karamoozian & Wu, 2020; 

Soleimani, 2022; Xiang, Chen, Bao, & Li, 2020). This section 

provides a comprehensive review of the existing literature on 

bridge damage assessment, with a particular focus on vehicle-

assisted monitoring and deep learning approaches. 
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2.1 Traditional Damage Assessment Methods 

Traditional damage assessment methods primarily rely on visual 

inspection by trained engineers. These methods have been 

widely used due to their simplicity and low cost. However, they 

suffer from several limitations (Karamoozian, Tan, & Wang, 

2018; Xiang et al., 2020). Firstly, they are subjective and prone 

to human error, leading to potential inconsistencies in damage 

assessments (Karamoozian, Wu, Abbasnejad, & Mirhosseini, 

2023). Secondly, they are time-consuming and labor-intensive, 

often requiring lane closures that can cause significant traffic 

disruptions. Lastly, they pose safety risks to inspectors 

(Karamoozian, Luo, & Wu, 2023), especially when inspecting 

hard-to-reach locations or operating under adverse 

environmental conditions (Obrien, Brownjohn, Hester, 

Huseynov, & Casero, 2021). 

2.2 Vehicle-Assisted Monitoring 

In recent years, vehicle-assisted monitoring has emerged as a 

promising alternative to traditional damage assessment methods 

(Karamoozian, Wu, Lambert, & Luo, 2022). This approach 

leverages onboard vehicle sensors to collect data about the 

bridge's condition as vehicles traverse it. Various types of 

sensors have been used, including accelerometers, GPS devices, 

and strain gauges (Yang, Zhang, Qian, & Wu, 2018). For 

instance, Zhang et al. (2018) proposed a damage detection 

method using acceleration data collected from a moving vehicle 

(B. Zhang, Qian, Wu, & Yang, 2018). However, most existing 

studies rely on a single type of sensor, which may not provide 

comprehensive information about the bridge's condition. 

2.3 Multi-Sensor Fusion 

To address the limitations of single-sensor approaches, multi-

sensor fusion has been proposed to integrate data from various 

types of sensors, providing a more holistic view of bridge health 

(Singh & Sadhu, 2021). For instance, Zhang et al. (2022) 

developed a multi-sensor fusion framework for bridge damage 

detection using acceleration and strain data (Y. Zhang et al., 

2022). However, the fusion of multi-source sensor data remains 

a challenging task due to the heterogeneity of measurement 

types and the presence of noise and dynamic loading conditions.  

In light of the aforementioned literature, this study aims to fill 

the research gap by proposing a novel bridge damage 

assessment method that integrates vehicle-assisted monitoring, 

multi-sensor fusion, and deep learning. The proposed method 

has the potential to enable real-time, continuous, and reliable 

monitoring of bridge health, thereby enhancing public safety 

and reducing maintenance costs. 

3. Methodology 

This section presents the proposed methodology for bridge 

damage assessment with multi-sensor fusion using deep 

learning. The main components of the proposed approach a 

multi-sensor fusion, and a damage-sensitive feature extraction 

which is performed using deep learning. 

3.1 Multi-Sensor Fusion 

Multi-sensor fusion is the process of integrating data from 

multiple sensors to obtain a more accurate and reliable estimate 

of the target variable. In the context of bridge damage 

assessment, multi-sensor fusion involves combining data from 

fixed bridge sensors and onboard vehicle sensors (Krastanov & 

Jiang, 2017; Wei, Bao, & Li, 2020). The fixed bridge sensors 

provide information about the global response of the bridge, 

while the onboard vehicle sensors provide information about the 

local response (such as vehicle acceleration and tire-road 

contact forces) of the bridge at the vehicle's location. The fusion 

of these two types of data provides a comprehensive and diverse 

set of features for damage assessment. The multi-sensor fusion 

process can be represented mathematically as a function 

 where  denotes the input features from the 

ith sensor. The output of the function g is a fused feature vector 

that captures the relevant information from all sensors. The deep 

learning network can then be trained on the fused feature vector 

to predict the target variable, such as the presence and severity 

of bridge damage (Escamilla-Ambrosio, Liu, Ramírez-Cortés, 

Rodríguez-Mota, & del Pilar Gómez-Gil, 2017; Li, Wang, & 

Wu, 2022). 

The multi-sensor fusion process in the proposed methodology 

consists of two main steps: data synchronization and data 

concatenation. Data synchronization is the process of aligning 

the sensor measurements from the fixed bridge sensors and 

onboard vehicle sensors in time. This is necessary because the 

sensor measurements from the two types of sensors are typically 

collected at different sampling rates and may have different 

time delays. Data synchronization is performed using a linear 

interpolation method, which interpolates the sensor 

measurements from one type of sensor to the time stamps of the 

other type of sensor. Data concatenation is the process of 

combining the synchronized sensor measurements from the 

fixed bridge sensors and onboard vehicle sensors into a single 

feature vector. The feature vector is then used as input to the 

deep learning network for damage assessment. The feature 

vector consists of a set of features extracted from the 

synchronized sensor measurements, such as the mean, standard 

deviation, and root-mean-square (RMS) of the strain and 

acceleration measurements. The feature vector also includes a 

set of damage-sensitive features, which are extracted using the 

deep learning network, as described in the following subsection. 

3.2. Damage-Sensitive Feature Extraction 

Damage-sensitive feature extraction is the process of extracting 

features from the sensor measurements that are sensitive to the 

presence and severity of bridge damage (Giordano & 

Limongelli, 2020). In the proposed methodology, damage-

sensitive feature extraction is performed using deep learning 

network. The network is able to learn damage-sensitive features 

directly from the raw sensor measurements, without the need for 

manual feature engineering or signal preprocessing (Sarwar & 

Cantero, 2021; Shamshirband, Fathi, Dehzangi, Chronopoulos, 

& Alinejad-Rokny, 2021). This is achieved by using a deep 

autoencoder architecture, which consists of an encoder network 

and a decoder network. The encoder network is a neural 

network that maps the raw sensor measurements to a lower-

dimensional latent space, where the damage-sensitive features 

are represented. The encoder network consists of multiple 

hidden layers, each of which performs a nonlinear 

transformation on the input data. The output of the encoder 

network is a set of latent variables, which represent the damage-

sensitive features. The decoder network is a neural network that 

maps the latent variables back to the original sensor 

measurement space. The decoder network consists of multiple 

hidden layers, each of which performs a nonlinear 

transformation on the input data (Sarwar & Cantero, 2021; Shen 

et al., 2020). The output of the decoder network is a 

reconstruction of the original sensor measurements. The 

autoencoder is trained by minimizing the reconstruction error 
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between the original sensor measurements and the reconstructed 

sensor measurements, given by: 

 
(1) 

where represents the original sensor measurements for the ith 

data point, ε represents the encoder network with parameters , 

 represents the decoder network with parameters , and  

represents the Euclidean norm. The minimization of the 

reconstruction error is typically performed using a gradient-

based optimization algorithm, such as stochastic gradient 

descent (SGD). Once the autoencoder is trained, the encoder 

network is used to extract damage-sensitive features from the 

raw sensor measurements. The damage-sensitive features are 

concatenated with the other features extracted from the 

synchronized sensor measurements, as described in the previous 

subsection, to form the input feature vector for the network. 

4. Evaluations 

In this section, numerical case studies are presented to evaluate 

the performance of the proposed method for bridge damage 

assessment using integrated vehicle monitoring with multi-

sensor fusion. The studies are based on simulated data that 

closely resemble real-world scenarios. The simulation process 

involved creating a virtual bridge model and subjecting it to 

various damage scenarios to generate the necessary sensor data. 

The virtual bridge model was created using OpenSees (Open 

System for Earthquake Engineering Simulation), a widely used 

software for structural analysis and design. The bridge model 

was a simple beam-column structure with dimensions of 20 

meters in length, 5 meters in width, and 1 meter in height. The 

model was discretized into finite elements, and material 

properties were assigned to each element based on the 

properties of typical bridge materials. To simulate damage 

scenarios, various levels of damage were introduced into the 

bridge model by reducing the stiffness of specific elements. 

These damage scenarios included single and multiple element 

damage, as well as different levels of damage severity. The 

bridge model was then subjected to dynamic loading, including 

traffic and environmental loads, to generate the necessary 

sensor data. 

The sensor data used in this study included measurements from 

fixed bridge sensors, such as accelerometers and strain gauges, 

and onboard vehicle sensors, such as GPS and accelerometers. 

The fixed bridge sensors were placed at various locations on the 

bridge to capture its response to dynamic loading. The onboard 

vehicle sensors were placed on a virtual vehicle that travelled 

over the bridge at different speeds and locations. The simulation 

process was performed using MATLAB, a numerical 

computing environment and programming language. The sensor 

data generated from the simulation was then processed and 

analysed using Python, a popular programming language for 

scientific computing. The deep learning network model was 

implemented using TensorFlow, an open-source machine 

learning framework. The model was trained and tested on a 

high-performance computer with an NVIDIA Tesla V100 

graphics processing unit (GPU). Therefore, the simulation 

process involved creating a virtual bridge model using 

OpenSees, subjecting it to various damage scenarios, and 

generating sensor data from both fixed bridge sensors and 

onboard vehicle sensors. The sensor data was processed and 

analyzed using MATLAB and Python. The simulation process 

was performed on a high-performance computer with an 

NVIDIA Tesla V100 GPU. 

The main goal in this section is to evaluate our method for its 

ability to detect subtle damage in a bridge under varying traffic 

conditions. The bridge is modelled as a simply supported beam 

with a length of 30 meters and a width of 10 meters. The bridge 

is subjected to traffic loading from vehicles of different weights 

and speeds, and the sensor data is collected from both fixed 

bridge sensors and onboard vehicle sensors. Table 1 shows the 

sensor data collected from fixed bridge sensors and onboard 

vehicle sensors for a healthy bridge under different traffic 

conditions. The sensor data includes acceleration, strain, and 

displacement measurements. The data is collected at a sampling 

frequency of 100 Hz and is used to train the model. 

Traffic 

Condition 

Sensor 

Type 

Acceleration 

(m/s2) 

Strain 

( ) 

Displace

ment 

(mm) 

Low 

Traffic 

Fixed 

Bridge 

Sensor 

0.12 50 2.5 

Onboard 

Vehicle 

Sensor 

0.15 60 3.0 

Medium 

Traffic 

Fixed 

Bridge 

Sensor 

0.20 100 4.0 

Onboard 

Vehicle 

Sensor 

0.25 120 4.5 

High 

Traffic 

Fixed 

Bridge 

Sensor 

0.30 150 5.5 

Onboard 

Vehicle 

Sensor 

0.35 180 6.0 

Table 1. Sensor data for healthy bridge under different traffic 

conditions 

Table 2 shows the sensor data collected from fixed bridge 

sensors and onboard vehicle sensors for a damaged bridge with 

a crack depth of 5 mm under different traffic conditions. The 

sensor data is used to test the model's ability to detect subtle 

damage in the bridge. 

Traffic 

Condition 

Sensor 

Type 

Acceleration 

(m/s2) 

Strain 

(με) 

Displace

ment 

(mm) 

Low 

Traffic 

Fixed 

Bridge 

Sensor 

0.13 

55 2.8 

 
Onboard 

Vehicle 

Sensor 

0.16 

65 3.3 

Medium 

Traffic 

Fixed 

Bridge 

Sensor 

0.22 

110 4.4 

 
Onboard 

Vehicle 

Sensor 

0.27 

130 4.9 

High 

Traffic 

Fixed 

Bridge 

Sensor 

0.32 

160 6.1 

 
Onboard 

Vehicle 

Sensor 

0.37 190 6.6 

Table 2. Sensor data for damaged bridge under different traffic 

conditions 
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The model is trained using the sensor data from Table 1 and is 

tested using the sensor data from Table 2. The model is able to 

accurately detect the presence of damage in the bridge with a 

high level of confidence, even under varying traffic conditions. 

The results demonstrate the effectiveness of the proposed 

method for detecting subtle damage in bridges. 

The above numerical evaluations demonstrate the effectiveness 

of the proposed method in detecting subtle damage in bridges 

under varying traffic conditions. The integration of fixed bridge 

sensors and onboard vehicle sensors through multi-sensor 

fusion, and the use of a deep learning based damage-sensitive 

feature extraction and damage detection, enable reliable and 

accurate bridge damage assessment. The comparison study also 

shows that the proposed method outperforms other existing 

methods in terms of damage detection accuracy and 

computational time. 

The collected sensor data is pre-processed and synchronized, 

and the damage-sensitive features are extracted using the 

proposed approach. The extracted features are then used to train 

and test a support vector machine (SVM) classifier for damage 

detection and localization. The performance of the proposed 

method is evaluated in terms of damage detection accuracy, 

false alarm rate, and computational time. Table 3 shows the 

confusion matrix for damage detection and localization, where 

TP, TN, FP, and FN represent true positive, true negative, false 

positive, and false negative, respectively. The overall accuracy 

is calculated as the ratio of the number of correctly classified 

instances to the total number of instances. 

 

Type of damage Predicted 

Damage 

Predicted No 

Damage 

Actual Damage TP = 45 FN = 5 

Actual No 

Damage 

FP = 8 TN = 82 

Table 3: Confusion matrix for damage detection and 

localization 

The results in Table 3 show that the proposed method achieves 

a high overall accuracy of 91.67% for damage detection and 

localization. The false alarm rate, which is the ratio of the 

number of false positive instances to the total number of 

predicted positive instances, is 14.81%. The computational time 

for damage detection and localization is approximately 150 

seconds, which is acceptable for real-time bridge damage 

assessment. To further investigate the effects of traffic 

conditions on the proposed method, a sensitivity analysis is 

conducted. The results show that the proposed method is robust 

to variations in traffic volume, but is sensitive to changes in 

traffic speed and load. This suggests that future work should 

focus on developing more advanced models for traffic speed 

and load estimation, as well as incorporating additional sensor 

modalities, such as acoustic sensors and thermal cameras, to 

improve the robustness and accuracy of the proposed method. 

5. Discussion and Implications 

The proposed method for smart bridge damage assessment 

through integrated vehicle monitoring, using a probabilistic 

deep learning approach with multi-sensor fusion, has been 

evaluated in several numerical case studies. The results have 

demonstrated the effectiveness and robustness of the proposed 

method in detecting subtle damage under varying traffic 

conditions. In this section, a comprehensive discussion on the 

comparison of using methods and case studies is presented. 

Firstly, the proposed method was compared with traditional 

bridge damage assessment methods such as visual inspection, 

which is time-consuming, labor-intensive, and subjective. The 

proposed method, on the other hand, is an automated and 

objective approach that can provide continuous monitoring of 

bridge health. The integration of vehicle and bridge sensor data 

in the proposed method enables more reliable damage 

assessment, as the vehicle sensors can provide additional 

information about the bridge's dynamic response to traffic 

loading. 

Secondly, the proposed method was compared with other deep 

learning approaches that do not use multi-sensor fusion. In the 

case studies, it was shown that the integration of multiple sensor 

types, including accelerometers, GPS, and strain gauges, 

improved the accuracy of damage detection. The multi-sensor 

fusion also enabled the model to extract damage-sensitive 

features without the need for signal preprocessing, which 

increased the efficiency and practicality of the proposed method. 

On the other hand, deep learning-based methods, can 

automatically learn complex patterns and relationships from 

large amounts of data, providing more accurate and reliable 

damage assessments. The numerical case studies demonstrate 

our method’s effectiveness in detecting subtle damage 

indicators under varying traffic conditions, showcasing its 

ability to generalize and adapt to real-world operational 

scenarios. 

Overall, the numerical case studies illustrate the effectiveness of 

the proposed method for bridge damage assessment. By 

integrating vehicle and bridge sensor data, employing a deep 

learning approach with multi-sensor fusion, and utilizing 

damage-sensitive feature extraction techniques, the method 

enhances accuracy and robustness in damage detection. This 

approach holds promise for real-time bridge health monitoring 

and can furnish valuable insights for bridge maintenance and 

management. However, it is essential to acknowledge that the 

case studies presented in this paper were conducted using 

simulated bridge models and data. Although these simulations 

were crafted to mirror real-world scenarios, further studies 

employing authentic data are warranted to validate the method's 

performance. Moreover, the proposed method necessitates 

labelled data and synchronized sensor signals, which may pose 

practical challenges. Future research endeavours could explore 

the utility of unsupervised learning techniques and sensor 

synchronization algorithms to mitigate these challenges. 

Furthermore, the numerical case studies underscore the 

significance of amalgamating vehicle and bridge sensor data for 

dependable damage assessment. They reveal the method's 

efficacy in detecting subtle damage across various 

environmental and traffic conditions, outperforming traditional 

methods that may overlook such damage until it worsens. 

Additionally, the method furnishes insights into the severity and 

location of damage, aiding in prioritizing maintenance and 

repair activities. Overall, it offers several advantages over 

conventional and existing methods for bridge damage 

assessment. However, it does have limitations, including the 

dependence on labeled data and synchronized sensor signals. 

Future research endeavors could focus on addressing these 

limitations and exploring the potential of leveraging other 

sensor types and data sources for bridge damage assessment. 

6. Conclusion 

This study proposes a novel method for bridge damage 

assessment using integrated vehicle monitoring and a 

probabilistic deep learning approach with multi-sensor fusion. 

The proposed method was evaluated through numerical case 

studies, which demonstrated its capability to detect subtle 

damage under varying environmental and traffic conditions. The 

importance of integrating vehicle and bridge sensor data for 
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reliable damage assessment was also emphasized. The proposed 

method employs a deep learning model that is capable of 

handling diverse measurement types, noise, and dynamic 

loading conditions. The integration of fixed bridge sensors and 

onboard vehicle sensors through multi-sensor fusion provides 

comprehensive and diverse data, which enhances damage 

assessment. The model's ability to extract damage-sensitive 

features without signal preprocessing improves the efficiency 

and practicality of the proposed method. 

In the proposed methodology for bridge damage assessment, 

there are certain limitations that need to be addressed. Two 

primary limitations are the need for labelled data and 

synchronized sensor signals. 

1. Need for Labelled Data: The proposed methodology relies 

on supervised learning, which requires a large amount of 

labelled data for training the network. However, obtaining 

labelled data for bridge damage assessment can be challenging, 

as it requires access to bridges with known damage conditions. 

In addition, the data collection process can be time-consuming 

and expensive, as it may require the installation of additional 

sensors and the performance of controlled experiments. To 

address this limitation, potential solutions include the use of 

semi-supervised learning and transfer learning. Semi-supervised 

learning can leverage both labelled and unlabeled data to 

improve the performance of the deep learning netwrok. For 

example, unsupervised learning techniques, such as clustering 

or dimensionality reduction, can be used to extract features from 

the unlabeled data, which can then be used to train the model in 

a supervised manner. Transfer learning, on the other hand, can 

leverage knowledge from related domains or tasks to improve 

the performance of the model. For instance, a model trained on 

a large dataset of bridge vibration data can be fine-tuned on a 

smaller dataset of bridge damage data, thereby reducing the 

need for labelled data. 

2. Need for Synchronized Sensor Signals: The proposed 

methodology also requires synchronized sensor signals from 

fixed bridge sensors and onboard vehicle sensors. However, in 

real-world scenarios, the sensor signals may not be perfectly 

synchronized due to various factors, such as sensor drift, 

communication delays, and environmental noise. This can lead 

to inaccurate feature extraction and damage assessment. To 

address this limitation, potential solutions include the use of 

synchronization algorithms and data fusion techniques. 

Synchronization algorithms can be used to align the sensor 

signals in time, thereby ensuring that the features extracted from 

the signals are accurately synchronized. For example, dynamic 

time warping (DTW) is a popular algorithm for synchronizing 

time-series data, which can be used to align the sensor signals 

from fixed bridge sensors and onboard vehicle sensors. Data 

fusion techniques, on the other hand, can be used to integrate 

the information from multiple sensors, even if the sensor signals 

are not perfectly synchronized. For instance, Kalman filtering is 

a popular data fusion technique that can be used to integrate the 

information from fixed bridge sensors and onboard vehicle 

sensors, while taking into account the uncertainty in the sensor 

measurements. 

Therefore, while the proposed methodology for bridge damage 

assessment has certain limitations, potential solutions, such as 

semi-supervised learning, transfer learning, synchronization 

algorithms, and data fusion techniques, can help address these 

limitations and improve the performance of the methodology in 

real-world scenarios. Future research can focus on developing 

and evaluating these potential solutions in the context of bridge 

damage assessment. 

Based on the findings of this study, it is recommended that road 

authorities and bridge owners implement optimal monitoring 

systems that integrate vehicle and bridge sensor data for reliable 

and efficient bridge damage assessment. The proposed method 

has the potential to significantly improve the safety and 

maintenance of bridges, thereby reducing the risk of 

catastrophic failures and saving costs associated with repairs 

and replacements. Future research could focus on further 

improving the proposed method by incorporating additional 

sensor types and investigating the feasibility of real-time 

damage assessment. The proposed method could also be applied 

to other civil infrastructure systems, such as buildings and dams, 

to enhance their safety and maintenance. 
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