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ABSTRACT: 

 

Fisheye lens cameras are becoming increasingly popular for vSLAM applications due to their wide field of view (FoV), providing 

more features to be tracked in a single image shot. However, the complex lens geometry involved in the image formation process 

still limits their full potential, especially when points in the hyperhemispherical field are unmodeled. In this paper, we compare two 

adaptations of ORB-SLAM for fisheye lens cameras, considering the use of the rigorous projection model (equisolid-angle) versus 

the use of the generic projection model (EUCM). The ORB-SLAM versions were adapted for real-time processing on the Nvidia 

Jetson TX2 board. The experiment was conducted using hyperhemispherical images obtained with a Ricoh Theta S camera. Our 

results showed that the trajectory estimated with the equisolid-angle ORB-SLAM had smaller discrepancies, compared to the 

reference trajectory, than the EUCM ORB-SLAM. This suggests that a rigorous photogrammetric model with a suitable treatment of 

hyperhemispherical points is beneficial for trajectory estimation. 
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1. INTRODUCTION 

The 3D reconstruction of an unknown environment with 

simultaneous determination of the sensor orientation is 

commonly known as SfM (Structure from Motion) in Computer 

Vision, Phototriangulation in Photogrammetry, and SLAM 

(Simultaneous Localization and Mapping) in robotics (Cadena 

et al., 2016; Durrant-Whyte and Bailey, 2006; Granshaw, 2018). 

The classic problem of SLAM is to sequentially estimate the 

position and orientation of an agent platform in real-time based 

on remote sensors, such as cameras and laser scanning systems, 

mounted in mobile mapping platforms. Thus, SLAM methods 

enable a consistent estimate of the trajectory based on the map 

of the environment that contains 3D points. SLAM methods 

based only on sequential images information are well-known as 

Visual SLAM (vSLAM) (Li et al., 2019; Taketomi et al., 2017; 

Torresani and Remondino, 2019).  

 

In recent years, we have witnessed significant advances in 

vSLAM technology to address the challenges of building 

accurate and robust maps in various environments. These 

advances were especially driven by the increased use of low-

cost and lightweight optical sensors and high computational 

power and performance, resulting in state-of-the-art approaches 

such as: Mono-SLAM (Davison et al., 2007), PTAM (Klein and 

Murray, 2007), DTAM (Newcombe et al., 2011), SVO (Forster 

et al., 2014), LSD-SLAM (Engel et al., 2014), ORB-SLAM 

(Mur-Artal et al., 2015) e DSO (Matsuki et al., 2018).  

 

ORB-SLAM is considered one of the leading state-of-the-art 

SLAM solutions due to its input data flexibility, versatility and 

accurate estimative. It uses the ORB operator to extract 

keypoints and match their features, which allows it to work with 

images acquired using different configurations, such as 

monocular, stereo, and RGB-D (red, green, blue, and depth) 

cameras. The matching points enable the estimation of the 

trajectory and sparse 3D cloud in real-time, in addition to loop 

closures and relocating (Mur-Artal et al., 2015). However, a 

vSLAM solution combining fisheye images and ORB-SLAM 

has not yet been fully explored.  

 

Fisheye lenses provide a wider field of view (FoV), enabling the 

capture of more features in a single image shot. As a result, they 

are an attractive choice for use in vSLAM solutions. However, 

many challenges in the use of large FoV systems (e.g., fisheye) 

in mobile mapping applications still remain. The main issues are 

related to the complex camera model and fisheye lens geometry 

(Wang et al., 2018).  

 

Several works have proposed generic models to cope with the 

fisheye lens geometry, which allow the application in different 

camera systems (Usenko et al., 2018). Campos et. al (2020) and 

Liu et al. (2019) used generic camera models to extend ORB-

SLAM for use with fisheye cameras. Campos et al. (2020) 

utilized the camera model developed by Kannala and Brandt 

(2006), while Liu et al. (2019) employed the Enhanced Unified 

Camera Model (EUCM), introduced originally by Geyer and 

Konstantinos (2000). The choice of these models was driven by 

their generality and simplicity, which enabled simple adaptation 

for use in ORB-SLAM.  

 

Applications that demand high accuracy may require rigorous 

projection models that consider the physical imaging principles 

of fisheye lenses, such as equidistant, orthogonal, stereographic, 

and equisolid-angle (Schneider et al., 2009).  

 

In this paper, we compare the accuracy of real-time ORB-

SLAM solution (Aldegheri et al., 2019) when using generic 

versus rigorous models for fisheye lenses. The real-time ORB-

SLAM, proposed by Aldegheri et al. (2019), was modified into 

two versions. The first one applies the generic EUCM model 
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(EUCM ORB-SLAM), and the second one the rigorous 

equisolid-angle model (equisolid ORB-SLAM), which also 

allows the treatment of hyperhemispheric points (Castanheiro et 

al., 2021). Comparative analyses were performed with a fisheye 

image dataset acquired with backpack-mounted mobile system. 

Developed by Campos et al. (2018), the mobile mapping system 

is equipped with a Ricoh Theta S omnidirectional camera, 

which captures the entire scene with a hyperhemispherical 

geometry, covering a 360º FoV. 

 

2. MATERIALS AND METHODS 

2.1 Mathematical Models 

Fisheye lens cameras have a FoV of approximately 180º (for 

hemispherical lenses) or even more (for hyperhemispherical 

lenses), covering a wider view of a scene in a single image 

compared to conventional perspective cameras. Previous works 

proposed a different mathematical model to deal with the 

geometric distortions caused by fisheye lenses and address this 

specific lens geometry (Usenko et al., 2018). Here, we describe 

in detail the two mathematical models used in this work to adapt 

the ORB-SLAM for fisheye lens geometry: the generic EUCM 

and the rigorous equisolid-angle model.  

 

2.1.1 Enhanced Unified Camera Model 

 

The EUCM is a generic projection model for fisheye cameras 

based on a unified camera model that is considered simple and 

does not require additional distortion coefficients. EUCM 

requires only two more parameters to cope with the distortions. 

This model allows the inverse projection function to be 

expressed in an explicit closed form. As shown in Figure 1, the 

coordinates of a point  ( ,  e ), in the camera reference 

system are projected to  onto an ellipsoid and then,  is 

mapped to  in the image plane using the pinhole model.  

 

 
Figure 1. EUCM geometric model (Khomutenko et al., 2016). 

Adapted from Liu et al. (2019). 

 

The vector  with image coordinates (  and ), in pixels, with 

origin at the bottom-left pixel of the image, are calculated by 

Equation 1, where  is the principal distance in pixels,  and 

 are the coordinates of the origin of a centered system.  

[0,5, 1] and , are the projection parameters on the 

ellipsoid, which allow approximation of the lens properties, 

despite the strong distortions, with  being calculated by 

Equation 2. 

 

                                         

 

    (1) 

 

 

                     (2) 

 

The coordinates for the inverse projection from the image plane 

to point  on the ellipsoid in the EUCM model are obtained 

using Equation 3, in which  . Additionally, the 

maximum value is of  is set to 1. The ellipsoid is the 

projection surface, and the inverse function is a ray’s 

collinearity function since  and  are on the same ray. 

 

                 

                                                                          (3)                            

 

                                               
 

Generic models, however, do not consider the physical 

principles of imaging. Conventional models considers the 

physical properties of the fisheye lens, which usually are based 

on the projection of a sphere on the image plane, with several 

projection models, such as equidistant, orthogonal, 

stereographic, and equisolid-angle (Abraham and Förstner, 

2005; Hughes et al., 2010; Ray, 1994; Schneider et al., 2009). 

Castanheiro et al. (2021) presented a comparison of fisheye 

projection models in the camera calibration of the Ricoh Theta 

S dual-fisheye system to verify which one is suitable for 

hyperhemispherical lenses. The results were better when using 

the equisolid-angle projection model.   

 

2.1.2 Equisolid-angle projection model 

 

Figure 2 illustrates the projection of point  onto the image 

plane as point , following the equisolid-angle projection. In the 

equisolid-angle model, the radial distance  is obtained by the 

relation , equivalent to the chord length of the 

arc segment on the sphere. Equation 4 presents the equisolid-

angle projection model, with ,  and  being the 

coordinates of a point P in the camera reference system, which 

are related to their coordinates in the object reference system 
 and  through a rigid body transformation (Equation 5). 

This transformation is a function of  e  (3D coordinates 

of the camera position) and , components of the rotation 

matrix. The coordinates  and  are the projection of the point 

in the photogrammetric reference system, with  being camera 

principal distance. 

 

 
    (4) 

 
 

 

  

              (5) 
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Figure 2. Geometry of equisolid-angle projection. 

Adapted from Castanheiro et al. (2021). 

 

The coordinates  and  in the photogrammetric reference 

system are obtained through Equation 6, where  and  are the 

image coordinates in a centered system,  and  are the 

principal point coordinates, and  and  are the lens 

distortion components. Since the lens does not exactly follow 

the mathematical model of projection due to distortions, fisheye 

projection models can be combined with the same distortion 

model used for perspective cameras, such as Conrady-Brown 

(Brown, 1971; Conrady, 1919).  

 

 
(6) 

 
 

The projection of  from the image plane to the object space 

can be performed by projecting the coordinates (  , ) in the 

image plane to the sphere and then later to the object space, 

using the inverse collinearity equations. Thus, the collinearity 

equations can be considered valid after the projection of the 

image plane coordinates to the sphere, which is a deformation-

free spatial domain (Campos, 2019). The coordinates  and  

can be projected to the point  ( , , ) on the sphere of 

radius  by Equation 7, where the incident angle is given by 

 and the angle formed between the and 

the axis by . 

 

 
 

                            (7) 

 

 
 

The 3D coordinates (X, Y, Z) of point P in the object reference 

system are determined from the 3D straight line defined by 

spherical coordinates ( , , ), under the scale factor λ, as 

indicated by Equation 8. 

 

                                                              (8) 

               

 

2.2 ORB-SLAM in real-time 

ORB-SLAM operates using three modules that run 

simultaneously on different threads: tracking, local mapping, 

and loop closing while parallelizing highly complex processes 

like optimization. The algorithms used in ORB-SLAM demand 

substantial memory and processing power. Although ORB-

SLAM can achieve real-time operation on conventional 

computers, it does not perform as well on mobile platforms due 

to limited resources and the complexity of operations, 

particularly in feature extraction and matching. These 

complexities can impede real-time performance without CPU 

and GPU optimization. Aldegheri et al. (2019) presented a real-

time modification of ORB-SLAM for the Nvidia Jetson TX2 

embedded platform for perspective cameras, achieving up to 30 

frames per second (fps) by utilizing a heterogeneous computing 

paradigm, which exploits the board potential by distributing the 

processing between the CPU and GPU.  

 

The two versions of ORB-SLAM proposed in this work were 

both modified and optimized to achieve high performance and 

enable realistic real-time applications, following the approach 

proposed by Aldegheri et al. (2019), as illustrated in Figure 3. 

EUCM ORB-SLAM uses the EUCM mathematical model 

(Figure 1), while equisolid ORB-SLAM employs the rigorous 

equisolid-angle model (Figure 2). The key challenges to 

achieving real-time processing of more frames per second are 

the feature extraction and matching steps. In the original 

formulation of ORB-SLAM, all processing is done on the CPU. 

Aldegheri et al. (2019) focused their efforts on improving the 

performance of the tracking module by implementing it on the 

GPU. A multi-platform open-source acceleration library 

specifically designed for real-time embedded platforms was 

used. The proposed approach applies compatible and optimized 

GPU CUDA kernels of Jetson TX2, exploring the full potential 

of the CPU and GPU resources and being optimized through 

multithreading and computational Bundle Adjustment (BA) 

using graph optimization during the estimation process 

(Kummerle et al., 2011). By implementing these optimizations, 

not only is performance and efficiency enhanced, but also 

accuracy is maintained, making real-time processing possible 

even with complex mathematical models for fisheye cameras. 

 

 

Figure 3. Modified ORB-SLAM architecture with two 

mathematical models. 

 

 

3. EXPERIMENTS AND RESULTS 

Two experiments were independently performed with the same 

dataset using (1) ORB-SLAM with EUCM model (EUCM 

ORB-SLAM) and (2) ORB-SLAM with equisolid-angle model 

(equisolid ORB-SLAM). Both experiments were conducted on 

the Jetson TX2, simulating real-time processing. 
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3.1 Data acquisition and dataset 

The dataset consists of fisheye images collected with a Ricoh 

Theta S dual-fisheye camera. The camera was attached to a 

backpack-mounted mobile system, and images were captured 

over a 140 m long path. Only images captured with one of the 

camera sensors with a frame rate of 5 fps were used in the 

experiments. The study area is a path covered by high and low 

vegetation and urban features (buildings, sidewalks, and posts), 

as shown in Figure 4.  

 

 

Figure 4. Images from sensor 1 (S1) and sensor 2 (S2). 

 

Additionally, two reference trajectories, in UTM projection 

coordinates, were generated to assess performance and 

positional accuracy: (1) sensor trajectory calculated indirectly 

by simultaneous bundle adjustment with the Agisoft Metashape, 

based on a set of selected images with 1 fps and 48 GCPs 

(Ground Control Points) collected using GNSS (Global 

Navigation Satellite System) RTK (Real Time Kinematic); (2) 

sensor trajectory estimated by post-processing dual-frequency 

GNSS positioning, using a Hiper GPS receiver attached to a 

backpack while walking along the path. The trajectory obtained 

from the dual-frequency GNSS receiver data presented an 

average precision of 0.02 m at the beginning of the trajectory 

(where there was no signal loss), while the trajectory calculated 

by Agisoft Metashape had a precision of 0.07 m in camera 

positions and an average discrepancy of 0.15 m compared to the 

positions at the beginning of the trajectory obtained from the 

dual-frequency GNSS receiver. The results obtained with ORB-

SLAM are referenced to a local coordinate system with an 

arbitrary origin, orientation, and scale. Therefore, parameters of 

a similarity transformation were calculated using GCPs to 

convert the two estimated ORB-SLAM trajectory points 

coordinates to UTM projection. The seven estimated similarity 

parameters (3 translations, 3 rotations and scale) were applied to 

transform the coordinates of the camera stations, estimated in a 

local reference system by EUCM ORB-SLAM and equisolid 

ORB-SLAM, to the UTM projection coordinates.  

 

3.2 Performance Assessment 

Comparative analyses were performed by selecting 296 

common frames from: (1) the reference trajectory calculated 

with Agisoft Metashape (Metashape); (2) the trajectory obtained 

using the equisolid-angle model with ORB-SLAM (equisolid 

ORB-SLAM), and (3) the trajectory calculated using the ORB-

SLAM with EUCM model (EUCM ORB-SLAM). The camera 

trajectory (exposure stations) estimated by Metashape (used as 

the reference), equisolid ORB-SLAM, and EUCM ORB-SLAM 

are depicted in Figure 5. The trajectories are shown in black, 

red, and green, respectively. The camera positions are plotted on 

the UTM reference system, providing a visual representation of 

the trajectory for each solution along the 140 m path. The 

trajectory was intentionally straight to simulate walking in a 

path where there is no expectation of return and loop closure 

based on revisiting a place, such as in forests, agricultural 

corridors, and other similar scenarios. 

 

 

Figure 5. Trajectories equisolid ORB-SLAM, EUCM ORB-

SLAM and Metashape. 

 

The use of hyperhemispherical images from the Ricoh camera 

shows that the EUCM model exhibited significant drifts in 

position and scale when compared to both the reference 

trajectory and the equisolid ORB-SLAM trajectory. The 

equisolid ORB-SLAM presented more consistent results 

compared to the EUCM ORB-SLAM. However, it is possible to 

observe a drift at the end of the trajectory, which affected not 

only the position but also the scale. We selected the first and 

last ten estimated camera positions from both the equisolid 

ORB-SLAM and EUCM ORB-SLAM trajectories. Then, we 

calculated the RMSE (Root Mean Squared Error) with respect 

to the corresponding camera positions obtained from the 

reference trajectory (Metashape bundle adjustment). The results 

are presented in Table 1 and Table 2, which show the RMSE of 

the discrepancies in camera positions between the first and last 

ten frames of the reference trajectory (Metashape), and the 

trajectories of equisolid ORB-SLAM and EUCM ORB-SLAM, 

respectively. The equisolid ORB-SLAM had an RMSE of 

0.114 m, 0.111 m, and 0.005 m for E, N, and h coordinates in 

the first ten frames, while for the last ten frames, the RMSE 

increased to 3.941 m, 3.592 m, and 0.113 m for E, N, and h 

coordinates, respectively, as indicated in Table 1. These results 

show that the discrepancies in the camera positions gradually 

increased as new observations were acquired and sequentially 

processed, leading to error propagation and drift at the end of 

the trajectory. Table 2 shows that the EUCM ORB-SLAM had a 

RMSE of 44.114 m, 2.402 m, and 17.580 m for E, N, and h 

coordinates, respectively, for the first ten frames in the 

estimated trajectory, and a RMSE of 40.859 m, 23.125 m, and 

6.854 m for E, N, and h coordinates, respectively, for the last 

ten frames. The higher errors of the ORB-SLAM EUCM when 

compared to the equisolid ORB-SLAM performance can be 

explained by its generic nature, which was not able to cope with 

the hyperhemispheric geometry of the Ricoh Theta S, mainly 

due to the considerably long path and a lower frame rate (5 fps).  

 

 

RMSE E (m) N (m) h (m) 

Beginning 0.114 0.111 0.005 

End 3.941 3.592 0.113 

Table 1. RMSE of the beginning and end of the trajectory for 

equisolid ORB-SLAM. 
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RMSE E (m) N (m) h (m) 

Beginning 44.114 2.402 17.580 

End 40.859 23.125 6.854 

Table 2. RMSE of the beginning and end of the trajectory for 

EUCM ORB-SLAM. 

 

4. CONCLUSION 

The complex lens geometry involved in the image formation 

process still limits the full potential of fisheye lenses cameras, 

especially when points in the hyperhemispherical field are 

unmodeled either by a generic model or by some rigorous 

model (Castanheiro et al., 2021). Based on our results, it is 

possible to conclude that when using hyperhemispherical 

images, the EUCM model showed more discrepancies to the 

reference trajectory than the equisolid-angle model. One 

possible reason is the unfitness of EUCM model to the Ricoh 

Theta S camera geometry. Furthermore, a longer path can also 

contribute to the trajectory drift since the trajectory resulting 

from equisolid-angle model was also affected by drift. It is 

important to emphasize that in the conducted experiments, the 

loop closure option of ORB-SLAM was not accomplished, 

which could significantly reduced the effect caused by the 

trajectory drift. Additionally, a higher frame rate may improve 

the performance of the EUCM model, but at the cost of 

increasing computational complexity. Overall, we can conclude 

that the use of a rigorous photogrammetric model, with a 

suitable treatment of hyperhemispherical points, proved to be 

beneficial, enabling the use of image observations throughout 

the full field of view for trajectory estimation.  
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