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Abstract 

3D building models is crucial for applications in smart cities. Automatic reconstruction of 3D buildings has been investigated based 

on various data sources. Point clouds from airborne LiDAR scanners can be used to extract buildings data due to its high accuracy 

and point density. In this paper, we present a methodology to segment buildings and corresponding rooftop structure from point 

clouds. First, RandLA-Net, which is an efficient and lightweight neural network for semantic segmentation of large-scale point 

clouds, is revised and adopted for building segmentation. By implementing local feature aggregation of each point, RandLA-Net can 

effectively preserve geometric details in point clouds. Besides 3D coordinates of point clouds, we incorporated point attributes 

including pulse intensity and return numbers into the network as additional features. Feature normalizations are applied to the input 

features. To achieve a better result of the local feature aggregation, hyperparameters of the network are fine-tuned according to the 

density of points and building size. Based on the classified building point clouds, DBSCAN clustering algorithm is implemented for 

segmenting individual buildings. Elevation histogram analysis is conducted to determine optimal threshold values for delineating 

candidate rooftop point clouds of individual buildings. For the buildings with multiple rooftops, multiple elevation threshold values 

are necessary to extract corresponding rooftops or walls. Then DBSCAN is employed again for segmentation of individual rooftops 

and denoising of point clouds of each building. Finally, Alpha-shape analysis is applied based on adaptive threshold values to build 

the envelope of each rooftop. Experiments show that our implementation of building segmentation using RandLA-net achieves 

higher mean IoU (Intersection over Union) and better classification performance in building segmentation. ISPRS benchmark data 

was used in our experiment and our methodology produce results with accuracy of 90.79%. 

1. Introduction

With the rapid advancement of global urbanization, it is 

important to find solutions to improve spatial efficiency of 

dense urban space. Building rooftops are receiving significant 

attention as spaces for developing vertical greening, solar panels 

deploying and other applications (Mahmoud et al., 2022; Yang 

et al., 2023; Li et al., 2023). To effectively develop and utilize 

building rooftops space, detailed three-dimensional structural 

information is required, especially accurate information 

regarding the rooftops and their properties, like area, slope, 

orientation and structural layouts.  

Airborne LiDAR (Light Detection and Ranging) is an important 

means of obtaining detailed three-dimensional structural data of 

building. Generally, there are four widely used segmentation 

approaches for point clouds segmentation: model fitting 

(Tarsha-Kurdi et al., 2007; Li et al., 2017; Adam et al., 2018), 

region growing (Vo et al., 2015; Zhao et al., 2021), data 

clustering (Zhou et al., 2016; Kim et al., 2016), and energy 

minimization (Sun et al., 2013; Yan et al., 2014). These 

segmentation methods have their specific advantages in terms 

of accuracy and efficiency. At the same time, they face different 

application constraints, such as single segmentation scale, over-

segmentation, and under-segmentation. In order to improve the 

accuracy and efficiency of point cloud segmentation, 

researchers usually adopt a multi-scale, multi-level 

segmentation strategy, combining two or more methods to meet 

the needs of 3D modelling. However, in complex urban scenes 

with varied terrain features, traditional methods need further 

optimization in practical applications. 

In this work, we firstly implemented RandLA-Net (Hu et al., 

2020; Hu et al., 2021) based on local feature aggregation and 

normalization of point attributes with fine-tuned 

hyperparameters for building segmentation. Then a clustering 

algorithm was implemented for identifying each individual 

building, whose rooftops were segmented based on optimal 

elevation threshold values. Thirdly the clustering algorithm and 

the alpha shape algorithm were used to delineate rooftop 

boundaries. In the last section, results and accuracies are to be 

reported. 

2. Methodology

2.1 Building Point Clouds Segmentation Based on Revised 

RandLA-Net 

To address the difficulty in setting hyper-parameters for 

building point cloud extraction and the misclassification 

between building point clouds and surrounding point clouds, 

this paper conducts research on the application of the deep 

learning-based point cloud semantic segmentation network, 

RandLA-Net. The study focuses on two main aspects to 

enhance the performance of the network model of RandLA in 

building point clouds extraction: enriching and optimizing the 

local features of point clouds input into the network and 

improving the network structure to increase the aggregation 

range of global features. 
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In addition to three-dimensional coordinates (X, Y, Z), this 

study adds three features, namely pulse intensity, return number 

and relative elevation as input features for the neural network. 

These three attribute features have distinct advantages in 

discriminating terrain features, and complement each other. 

Introduction of these three features to the three-dimensional 

coordinate (X, Y, Z) features will not affect the generality of the 

trained semantic segmentation model. 

 

Generally, the range of values for pulse intensity information is 

normally either 0~255 or 0~65535. The range of values for 

return number is normally 1~7. And the relative elevation of 

ground features is typically less than 200m in most typical 

urbanized regions. The ranges of values for these three 

parameters are not consistent. This may affect the network's 

learning mechanism of point cloud features. Due to the 

significant difference in numerical scales, in the early stage of 

model training, the pulse intensity information component is 

particularly large, while the return number information 

component is very small. In the fully connected neural network, 

the feature values may be dominated by intensity information. 

To address this, feature normalization operation is implemented 

in this study for consistency of the ranges of values of the three 

features. This can optimize representation of features in the 

network model and enhance the network's adaptability to point 

cloud data generated by different LiDAR measurement systems. 

The normalization formula is as follows: 
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where V represents a set of input data to be normalized, Vi 

denotes the ith value in this set of data, mean(V), max(V), and 

min(V) respectively represent the mean, maximum, and 

minimum values of the array V. Ni represents the result after 

normalizing the numerical value Vi. 

 

Each encoding layer consists of a local feature aggregation 

module and a random sampling operation. As shown in Figure 1, 

random sampling reduces the point density of the output data in 

each encoding layer, so the spatial range aggregated by the local 

feature aggregation in each encoding layer (dark solid circles in 

Figure 1) is larger than the spatial range aggregated by the local 

feature aggregation in the previous layer. The approximate 

influence range of a point in the encoder output data (circle in 

Output_Encoder in Figure 1) by input values from various 

layers is shown by the orange dashed circle in Figure 1. Based 

on the principles of local feature aggregation and sampling, the 

specific influence range of this point by input values from 

various layers can be inferred, as shown by the point cloud 

cluster on the right side of Figure 1.  

 

Figure 1. Aggregation of Contextual Information. 

 

2.2 Rooftop Segmentation from Building Point Clouds 

In terms of building point clouds segmented based on above 

RandLA-Net model, building facade points and building 

rooftop points (including rooftop surface points and rooftop 

components points) are mixed with each other and noise points 

exist, this paper proposes a bottom-to-up approach for rooftop 

point cloud segmentation.  

 

Firstly, the elevation frequency distribution histogram is built 

and a peak-finding algorithm is implemented (Figure 2). 

Building rooftop points are to be filtered out from building 

facade points, while rooftops at different heights of individual 

buildings is achieved (Figure 3).  
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Figure 2. Peak-finding Algorithms Applied on an Elevation 

Frequency Distribution Histogram. 

 

 

Figure 3. Extraction of Rooftops by Elevation Threshold. 

 

Density-based clustering algorithm, DBSCAN, and building 

contour extraction based alpha shape algorithm are 

implemented. Rooftop point clouds that are not connected are 

extracted within the same building (Figure 4).  

 

Figure 4. Extraction of Individual Rooftops. 

 

Finally, cloth simulation filtering algorithm is implemented 

where rooftop surface point clouds are treated as ground point 

clouds, and rooftop components point clouds are treated as non-

ground point clouds. Then rooftop component point clouds are 

segmented out (Figure 5). 

 

Figure 5. Segmentation of Individual Rooftops. 

 

3. Results 

3.1 Data and Environment 

To evaluate the adaptability of the proposed methodology in 

this study, experiments were conducted on the ISPRS Toronto 

benchmark dataset for building point clouds extraction. This 

dataset also includes attribute information such as pulse 

intensity and return number, with pulse intensity ranging from 0 

to 541 and the return number ranging from 1 to 4. The average 

point density of this dataset is approximately 6 points per square 

meter. This study conducted experiments using a deep learning 

workstation equipped with NVIDIA GeForce RTX 3080 GPU 

and utilized TensorFlow version 1.15 provided by NVIDIA as 

the deep learning framework. The specific software and 

hardware configurations are shown in Table 1. 

 

Hardware/Software Configuration 

CPU Intel Xeon Gold 6128 * 2 

GPU NVIDIA GeForce RTX 3080 

System Memory 256GB 

GPU Memory 10GB 

OS Windows 10 64bit 

CUDA 11.2 

Developing Environment Python 3.7 

Deep Learning Framework NVIDIA TensorFlow 1.15 

Table 1. Software and Hardware Configurations 
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3.2 Result of Building Point Clouds Extraction 

In the experiment of building segmentation based on the revised 

RandLA-Net network, the Toronto dataset was denoised and 

relative elevations were calculated. Annotated samples were 

constructed. Point cloud data containing X, Y, Z, reflectance 

intensity, return number, and relative elevation were input into 

the network, and feature normalization was applied. The model 

achieved the best validation accuracy of 92.745% at the 68th 

Epoch, with an average time consumption of 235.69s per Epoch. 

By applying this model to classify the complete Toronto dataset 

and evaluating the classification results on the official 

validation area Area4, the confusion matrix is shown in Table 2. 

The experiment obtained a classification accuracy of 90.79%, a 

recall rate of 88.26%, and a false alarm rate of 7.55%. 

 

True 

Pre 
Building Non-Building Total 

Building 493219 64178 557397 

Non-Building 65582 785735 851317 

Total 558801 849913 1408714 

Table 2. Confusion matrix of the segmentation result in Area 4 

 

According to the provided official building outlines in Area4 for 

accuracy evaluation, the extracted point cloud of buildings was 

clipped to obtain the results as shown in Figure 6. From the 

figure, it can be observed that a small number of buildings 

exhibit omission issues, primarily due to the presence of 

multiple rooftops at different heights, with the lowest rooftop 

not successfully identified, as illustrated in Figure 7. The 

omission of building point clouds exhibits spatial contextual 

features similar to ground points at terrain undulations, which 

may be the main reason for model misjudgement. For the 

buildings in the southernmost part of Area4, detailed results are 

shown in Figure 8, according to point cloud data and reference 

high-resolution optical imagery, the missed area is at the same 

height as the ground, not pertaining to architectural structures, 

this is an error in the validation sample. 

 

 

Figure 6. The accuracy evaluation of building extraction in the 

Toronto Area 4 accuracy evaluation area. 

 

  
(a)                                      (b) 

Figure 7. Example of missed points due to low roof height. 

 

  
(a)                                   (b) 

Figure 8. Example of missed scores due to incorrect labelling of 

validation samples. 

 

3.3 Results of Rooftop Point Clouds Segmentation 

In the rooftop component extraction, the generic parameters 

proposed for the study area in this paper were used to extract 

rooftop information from individual buildings in Toronto data. 

As shown in Figure 9, a building with a simple multi-roof 

structure is depicted, where the blue points represent rooftop 

surface points and the pink points represent rooftop component 

points, which can effectively identify items placed on the roof. 

For the complex multi-roof structure building shown in Figure 

10, the method provides a comprehensive search for the rooftop 

surfaces, with only a small area in the lower left corner where 

some surfaces were not extracted, while the rest of the rooftop 

information is relatively complete, and the identification of 

rooftop components is accurate. For the building with a large 

number of components on the rooftop as shown in Figure 11, 

this method can effectively identify the position and shape of 

the components and can also identify rooftop railing points. In 

conclusion, the generalization ability of the rooftop information 

extraction method proposed in this study is good, and it can 

demonstrate good performance in different study areas and data 

sources when using generic parameters. 

    

   Figure 9. Simple multi-roof structure building. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1-2024 
ISPRS TC I Mid-term Symposium “Intelligent Sensing and Remote Sensing Application”, 13–17 May 2024, Changsha, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-943-2024 | © Author(s) 2024. CC BY 4.0 License.

 
946



 

 

Figure 10. Complex multi-roof structure building. 

 

 

Figure 11. Building with a large number of components on the 

rooftop. 

 

4. Conclusion 

In this work, we proposed a methodology to segment building 

and rooftop component structures from dense 3D point clouds. 

RandLA-Net is used, and the input data are enriched by 

introducing extra features of point clouds. Improved 

performance on efficiency and accuracy is achieved. Based on 

DBSCAN algorithm, point clouds of individual buildings are 

delineated which are further segmented into rooftop by optimal 

threshold values acquired from elevation histogram analysis. A 

filtering algorithm and the alpha shape detection algorithm are 

implemented for rooftop structure components deification. 

ISPRS benchmark data was used in experiment which prove the 

proposed approach is effective concerning accuracy of building 

point clouds segmentation. 

 

In the future we are going to test the methodology in other 

typical urban regions. 

 

Acknowledgements 

The authors would like to acknowledge the provision of the 

Downtown Toronto data set by Optech Inc., First Base 

Solutions Inc., GeoICT Lab at York University, and ISPRS WG 

III/4. 

 

This research was partly funded by the National Natural Science 

Foundation of China, grant number 41671403. 

 

References 

Adam, A., Chatzilari, E., Nikolopoulos, S., Kompatsiaris, I., 

2018. H-RANSAC: A Hybrid Point Cloud Segmentation 

Combining 2D and 3D Data. ISPRS Ann. Photogramm. Remote 

Sens. Spatial Inf. Sci., IV-2, 1-8. doi.org/10.5194/isprs-annals-

IV-2-1-2018. 

 

Hu, Q., Yang, B., Xie, L., Rosa, S., Guo, Y., Wang, Z., Trigoni, 

N., Markham, A., 2020. RandLA-Net: Efficient Semantic 

Segmentation of Large-Scale Point Clouds. Proceedings of the 

IEEE Conference on Computer Vision and Pattern Recognition, 

11105-11114. doi.org/10.1109/CVPR42600.2020.01112. 

 

Hu, Q., Yang, B., Xie, L., Rosa, S., Guo, Y., Wang, Z., Trigoni, 

N., Markham, A., 2021. Learning Semantic Segmentation of 

Large-Scale Point Clouds with Random Sampling. IEEE 

Transactions on Pattern Analysis and Machine Intelligence, 

44(11): 8338-8354. doi.org/10.1109/TPAMI.2021.3083288. 

 

Kim, C., Habib, A., Pyeon, M., Kwon, G., Jung, J., Heo, J., 

2016. Segmentation of Planar Surfaces from Laser Scanning 

Data Using the Magnitude of Normal Position Vector for 

Adaptive Neighborhoods. Sensors, 16(2), 140. doi.org/10.3390/ 

s16020140. 

 

Li, L., Yang, F., Zhu, H., Li, D., Li, Y., Tang, L., 2017. An 

Improved RANSAC for 3D Point Cloud Plane Segmentation 

Based on Normal Distribution Transformation Cells. Remote 

Sensing, 9(5), 433. doi.org/10.3390/rs9050433. 

 

Li, N., Zhao, F., Chen, L., 2023. Review of rooftop solar 

photovoltaic electrical potential estimation: approaches and 

models. Acta Ecologica Sinica, 43(10), 4284-4293. doi.org/10. 

5846/stxb202205041230. 

 

Mahmoud, A. S., 2022. Overview of Green Roof Technology as 

a Prospective Energy Preservation Technique in Arid Regions. 

Engineering, Technology & Applied Science Research, 12(4), 

8982-8989. doi.org/10.48084/etasr.4919. 

 

Sun, S., Salvaggio, C., 2013. Aerial 3D Building Detection and 

Modeling From Airborne LiDAR Point Clouds. IEEE Journal 

of Selected Topics in Applied Earth Observations and Remote 

Sensing, 6(3), 1440-1449. doi.org/10.1109/JSTARS.2013.22514 

57. 

 

Tarsha-Kurdi, F., Landes, T., Grussenmeyer, P. 2007. Hough-

Transform and Extended RANSAC Algorithms for Automatic 

Detection of 3D Building Roof Planes from Lidar Data. ISPRS 

Workshop on Laser Scanning 2007 and SilviLaser 2007, 36, 

407-412. 

 

Vo, A., Truong-Hong, L., Laefer, D. F., Bertolotto, M., 2015. 

Octree-based region growing for point cloud segmentation. 

Isprs Journal of Photogrammetry and Remote Sensing, 104, 88-

100. doi.org/10.1016/j.isprsjprs.2015.01.011. 

 

Yan, J., Shan, J., Jiang, W., 2014. A global optimization 

approach to roof segmentation from airborne lidar point clouds. 

ISPRS Journal of Photogrammetry and Remote Sensing, 94, 

183-193. doi.org/10.1016/j.isprsjprs.2014.04.022. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1-2024 
ISPRS TC I Mid-term Symposium “Intelligent Sensing and Remote Sensing Application”, 13–17 May 2024, Changsha, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-943-2024 | © Author(s) 2024. CC BY 4.0 License.

 
947



 

Yang, S., Wen, P., Jiang, F., Xu, J., Xie, Z., Zhang, G., 2023. 

Uurban flood runoff and waterlogging characteristics-based 

study on optimization of green roofs spatial layout. Water 

Resources and Hydropower Engineering, 54(04), 22-36. 

doi.org/10.13928/j.cnki.wrahe.2023.04.002. 

 

Zhao, C., Guo, H., Lu, J., Yu, D., Lin, Y., Jiang, H., 2021. Roof 

segmentation from airborne LiDAR by combining region 

growing with random sample consensus. Acta Geodaetica et 

Cartographica Sinica, 50(5), 621-633. doi.org/10.11947/j.AG 

CS.2021.20200270. 

 

Zhou, G., Cao, S., Zhou, J., 2016. Planar Segmentation Using 

Range Images From Terrestrial Laser Scanning. IEEE 

Geoscience and Remote Sensing Letters, 13(2), 257-261. 

doi.org/10.1109/LGRS.2015.2508505. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1-2024 
ISPRS TC I Mid-term Symposium “Intelligent Sensing and Remote Sensing Application”, 13–17 May 2024, Changsha, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-943-2024 | © Author(s) 2024. CC BY 4.0 License.

 
948




