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ABSTRACT:

Accurate real-time positioning in forests is challenging due to GNSS signal degradation and an unstructured spatial environment
that is difficult to conceptualize through visual sensing. Positioning is vital in any forestry automation application, such as collecting
inventory, harvesting, or search and rescue missions. Lidar and inertial based solutions are popular, however they often obtain real-
time computation by effectively compressing the number of measurement points to track utilizing regular geometric shapes that
do not adapt well to forest. Other solutions sacrifice the high-frequency of positioning estimates or they rely on post-processing.
We propose a real-time lidar-inertial SLAM-based approach that utilizes NDT scan registration, factor graphs and loop closure
corrections to produce accurate and high-frequency pose estimates. To test our method, data was captured with a lidar and imu
sensor mounted on a stick surveying forest sites. Ground truth trajectory for accuracy evaluation was computed by fine registering
individual laser scans onto a high-quality reference point cloud recorded from the same forest area using terrestial and airborn laser
scanning methods. Experiments shows, that our method can produce real-time position estimates up to 200 Hz within 2-15 cm
error.

1. INTRODUCTION

Robotic applications are already present in many industries, but
forestry automation is still in an early phase due to its high com-
plexity (Visser and Obi, 2021). As in most fields, first human
assisting systems appear till more autonomous machines can
be developed and adapted. For example, recent proposals in
forest inventory collection involve real-time feedback for the
operator during surveying (Proudman et al., 2022), while other
techniques try to remove the human effort as much as possible
(Jaakkola et al., 2017).

Accurate positioning for automation is critical, however, it
is still challenging in forest conditions (Aguiar et al., 2020).
Global Navigation Satellite System (GNSS) sensors were re-
ported to have an accuracy of approximately 0.7 meters un-
der the canopy (Kaartinen et al., 2015), which is insufficient
for most field tasks. Positioning can be improved by introdu-
cing additional sensor modalities onboard, such as lidar and
Inertial Measurement Unit (IMU), and algorithms incorporat-
ing and fusing their streamed data are considered the state-of-
the-art approach to compensate for unreliable, noisy, and in-
accurate measurements. So far, in forestry, these solutions of-
ten prioritized accuracy over real-time and online computation
(Pierzchała et al., 2018). These include studies where online
computations are infeasible due to their non-causality, e.g. by
(Kukko et al., 2017) the proposed fusion algorithm improves
the post-processed GNSS-IMU trajectory utilizing lidar meas-
urements expecting the availability of the whole dataset. On
the other hand, real-time and online solutions have been well-
studied and evaluated quantitatively in indoor and urban envir-
onments (Shan and Englot, 2018, Xu et al., 2021, Cowley et al.,
2021), often including forest only as a case study and leaving its
quantitative evaluation an open question targeted by this work.

The main contribution of this paper is a new concept to eval-
uate lidar-based positioning in forests, where it is difficult to

obtain a high-quality reference otherwise. Furthermore, a po-
sitioning and mapping solution is proposed based on lidar and
IMU sensor fusion capable of real-time operation. The quant-
itative evaluation showed that on shorter (100-280 meters long)
trajectories, it could maintain the positioning error within 2-15
cm.

1.1 Problem Formulation

A moving robotic platform equipped with a lidar and IMU
sensor is navigating in forest. The state of this rigid body at
time instant k can be described with the following vector:

xk =
[
Xk,

Evk,
Xbk

]
, (1)

Figure 1. Measurement setup containing an Ouster OS0-128
lidar and Advanced Navigation Certus Evo GNSS/IMU.
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where Xk ∈ SE3 is the pose and vk ∈ R3 is the velocity of
the body in world frame, while Xbk ∈ R6 is the IMU bias
described in body frame. World frame in this context is the ref-
erence system of the map that is built from a previously unseen
environment online by the robot. This is generally known as the
Simultaneous Localization and Mapping (SLAM) problem.

Furthermore, the system receives lidar measurements as a set of
3-dimensional points in sensor frame with their corresponding
sampling times (referred to as scan):

LSk = {(pi, ti)|pi ∈ R3, ti ∈ R+}i=1,...,N , (2)

where N is the number of points recorded during one complete
rotation of the scanner. In addition, auxiliary measurements are
streamed from the IMU sensor containing linear acceleration
and angular velocity in its own sensor frame and their corres-
ponding sampling times.

All measurements are subjected to noise, and they only indir-
ectly carry information about the elements of the state vector, as
there are neither absolute measurements about the pose or velo-
city of the robot. The task is to utilize lidar and imu modalities
to reduce the noise as much as possible and infer the robot’s
state under real-time computation constraints. Real-time in this
scenario means the system can update the state vector before
new measurements arrive.
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Figure 2. Schematic diagram of proposed solution.

2. METHODS

2.1 Real-time Forest SLAM

The schematic design of the proposed positioning and map-
ping algorithm can be seen in Figure 2. Its main structure was
modeled based on the Lidar-inertial Odomentry via Smoothing
and Mapping (LIO-SAM) algorithm (Shan et al., 2020), with a
variety of changes to make it more suitable for forest data.

The inference problem was modelled by two factor graphs (Del-
laert and Kaess, 2017) constructed in parallel. The first one was
updated at each new scan and it is responsible for the estimation
of the state vector in Eq. (1). It takes in a lidar factor gener-
ated as described in Section 2.2 and a preintegrated IMU factor
(Forster et al., 2017). Meanwhile the other graph is respons-
ible for the mapping, where the map is represented as a collec-
tion of graph nodes each holding a scan and its corresponding
pose in world frame. The mapping graph was fed by relative
pose measurements derived from consecutive lidar factors and
sparsely occuring loop closure factors, and it was updated on a

selective manner based on a travelled distance threshold para-
meter (set to 0.2 meters during the experiments).

2.2 Lidar Factor Generation

Each incoming scan was first preprocessed including deskew-
ing and downscaling. The deskewing or rectifying process was
necessary to remove unwanted motion distortion from the scan
that accumulates while the scanner performs a complete rota-
tion (see Figure 3). With our system a revolution took around
0.1 seconds, in which time interval approximately 20 IMU
measurements were sampled that were integrated to obtain in-
termediate pose estimates. Additional pose estimates for each
pi point were then computed by interpolating on manifolds such
as:

Xti = Xm−1 ⊕
[
ti − tm−1

tm − tm−1
(Xm ⊖Xm−1)

]
(3)

where Xm−1,Xm ∈ SE3 are consecutive IMU poses with their
corresponding sampling times tm−1 and tm, that surrounds ti as
tm−1 < ti < tm. At last, a relative pose from the beginning of
the revolution was computed using Xti , which was then applied
on pi for proper placement within the lidar sensor frame.

The reconstructed scan was then downscaled using a voxel
filter with uniform 0.4 meter leaf size. Finally, it was re-
gistered to a local map using point to distribution based Normal
Distributions Transform (NDT) algorithm (Magnusson, 2009).
The lidar factor itself was modelled as a Gaussian distribution,
where the mean was the resulting transformation from the regis-
tration, while its covariance was a preset diagonal matrix scaled
with the fitness score obtained during the registration.

Maintenance of the local map was necessary in order to reduce
the computation time of the registration. It was constructed
after each update of the mapping graph, by selecting elements
from the most recently inserted graph nodes, and assemble their
scans by transforming them with their corresponding pose es-
timates. The selection was done in a way that it ensures spatial
sparsity of the selected nodes by limiting the minimum distance
between two selected nodes.

2.3 Loop Closure Factor Generation

Loop closures can further constrain the mapping graph to re-
duce drift accumulating over time when the robot revisits a pre-

Figure 3. Raw and corrected scans, illustrating the accumulated
motion distortion as the scanner completes one revolution.
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viously explored area. The implemented strategy was evalu-
ated after insertion of a new node in the mapping graph. First,
while excluding the most recent nodes, the nearest graph node
to the newly inserted one was identified. Then, in case it was
within a parameter set (5 meters during the experiments) dis-
tance threshold, its corresponding scan was registered to the
currently buffered local map using the same NDT registration
algorithm. Finally, the loop closure factor was also modelled as
a Gaussian distribution, where the mean was computed as the
relative pose between the NDT computed transformation and
the newly inserted node. Its covariance matrix was set the same
way as for the lidar factor.

Additionally, the evaluation of this strategy was limited to 0.67
Hz not to overload the CPU, and factors where the registration
resulted in poor fitness scores were disgarded.

Figure 4. Illustration of individual motion corrected scans
matched to high-quality TLS point cloud to generate reference

trajectory. Unique colors purple, orange and yellow corresponds
to individual scans, while the height-scaled green color

corresponds to the reference point cloud.

2.4 Generation of Reference Trajectory

Reference trajectory was computed by registering individual
motion corrected scans onto high-quality point cloud models
recorded using Terrestrial Laser Scanning (TLS) and Uncrewed
Laser Scanning (ULS) techniques. This matching was done off-
line using the Iterative Closest Point (ICP) algorithm with high
number of iterations and small threshold values. An illustration
of this process can be seen in Figure 4.

The SLAM estimated trajectory was used for initial guess for
the ICP algorithm. However, since the output of the SLAM is
in its own local frame, first the combined output point cloud
was manually pre-fitted onto the reference one, obtaining a
transformation that converted the SLAM trajectory to the same
world frame as the reference cloud. The fitness score for each
individual matching was also recorded in order to reason about
the quality of the generated reference trajectory.

3. EXPERIMENTAL EVALUATION

Data was collected in the Fall of 2021 in managed boreal forest
sites in Finland with an Ouster OS0-128 lidar and an Advanced
Navigation Certus Evo GNSS/IMU mounted on a stick (see Fig-
ure 1.) surveying 3 plots with a walking speed between 2-6

Table 1. Description of collected forest datasets.

Dataset Area Traj.
length Duration Forest

type
m2 m sec

Evo1002 6400 279 284 scots pine
Evo1009 1600 96 103 scots pine
Evo1045 1600 154 165 norway spruce

Table 2. Summary of main positioning results.

Dataset Mean
error RMSE-x RMSE-y RMSE-z

cm cm cm cm
Evo1002 15.526 7.837 16.512 10.502
Evo1009 2.360 1.738 1.802 1.314
Evo1045 4.367 2.477 3.544 1.908

km/h. Further descriptive information of the datasets are sum-
marized in Table 1. The point clouds for the reference match-
ing were recorded with a Leica RTC360 TLS system for the
Evo1009 and Evo1045 datasets, while MiniVUX-1UAV drone
data for the Evo1002.

The methods were implemented in C++ utilizing multicore
CPU computation and the experimental data was processed
simulating a real-time scenario with the Robotic Operating Sys-
tem (ROS) framework. The computations were run on a Dell
Workstation with an Intel Core i7-1075H processor running
Ubuntu 20.04.

Quantitative evaluation of the results are based on positioning
error metrics, that were computed after fitting the local SLAM
trajectory onto the reference one. Positioning error on its own in
the following refers to the Euclidean distance between corres-
ponding trajectory elements. Additionally Root Mean Square
Error (RMSE) is presented along individual axes. Finally, the
time that was taken to perform one update of the whole SLAM
pipeline as in Figure 2 was considered.

3.1 Results

General overview of the positioning results are shown in Table
2. The average error during the experiments were observed
between 2-15 cm. Furthermore, the longer the trajectory was,
the higher the average error, which is a common behaviour in
SLAM systems that has no mean for global correction.

The positioning errors throughout the measurements can be
seen in Figures 5-7, where the green shaded area represents the
fitness score of the reference matching. The larger the surround-
ing area, the worse the quality of the reference. It is mainly
visible in the case of the Evo1002 dataset, where the SLAM
trajectory was not fully covered by the reference point cloud in
the middle of the measurement. The reference trajectory other-
wise had great fitness, and the positioning errors are generally
well-bounded around a constant value with a few outliers.

The estimated SLAM and reference trajectories for the
Evo1002 dataset are shown in Figure 8. Additionally, the GNSS
trajectory that was recorded using a single antenna with the
Certus Evo GNSS/IMU unit is also included in the plot. The
estimated trajectory tracks well the reference one, while the
GNSS one is significantly worse, further showcasing the de-
grading effects on the signal inside the forest. Trajectories of
the other datasets are very similar, therefore, excluded. They
all return to the neighbourhood of the initial position closing
one big loop in the trajectory as done in the original surveying.
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Figure 5. Positioning error for dataset Evo1002.

Figure 6. Positioning error for dataset Evo1009.

Figure 7. Positioning error for dataset Evo1045.

The distributions of computational times for each dataset are
shown in Figure 9. As scans are arriving at 10 Hz with the sys-
tem under consideration, the target limit to perform one SLAM
update is 100 ms. It can be seen that the majority of updates
were executed within this limit, therefore the method is capable
of real-time execution.

3.2 Discussion

Real-time computation is primarily feasible due to the local
mapping strategy and the compressing capabilities of the NDT
registration algorithm. In theory, the robot relies on less inform-
ation to position itself and accuracy is expected to decrease.
Figure 10 showcases the playoff between the density of the
local map controlled by the limiting distance threshold between
selected nodes at reconstruction. As the distance threshold is
increasing, less nodes are selected and therefore less scans have
to be processed, drastically improving the computation speed
till it converges to approximately 40 ms. On the other hand, the
positioning accuracy is less sensitive for this, enabling adequate
accuracy in real-time.

The compression ratio within the NDT registration can be con-
trolled by the grid size used within the algorithm, and its ef-
fects on the performance is shown in Figure 11. The larger the
grid size, the more compressed the local map becomes, carrying
less information about the surroundings. It would also suggest

Figure 8. Trajectories for dataset Evo1002.

Figure 9. Distribution of the computational times required for a
SLAM update.

higher computation speed, however the algorithm might require
more iterations to converge therefore the computation speed is
less effected by this. The system remains robust until around
3 meter grid size, from which point the positioning error expo-
nentially increases.

A segment of the SLAM built forest point cloud model is shown
in Figure 12, while a side-by-side comparison with the refer-
ence point cloud is illustrated in Figure 13. The resulting point
cloud well resembles the reference, and the trees appear cor-
rectly placed and can be distinguished without any shadowing
effects. However, a widening effect can be observed on the
individual tree level, as the trunks in the SLAM-built cloud ap-
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Figure 10. Performance with different distance thresholds used
during node selection for the local map construction. Computed

for dataset Evo1009.
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Figure 11. Performance with different grid cell sizes used within
the NDT registration algorithm. Computed for dataset Evo1045.

pear much more extensive. This is most likely derived from the
Ouster lidar’s high beam divergence compared to other remote-
sensing oriented lidar sensors. On the one hand, it can be useful
for automation tasks as thinner objects are more likely to be
detected for obstacle avoidance and navigation purposes while
less applicable for field surveying tasks.

Figure 12. Segment of the resulting point cloud model from
dataset Evo1009.

4. CONCLUSION

A real-time positioning and mapping algorithm is proposed us-
ing lidar and inertial sensors. Additionally, a new approach
to generate a reference trajectory for lidar-based positioning
evaluation in the forest is conceptualized, where other popu-
lar means are less applicable. The SLAM method can provide

Figure 13. Segment from SLAM generated and ALS reference
cloud of the same are from Evo1002 dataset.

high-frequency and accurate estimates in a previously unseen
and challenging environment while maintaining a map of the
surroundings. This online positioning and mapping algorithm
can provide a basis for further forestry automation applications
as input for planning and control algorithms.

In future work, the method should be tested on more exten-
ded datasets, in different forest sites, and potentially with ad-
ditional sensor units. Further developments in reference data
generation for forest positioning evaluation are of interest. Es-
pecially alternative proposals on providing the initial guess for
the reference matching, as in this scenario, it is only applicable
if the SLAM optimized trajectory is relatively consistent glob-
ally, that might not be the case for longer measurements.
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