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ABSTRACT: 

Shoreline represents the boundary between land and sea, and its accurate extraction is of utmost importance because of the economic 

and ecological value of coastal areas. Nowadays, satellite remote sensing is widely used for monitoring the natural environment. 

Indeed, satellite remote sensing data are cost-effective and periodically available over large areas at a relatively high spatial resolution. 

Hence, the automatic shoreline extraction from satellite images is a fundamental task for coastal monitoring and management. Shoreline 

extraction methods are usually applied to satellite remote sensing data. The goal of this study is to compare the performance of different 

shoreline extraction methods, such as thresholding and more complex classification approaches, such as Random Forest (RF), 

Minimum Distance (MD), Maximum Likelihood (ML) and K-means, using both optical and radar images. The considered case study 

area is the shallow basin of the Orbetello Lagoon and one of its ayre called Feniglia. The data supplier is the Copernicus program, 

which, through the Sentinel-1 and Sentinel-2 missions, provides medium-resolution, open-access products. The accuracy of the 

obtained results from both methodologies is checked by validating the extracted shoreline using an aerial orthomosaic and, 

subsequently, a manually extracted shoreline. A preliminary accuracy assessment was performed for image classification, focusing on 

extracting four classes: water, soil, urban, and forest, using manual segmentation as a reference. In terms of deviation from the reference 

shoreline, the results obtained through the analysed methodologies achieved an accuracy of 3.75 m, less than half of the pixel size of 

the Sentinel-1 and Sentinel-2 used products. 

1. INTRODUCTION

Coastal environments are vital for their biodiversity and for 

human activities, both leisure and economic ones. The coastal 

area represents a highly dynamic system which suffers from 

continuous and several transformations. The causes of changes in 

coastal zones can be grouped into geological and 

geomorphological, hydrodynamic, biological, climatic, and 

anthropogenic (Łabuz, 2015).  

Monitoring the coastal environment is usually conducted by 

defining several indicators, where the most common and widely 

used one is the shoreline. The easiest definition of the "shoreline" 

is the boundary between land and sea (Anders and Byrnes, 1991). 

However, such high temporal and spatial variability in coastal 

environments requires a more precise definition of this indicator. 

According to (Zollini et al., 2020), the shoreline indicators can be 

divided into three main categories: 

- Characteristic visible by an operator on an aerial or remote

sensing image;

- The intersection between a tidal datum and a digital terrain

model or a coastal profile;

- Characteristics of images identified by automatic

algorithms are not necessarily visible to an unaided

operator.

 The methodology adopted in this paper provides a systematic use 

of third-type data compared with "ground truth" coming from the 

first type.  

Traditional field data collection, typically manually performed 

by a human operator over a large coastal area, is usually time-

consuming, expensive, and affected by the operator's capacity 

and choices (Spinosa et al., 2021a). In contrast, remote sensing 

has emerged as a valuable tool for coastal monitoring due to its 

ability to provide large-scale, periodically regular, frequent, and 

cost-effective data. 

Satellite images from both passive and active remote sensors can 

be used to extract the shoreline. Passive sensors, such as 

multispectral ones, rely on the natural reflectance properties of 

coastal features on the considered portion of the electromagnetic 

spectrum, typically ranging from the visible to the infrared. The 

optical images provide a simple way to extract shorelines based 

on the spectral reflectance of both land and water (Demir et al., 

2016). Unfortunately, satellite multispectral data are sensitive to 

weather conditions. Instead, active remote sensing techniques, 

such as SAR, can allow usable measurement collection 

independently in the presence of gases and clouds, representing 

a clear advantage concerning passive sensors (Rozenstein et al., 

2016). However, on the other hand, SAR images require more 

pre-processing steps than optical ones. 

Automated methods for shoreline extraction from remote sensing 

imagery can be grouped into three categories (Toure et al., 2019): 

thresholding, classification, and edge detection-based 

approaches.  

Thresholding represents the easiest and fastest way in 

segmentation techniques. However, it may not be sufficiently 

accurate in some contexts affected by high variability in 

luminance value. Motivated by this reason, several efforts have 

been spent in order to improve the thresholding results: designing 

an optimal threshold, e.g. Otsu's one (Otsu, 1979), proposing 

more complex and flexible approaches such as adaptive 

thresholding (Aedla et al., 2015) and multi-threshold (Jishuang 

and Wang, 2002).  
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Classification aims at providing a simplified data representation, 

partitioning data into a collection of uniform regions called 

classes. Classification methods can be either supervised or 

unsupervised. Due to its simplicity, k-means is the most widely 

used unsupervised method (García-Rubio et al., 2015). 

Supervised classification usually allows for handling more 

complex phenomena (Tsekouras et al., 2018a). Supervised 

classifiers like Maximum Likelihood (ML), Random Forest or 

Minimum Distance (MD) (Bamdadinejad et al., 2021) are pretty 

commonly used nowadays. Independently of the specifically 

implemented classifier, robust results can only be obtained when 

training it with a sufficiently informative and representative 

dataset, i.e. a supervised classifier, able to work with data from 

different satellite missions and different beach topologies, should 

be trained with images taken from different satellites and 

environments (Abdelhady et al., 2022). Many authors 

successfully tested the water or vegetation spectral indexes, such 

as the Normalised Difference Water Index (NDWI) or 

Normalised Difference Vegetation Index (Ozturk and Sesli, 

2015). They can be used both in thresholding and preliminarily 

in classification methodologies. 

Edge detection approaches exploit variations in colour, grey-

level intensities or texture of an image to determine the borders 

of the area of interest, i.e. the shoreline. Many authors proposed 

different approaches using Canny Edge detection (Tonye et al., 

2000), Snakes (Klinger et al., 2011) and Level Set Algorithm  

(Ouyang et al., 2010). 

 

Most of the above-mentioned approaches have been 

implemented for passive sensor data (e.g., multispectral), few for 

active ones, and probably even fewer efforts have been spent on 

combining the two. Motivated by the above observation, this 

study aims to compare different strategies to extract the shoreline 

from radar and multispectral images. In particular, this work is 

focused on comparing thresholding and supervised and 

unsupervised classification methods.  

 

The considered methods are tested on Sentinel-1 Synthetic 

Aperture Radar (SAR) images and Sentinel-2 Multispectral 

Instrument (MSI) images at 10m of spatial resolution. The testing 

area is the Feniglia coast, a 6km ayre portion of the coast on the 

Orbetello Lagoon system, located in Tuscany (Italy). The 

accuracy of the obtained results is checked by validating the 

extracted shoreline using a hand-made one derived from an aerial 

orthomosaic provided by Tuscany Region WMS. The 

classification accuracy was estimated using a ground truth by 

visual interpretation of the image classes. 

 

2. STUDY AREA  

The testing area is situated in the south of Tuscany region in Italy. 

It involves the Orbetello lagoon and one of its two spits called 

Feniglia, formed by sea level rise during the Holocene and 

diffraction of the sea waves through Monte Argentario Island, 

now connected to the mainland (Barnes, 1980). Feniglia spit 

includes a 6-km-long beach with an associated protected area 

established in 1971. In addition to being a natural reserve, it 

represents an area of great economic (touristic) interest. In the 

past, some research works have already identified shoreline 

modification trends, the presence of mega-cusps (Cipriani et al., 

2004) and the evolution of vegetated surface (Bellarosa et al., 

1996) on the Feniglia beach. Given the accelerating climate 

changes and sea level rise, new studies are required. 

 
 

Figure 1: The testing area. Feniglia is the spit on the south of the 

lagoon visible in the figure. The map is shown in WGS84-

UTM32 (in meters). 

 

 

 

3. MATERIAL AND METHODOLOGY 

This section aims at presenting data (subsection 3.1) and methods 

used in this work, i.e. thresholding (subsection 3.2) and image 

classification techniques (subsection 3.3). Both optical and radar 

open-source data sources have been used and obtained thanks to 

the Copernicus program. Furthermore, open-source software was 

employed for data processing, i.e. Sentinel Application Platform 

(SNAP) and QGIS 3.4. 

 

3.1 Data Sources 

A multispectral Sentinel-2 satellite image and a SAR Sentinel-1 

satellite image were used in this study, as shown in Table 1. 

Sentinel-1 and 2 are satellite missions developed by the European 

Space Agency (ESA) as part of the Copernicus Programme, 

differing in particular for the sensors mounted on the 

corresponding satellites. Satellite data are freely available at 

different processing levels in both cases. Data have been 

downloaded from the Copernicus Open Access Hub website. 

 

 

Satellite Date 

[dd/mm/yyyy] 

Time 

[hh:mm] 

Tide  

[m] 

Wave 

[m] 

S-2 23/07/2019 10:10 0.01 0.31 

S-1 18/07/2019 05:19 0.07 0.43 

Ortho 19/07/2019 12:15 0.08 0.41 

Table 1. Images used in this study with framework conditions. 

 

Sentinel-2 satellites are equipped with a Multispectral Imager 

(MSI) that captures images in 13 spectral bands, including 

visible, near-infrared and shortwave infrared. The spatial 

resolution of the image ranges from 10 to 60 meters, depending 

on the spectral band. In this study, Level-2A products of Sentinel-

2 have been used, i.e., data including orthorectification, 

atmospheric corrections and cloud masking. 

  

Sentinel-1 mission provides different acquisition modes. In this 

work, the radar image was downloaded in Interferometric Wide 

Swath (IW) acquisition mode, which provides 250 km of image 

swath and 5 m x 20 m spatial resolution. Then, a Ground Range 

Detected (GRD) product was selected. GRD products consist of 

focused SAR data that have been detected, multi-looked and 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W1-2023 
12th International Symposium on Mobile Mapping Technology (MMT 2023), 24–26 May 2023, Padua, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-17-2023 | © Author(s) 2023. CC BY 4.0 License.

 
18



 

projected to ground range using the Earth ellipsoid model 

WGS84, with approximately 10 m x 10 m resolution cells and 

square pixel spacing. 

 

In our current implementation of the considered methods, 

Sentinel-1 and Sentinel-2 data have been used separately to 

extract the shoreline. Nevertheless, our future investigation will 

also be dedicated to improving the shoreline extraction results by 

properly fusing their information. 

 

In order to make some assessments on the performance of the 

implemented methods, an orthomosaic, with 0.2 m x 0.2 m spatial 

resolution provided by Tuscany region, is used for comparison 

with the satellite data.  

 

Oceanographic data, such as wave and tidal information, are 

essential in coastal applications such as shoreline extraction. This 

is because the position of the shoreline changes continuously and 

can be affected by tidal cycles and wave-induced variations. In 

addition, using data from nearby stations can improve the 

accuracy of shoreline detection by accounting for local 

conditions such as tides and wave heights, especially in complex 

coastal environments (Liu et al., 2016).   

Wave and tide data from the Giannutri buoy, managed by the 

Tuscany region, and the Civitavecchia tide gauge, managed by 

Istituto Superiore per la Protezione e la Ricerca 

Ambientale (ISPRA), were considered in the analysis as the 

closest gauges to the examination site. However, the data with 

small oscillations were excluded in the following step. It should 

be noted that this study focused on the strategies for extracting 

the shoreline and not on temporal or instantaneous monitoring. 

Therefore, it was possible to select data that were temporally 

sufficiently close to each other. 

 

 

3.2 Thresholding 

The details of the adopted thresholding methodology are 

presented in the flowchart shown in Figure 2  

Sentinel-2 imagery was downloaded at level 2A, an orthoimage 

atmospherically corrected Surface Reflectance product. NDWI 

was calculated on the area of interest using the following 

formula:  

 

 

𝑁𝐷𝑊𝐼 =  
𝐵3−𝐵8

𝐵3 +𝐵8
       (1) 

 

 

where  𝐵3 = green band 

 𝐵8 = Near Infrared band 

 

 

Due to the nature of SAR data, the shoreline extraction process 

on the Sentinel-1 radar image included the following pre-

processing steps, performed with the open-source SNAP 

software provided by ESA: 

 

- Use the orbit file to correct the satellite orbit deviations 

and clock errors. 

- Thermal noise removal: this step removes the effect of 

electronic noise generated by the radar receiver. 

- Calibration: this step corrects the signal's amplitude 

and reduces the effect of errors in the 

measurement/acquisition system. 

- Speckle filter: this step reduces the speckle noise 

generated by the radar beam's interaction with the 

Earth's rough surface. The Lee Filter was used because 

of its effectiveness for feature extraction, i.e. its 

application preserves edge information while 

suppressing speckle noise (Sun et al., 2016). 

- Terrain correction: this step corrects the distortions in 

the image due to the topography of the Earth's surface. 

The image was geocoded in the WGS-84 UTM-32N 

reference system using the SRTM digital terrain 

model. 

 

 
 

Figure 2: NDWI value along a transect. The red dot represents 

the value of NDWI used to separate land and water. 

 

 

Different polarisations and window sizes were used for the Lee 

speckle filter. The following ones have been chosen for 

comparison: 

 

- VH polarisation with Lee Filter 7mx7m 

- VV polarisation with Lee Filter 7mx7m 

- VV polarisation with Lee Filter 5mx5m 

 

The threshold chosen to binarize the SAR image in a particular 

sandy beach environment was set to -20dB, in accordance with 

(Chen et al., 2022).  

 

Instead, the land/water separation in the raster image representing 

NDWI was obtained by setting a threshold value of 0, according 

to (Ouma and Tateishi, 2006), to separate water and land areas.  

 

The resulting images from radar and multispectral analysis were 

vectorised, as a line format and smoothed in QGIS to improve the 

quality of the obtained vector, as shown in the diagram of Figure 

3.  
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Figure 3: Diagram of thresholding methodology in shoreline 

extraction. 

 

 

3.3 Classification Methods 

The considered classification methods for shoreline extraction 

have been implemented in SNAP software. Both radar and 

multispectral images are used to test different approaches, and 

different methods to enhance spectral differences in the images 

are also tested. Regarding radar data, the absolute value of VH 

polarisation multiplied by VV polarisation was calculated. 

Concerning the optical data, NDWI spectral index and different 

band combinations were tested. 

The methodology for extracting the shoreline after image 

classification is shown in Figure 4. Classification strategies can 

be divided into different categories depending on the following:  

 whether the classification is pixel-based or object-

oriented, 

 if it is supervised or unsupervised. 

In this work, Maximum Likelihood, Minimum Distance and 

Random Forest are tested as supervised methods. Instead, K-

means was deployed for the unsupervised case. Processing steps 

following the classification one, i.e. from "Shoreline Extraction", 

are similar to those already described in subsection 3.2. 

 

 

3.3.1 Maximum Likelihood (ML) 

 

The maximum likelihood classifier is a widely used method for 

image classification, where pixel classes are assigned based on 

the highest likelihood criterion. The separation between the 

classes in the decision space is one of the main factors impacting 

ML-based classification accuracy (Ahmad and Quegan, 2012). 

ML has been successfully used to detect temporal shoreline 

changes (Tamassoki et al., 2014).  

 

3.3.2 Minimum Distance (MD) 

 

The minimum distance classifier is based on the availability of 

central class values (e.g. means, determined in the training 

phase): pixel categories are determined as those ensuring the 

minimum distance for each central class value (B. R. Shivakumar 

and S. V. Rajashekararadhya, 2017). This method is often used 

in remote sensing and image analysis applications thanks to its 

simplicity and efficiency in classification tasks.  

 

3.3.3 Random Forest (RF) 

 

Random forest (RF) is a popular machine learning method that 

generates a large group, or forest, of classification and regression 

trees by randomly and iteratively sampling data and variables. 

The RF classification output represents the statistical mode of 

many decision trees, which leads to a more robust model than a 

single classification tree produced by a single model run 

(Breiman, 2001). In the regression case, RF output represents the 

average of all the regression trees grown in parallel without 

pruning. RF has several valuable properties, including internal 

error estimates, the ability to estimate variable importance, and 

the capability to handle weak explanatory variables. Considering 

the coastal area classification problem, good results were 

obtained using the RF classifier with input data that contained the 

NIR band (Dizaji, 2018). 

 

3.3.4 K-means 

 

K-means assigns each pixel in the scene to the nearest cluster 

centre, which is determined as the mean value of all the samples 

belonging to the cluster. Its simplicity and computational 

efficiency make it a popular choice for clustering large datasets. 

However, it does not consider data scale variations and 

correlations. Furthermore, it minimises the intra-cluster variance, 

but reaching a global minimum is not guaranteed. Despite these 

drawbacks, it is one of the most common cluster analysis choices. 

 

 
 

 

Figure 4: Diagram of classification methodology in shoreline 

extraction. 

 

 

3.3.5 Classification Accuracy Assessment 

 

Accuracy assessment was obtained by comparing the outcomes 

of the considered methods with a manually performed 

classification. The common way to report spatial errors is through 

the confusion matrix, which reveals the misclassifications for 

each group. The error matrix is always presented as a square 

matrix, and the confusion matrix diagonal elements indicate the 

number of correctly classified samples. Instead, the off-diagonal 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W1-2023 
12th International Symposium on Mobile Mapping Technology (MMT 2023), 24–26 May 2023, Padua, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-17-2023 | © Author(s) 2023. CC BY 4.0 License.

 
20



 

elements provide details about omission and commission errors. 

The criterion for defining accuracy chosen was overall accuracy 

(OA), defined by summing the number of correctly classified 

values and dividing by the total number of samples.  

 

𝑂𝐴 =  
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁)
    (2) 

 

Table 2 shows the classification results of some of the examined 

combinations of supervised methods and variables chosen for 

subsequent shoreline extraction. Figure 5 compares the 

classification results on S1 data in certain of the considered cases.  

 

 

Mission Input data Method OA 

S1 /VVxVH/ ML 0.852 

S1 /VVxVH/ MD 0.847 

S1 /VVxVH/ RF 0.847 

S2 NDWI ML 0.169 

S2 NDWI MD 0.169 

S2 NDWI RF 0.169 

 

Table 2. Classification accuracy in terms of Overall Accuracy 

(OA). 

 

 
 

Figure 5: Classification results (left column) on S1 data and the 

corresponding wrongly classified pixels (right column) for a) MD 

on /VVxVH/ band, b) ML on /VVxVH/ band, c) RF on /VVxVH/ 

band. Considered classes: forest (green), urban (purple), water 

(blue), and soil (yellow).  

 

 

4.  RESULTS AND DISCUSSION 

A geometric comparison between the determined shorelines was 

conducted by comparing them with one manually extracted from 

the high-resolution orthomosaic mentioned in Section 3.1. The 

method described in (Demir et al., 2017) has been implemented 

in a GIS environment to obtain a fair accuracy estimation of the 

shoreline extraction performance and is quite commonly well 

accepted in the literature. Each extracted shoreline was sampled 

every 10 m for about 600 points. Subsequently, transects were 

generated by measuring the Euclidean distance between the 

extracted shorelines and the manually digitised shoreline, as 

shown in Figure 6. 

 

 
Fig. 6: Accuracy evaluation of shoreline 

 

Statistical parameters, including minimum, maximum, mean 

distance, and standard deviation, were calculated to evaluate the 

results of the two methodologies. The results are reported in 

Table 3. 

 

Thresholding  

  Min dis 

[m] 

Max dis 

[m] 

Avg dis 

[m] 

Std  

[m] 

 

 

S1 

VH  

LF 7x7 

0.08 

 

73.76 

 

24.66 

 

11.14 

 

VV  

LF 7x7 

0.00 

 

44.47 

 

7.82 

 

6.49 

 

VV  

LF 5x5 

0.02 

 

34.00 7.77 

 

6.21 

 

S2 NDWI 0.02 

 

20.59 

 

6.97 

 

3.95 

 

Classification  

  Min dis 

[m] 

Max dis 

[m] 

Avg dis 

[m] 

Std  

[m] 

 

 

S1  

/VVxVH/ 

K-

means 

0.04 24.66 7.55 5.16 

RF 0.01 25.86 9.00 5.51 

ML 0.02 29.04 11.67 5.80 

MD 0.01 25.23 8.81 5.45 

S2 

B4B3B2 

 

K-

means 

0.05 17.94 6.24 3.34 

S2 

B4B8B11 

0.08 15.46 3.75 2.65 

 

S2  

NDWI 

RF 0.02 20.32 4.95 3.13 

ML 0.02 20.32 4.95 3.13 

MD 0.02 20.32 4.95 3.13 

 

Table 3. Statistical results were derived from distance 

measurements between the automatically estimated and the 

manually extracted reference shoreline. 
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The results demonstrate that the unsupervised k-means 

classification algorithm, applied to the optical input data with the 

B4-B8-B11 band combination, achieved the best performance. 

Additionally, the NDWI index proved to be a valuable input for 

optical data analysis. Regarding the S1 data, k-means applied to 

the combination of polarisations composed by an absolute 

multiplication value between VV and VH resulted in the best 

performance. The mentioned combinations of bands, sensors, 

and methodologies achieved a remarkable sub-pixel accuracy. 

A comparison was organised in three sectors, each about 2 Km 

long, along the Feniglia beach, based on the average distance 

from the reference shoreline, to assess the spatial distribution of 

these differences. (Figure 5). 

 

Figure 5: Spatial distribution of the extracted shorelines' mean 

distance from the reference one.  

 

A careful analysis of the results reveals an accuracy improvement 

when moving from west to east, from sector 1 to sector 3. This 

pattern was detected in all the analyses conducted using optical 

data, whereas the radar performance shows a higher variability 

and not such a trend behaviour. A possible explanation of the 

optical trend, which requires further investigation, could be 

related to the slight increase in beach slope and grain size when 

moving from sector 1 to sector 3. 

The selected study area proved to be very challenging due to the 

low beach width, which varies between 10 and 50 meters, a size 

comparable to the satellite image pixel size. Another aspect to 

consider is the low beach slope. Shoreline detection with the 

proposed method may be challenging in intertidal areas, where 

the porous medium is characterised by a higher saturation degree, 

leading to uncertainties in shoreline detection (Spinosa et al., 

2021b). A significant factor in such uncertainties is the 

reflectance, which in the higher moisture content environment is 

similar to the water one. In fact, at saturation, the optical path 

length in water is at its maximum and specific wavelengths may 

be absorbed entirely (Nolet et al., 2014). Another aspect to 

consider for improving the analyses in this environment is fully 

accounting for the run-up differences caused by waves and tides. 

To extend the methodology to other areas, it is also necessary to 

consider the varying grain sizes present in different sandy 

beaches. 

Regarding the threshold methodology, improvements can be 

obtained by applying segmentation algorithms, such as locally 

adaptive thresholding algorithms, which can enhance the 

land/water boundary recognition and thus reduce the 

discontinuity of coastal edges that can occur in low contrast areas 

in the image (Liu and Jezek, 2004). As for classification methods, 

in the unsupervised case, Principal Component Analysis (PCA) 

may be used for an ad hoc determination of the number of classes 

(Hannv et al., 2013). Regarding supervised methods, thanks to 

their strong capability to handle complex phenomena, neural 

networks could improve coastline detection accuracy (Tsekouras 

et al., 2018b). 

 

5. CONCLUSIONS 

The importance of shoreline extraction as a field of study lies in 

its relevance to environmental and socioeconomic issues. Coastal 

erosion, sea level rise, and coastal land use and development are 

just a few examples of applications where accurate shoreline 

extraction is crucial. 

In this work, different methods of shoreline extraction from 

satellite imagery, both radar and multispectral, were 

implemented. Thresholding methodology in water/soil 

distinction and later image classification strategies were tested. 

The accuracy of both methodologies was evaluated using a high-

resolution orthophoto as ground truth. In addition, the accuracy 

of the image classification was also evaluated using a ground 

truth built through manual classification. This allowed for a more 

comprehensive evaluation of the accuracy of the methodologies 

and provided additional validation of the results. Both methods 

achieved subpixel levels of accuracy. The achieved result is 

remarkable, given the complexity of the area under examination. 

 

The methodologies implemented in this study have the advantage 

of being executable with free software and data and reproducible 

in different scenarios.  

The advantages of using satellite imagery for shoreline extraction 

include its ability to cover large areas at a low cost compared to 

traditional methods, such as aerial photography and field surveys. 

The proposed methodology has the advantage of being adaptable 

to optical and radar data, which can be used complementarily.  

Among the possible future developments, data fusion techniques 

and Machine learning algorithms can also be used to improve the 

accuracy and efficiency of shoreline extraction. 
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