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ABSTRACT: 

This paper discusses ubiquitous smartphone pedestrian positioning challenges in urban canyons and GNSS-denied areas such as indoor 
spaces. Existing sensor-based techniques, including GNSS, INS, and VIO, have limitations that affect positioning accuracy and 
reliability. A machine learning-based approach is suggested to employ Support Vector Machine (SVM) to classify indoor/outdoor (IO) 
detection using GNSS measurement data. The proposed system integrates local estimates on VIO and 3D mapping aided (3DMA) 
GNSS measurements using Factor Graph Optimization (FGO) with an IO detection switch to estimate precise pose and eliminate global 
drift. The effectiveness of the system is evaluated through real-world experiments that produce notable outcomes. 

1. INTRODUCTION

Smartphone positioning is challenging in urban canyons: 
Smart mobility has recently been trendy with various sensors, 
cutting-edge intelligence, and next-generation networks. Among 
these intelligent techniques, a vast variety of mobile positioning 
has been proposed over time to support the Location-Based 
Service (LBS). Smartphones are fast becoming a key instrument 
in mobile positioning. It has several sensors, for instance, Wi-Fi, 
an inertial sensor, a magnetometer, a monocular camera, etc. 
(Sheta et al., 2018). The positioning system can be configured 
into different combinations of sensors to provide reliable 
localization information and achieve all-rounded positioning. 
The challenge of mobile Global Navigation Satellite System 
(GNSS), positioning is sensor perception in urban areas. Rajak 
(Rajak et al., 2021a) and Wen (Wen et al., 2021a)(Wen et al., 
2019) have validated the unsatisfactory performance of GNSS 
positioning in the urban environment with conventional 
positioning methods. Poor positioning accuracy highly affects 
user experiences, especially for smartphone users. Extra 
information can be provided to aid the positioning in urban 
canyons. 3D building models provide the perception of the actual 
environment as a software-based aided positioning approach for 
the low-cost, namely 3D mapping aided (3DMA) GNSS (Groves, 
2016). Existing studies by (Zhong & Groves, 2022) and (Ng et 
al., 2021) show a superior positioning performance of 3DMA 
GNSS in urban canyons. Doppler measurements are often used 
to integrate with the position solution to provide smoother 
positioning results. (Ng et al., 2022) integrates 3DMA GNSS and 
velocity estimated by Doppler frequency as a loosely coupled 
using Factor Graph Optimization (FGO). This study is also going 
to adopt the loosely coupled 3DMA GNSS and Doppler velocity 
to provide more accurate positioning in a global frame.  

GNSS suffering from outages in indoor scenarios: Augmented 
with different sensors as a fused solution can improve the 
performance of the GNSS in urban cities. When the operating 
environment affects the GNSS, such as the solution outages due 
to insufficiently visible satellites to resolve the position. The 
GNSS positioning degrades in the indoor environment because 
of weak attenuated and scattered signals received by numerous 
objects in the indoor environment. For example,  (Rajak et al., 
2021a) found that the signal strength of GPS decreased by 10±12 
decibels leading to a rapid reduction in positioning accuracy. In 

addition, the scale degeneracy in rotation-only or constant 
velocity motions happens since the lack of direct distance 
measurements (Zhu et al., 2019). Hence, IO (Indoor/Outdoor) 
detection is the key to ubiquitous positioning. To accomplish the 
ubiquitous indoor localization framework, many researchers 
conducted IO detection using GPS measurement (Rajak et al., 
2021a) (Pei et al., 2009) (Wang et al., 2020). The framework 
should not require any extra infrastructure but use the existing 
built-in sensors in the smartphone. The recent developments in 
IO detection have the potential to assist positioning.  

Visual/inertial odometry can help but is subject to drift over 
time: To assist the indoor positioning, visual-inertial odometry is 
fully employed in the GNSS-denied area for bridging the GNSS 
gaps (Huai et al., 2015). Although Visual-Inertial Odometry 
(VIO) is hard to implement within the speed and latency 
constraints, all stages are refined with a nonlinear optimization 
(He et al., 2018). In accordance with the different sensor 
assessments, the effectiveness varies with respect to indoor or 
outdoor environments. Consequently, the attenuated and 
scattered signal received will not be adopted to access the indoor 
position. GNSS, Inertial Measurement Unit (IMU), and the 
monocular camera are utilized to take advantage of their forte. A 
loosely coupled GNSS/VINS (Visual Inertial Navigation System) 
integration is generated in the paper. 

Adaptive 3DMA GNSS/VINS integration is promising: The 
multi-sensor integration approach applied for the 3DMA 
GNSS/VINS is FGO in a loosely coupled way. It is nonlinear 
optimization represented in probabilistic graphical models. After 
factorization, it transformed into a factor graph to simulate the 
relationship between the poses and estimate their value. It 
satisfies various changes in the dynamic environment (Chen et 
al., 2016). Moreover, FGO has been demonstrated to use most of 
the feature constrain to get the optimal trajectory, resulting in 
higher accuracy and efficiency to achieve a robust estimation 
(Rajak et al., 2021b).    

The proposed method in this paper: In this research, 
smartphone-level ubiquitous mobile pedestrian positioning is 
proposed. The first objective of the research is to use a machine 
learning-based method Support Vector Machine (SVM) to 
classify and detect IO transition by the GNSS measurement. As 
indoor environments cannot receive satellite signals, the GNSS 
positioning performance will be degraded going into the indoor 
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environment from the outdoor environment when achieving 
seamless positioning. The IO detection can assist in the system 
switching from GNSS/VINS to VINS. The second objective is 
the GNSS/VINS alignment. The frame between the global 
position and local poses must be aligned in the same coordinate 
system. Through the continuous dynamic motion of the 
smartphone, the heading of the device can be derived through the 
accelerations from the accelerometer with the position and 
velocity measurements from the GNSS receiver. The third 
objective is the integration of the loosely coupled GNSS/VINS 
using FGO. FGO constrained all factors regarding GNSS/VINS 
performance, and IO detection results to smooth indoor and 
outdoor transitions. It is a cost-deducted system acquiring a 
precise loosely coupled positioning in a dynamic and complex 
high-density environment with a monocular camera, Micro 
Electro Mechanical Systems (MEMS) IMU, and GNSS for 
performance evaluation. This can enhance the whole accuracy 
into a sub-meter with cost reduction and accessibility. 

This paper is organized as follows: In Section 2, relevant 
literature will be discussed. In Section 3, a system overview, 
SVM classification, 3DMA GNSS/VINS, and FGO will be 
presented. In Section 4, the experiment result of the 3DMA 
GNSS/VINS will be shown. Finally, the paper will be concluded 
in Section 5. 

2. RELATED WORK

2.1 Introduction to GNSS/VINS integration for pedestrian 
positioning 

Pedestrian positioning in urban and indoor environments has 
been a topic of research interest, with GNSS and VINS being two 
common positioning technologies. The complementary nature of 
these technologies makes them suitable for integration to provide 
precise and continuous positioning. However, integrating these 
technologies faces challenges due to measurement errors, such as 
multipath, signal obstructions, and drift. 

Improving GNSS performance in challenging areas: GNSS is 
wildly applied to provide continuous positioning in the global 
frame in absolute coordinates. However, the performance is 
usually unsatisfactory due to the blockage or reflection of the 
signals over the buildings, resulting in the non-line-of-sight 
(NLOS) reception and multipath effect (Groves, 2013). 
Improving the GNSS positioning can benefit the whole 
positioning system, and researchers are trying to mitigate the 
NLOS error to improve the GNSS performance alone. Recent 
research has explored integrating VINS for pedestrian 
positioning using loosely and tightly coupled integration 
approaches, combining measurements from GNSS, INS, and 
visual sensors for accurate pose estimation in GPS-denied 
environments. Evaluation of this approach in real urban scenarios 
has confirmed its ability to improve positioning accuracy 
compared to the standalone GNSS or INS systems (Falco et al., 
2017). Despite the potential benefits, GNSS/VINS integration 
still faces several challenges and limitations, including dealing 
with signal loss, reducing computational complexity, and 
improving robustness in various environmental conditions. One 
significant challenge of GNSS/VINS integration is the 
occurrence of multipath errors.  

2.2 Smartphone-level pedestrian positioning: challenges and 
opportunities 

Smartphone-level pedestrian positioning is essential for LBS. 
However, providing accurate positioning in real-time poses 
challenges due to smartphones' limited processing power, 
memory, and battery life. State-of-the-art positioning techniques, 
such as GNSS and VIO, have been used in smartphone-level 
pedestrian positioning. Recently, various techniques have been 
proposed to improve pedestrian positioning accuracy using 
smartphones. One such technique is Pedestrian Dead Reckoning 
(PDR), using inertial sensors such as accelerometers and 
gyroscopes. An efficient PDR algorithm was developed using a 
low-cost MEMS IMU for smartphones and showed that it is low-
cost, simple, and easy to use compared to other methods (Jimenez 
et al., 2009). Even though the most significant advantage of PDR 
is an infrastructure-independent (Pratama et al., 2012), it also has 
some limitations, such as low accuracy and drift.  

Integrating VIO with other sensors has been proposed to address 
these challenges and achieve more precise localization. One such 
approach is to integrate VIO with Light Detection and Ranging 
(LiDAR) using Simultaneous Localization and Mapping (SLAM) 
algorithms (Debeunne & Vivet, 2020). SLAM algorithms use 
visual and LiDAR data to generate a more accurate and detailed 
map of the surroundings, improving accuracy, robustness, and 
efficiency. LiDAR-based pedestrian tracking is also a promising 
technique due to its high accuracy and robustness in various 
environments. However, this approach is limited by high 
computational complexity and cost.  

One popular approach to improve GNSS positioning in urban 
canyons is using a 3D building model to identify and correct the 
NLOS reception error, namely 3DMA GNSS (Groves, 2016). 
3DMA GNSS usually demonstrate as a particle-based approach. 
Measurements are modeled as the prediction at each distributed 
position hypothesis candidate. The candidate with the highest 
similarity between modeled and actual received measurements is 
assumed to be the receiver location. 3DMA GNSS can commonly 
divide into shadow-matching and ranging-based 3DMA GNSS. 
Shadow matching (Wang et al., 2013)(Wang et al., 2015) 
matches the satellite visibility across distributed locations. 
Meanwhile, ranging-based 3DMA GNSS provides reflection 
delays for the NLOS-predicted pseudo-range modelling. The 
delay estimation can be done in a geometrical approach, such as 
ray-tracing GNSS (Hsu et al., 2016)(Miura et al., 2015) and 
Skymask 3DMA(Ng et al., 2020). Both approaches validate the 
signal transmission path and calculate the reflection delay with 
the predicted reflecting point. The likelihood-based ranging 
(Zhong & Groves, 2022) statistically uses a skew-normal 
distribution to model the NLOS delay measurements. Then it 
remaps the errors to the LOS one with the normal distribution. 
Extending the single epoch positioning approach to temporal 
connected can increase the robustness of the positioning 
performance. (Zhong & Groves, 2022) adopts a grid filter to 
distribute positioning candidates evenly to improve the 
smoothness of the solution. An alternative way is using the FGO 
to connect the temporal domain as a batch optimization to 
increase the overall robustness and smoothness. (Ng et al., 2022) 
integrates 3DMA GNSS with velocity estimated by Doppler 
measurements as a loosely coupled solution, and states are 
optimized via FGO. The results show that it can provide a more 
robust trajectory for pedestrian applications.  

VINS positioning and navigation: VINS are integrated 
navigation systems that combine visual and inertial sensors to 
estimate a platform's position and orientation. Despite the 
promising results of VINS in various applications, they face 
several challenges, including time drift and accumulated error, 
particularly in complex environments. Two residual errors 
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associated with visual and inertial measurements include the 
discrepancy between the prediction by the IMU and the position 
estimated by visual odometry. Different algorithms have been 
evaluated to address these issues, such as keyframes-based 
methods, inertial measurements preintegration, nonlinear 
optimization methods, and machine learning-based methods 
(Leutenegger et al., 2015)(Zhang & Scaramuzza, 2018) (Forster 
et al., 2017) (Han et al., 2019). For instance, preintegrating IMU 
measurements and feature observations can obtain high accuracy 
and efficiency by preintegrating inertial measurements between 
selected keyframes into single relative motion constraints and 
using keyframes to reduce computational complexity and 
improve accuracy (Forster et al., 2017). While the nonlinear 
optimization method can attain a highly accurate state estimation 
(Zhang & Scaramuzza, 2018), real-time optimization quickly 
becomes infeasible as the trajectory grows over time as the 
inertial measurements come at a high rate (Forster et al., 2017). 
Deepvio has explored the potential applications of VIO in various 
fields and identified future research directions, such as deep 
learning techniques to improve performance (Han et al., 2019). 
Nonetheless, time drifting is the primary uncertainty when using 
VINS.  

2.3 Review of existing GNSS/VINS integration approaches 
for pedestrian positioning 

The Extended Kalman Filter (EKF) is an effective method for 
sensor fusion, but it relies on a linear approximation of system 
dynamics, leading to reduced accuracy in nonlinear systems. 
Furthermore, the EKF's computational complexity scales 
quadratically with the number of 3D landmarks, limiting its 
scalability (He et al., 2018). In dense urban areas, EKF fails to 
achieve optimal performance due to the accumulation of 
Gaussian errors (Wen et al., 2021b). Nonlinear optimization 
methods have been proposed to address this issue. FGO is 
another approach for pedestrian positioning that models 
relationships between observed measurements and unknown 
states of the system, leading to high accuracy and efficiency. 
FGO handles noisy or incomplete data better than EKF and is 
more equipped to handle changing dynamics. EKF, on the other 
hand, struggles with nonlinearities in system dynamics. However, 
FGO's computational requirements may be higher, and accurate 
modeling of system dynamics is necessary for optimal 
performance. Ultimately, the choice of approach depends on the 
specific application and environmental conditions. To mitigate 
challenges associated with integrating VINS and GNSS, 
including errors in VINS measurements (e.g., drift) and errors in 
GNSS measurements (e.g., multipath and signal obstructions), 
the integration of 3DMA GNSS and VINS using FGO can 
provide accuracy, robustness, and reliability enhancement in 
complex and challenging environments. 

2.4 Development of a framework for Integrating 3DMA 
GNSS and VINS using FGO for Pedestrian Positioning 

In summary, this research is to develop a framework for 
smartphone-level pedestrian positioning technologies to improve 
accuracy, robustness, and efficiency in urban and indoor 
environments. Several challenges such as signal obstructions, 
drift, and multipath limit the effectiveness of the existing 
techniques. To address these challenges, the proposed framework 
suggests integrating 3DMA GNSS and VINS using FGO with 
accuracy, robustness, and reliability enhancement in complex 
and challenging environments. The framework emphasizes the 
importance of IO detection, using a machine learning-based 
method SVM to distinguish IO, and increasing the robustness of 
the positioning performance.  

3. RESEARCH METHODOLOGY

3.1 Overview 

Figure. 1 Flowchart of the proposed system GNSSVINS-IO 
FGO 

The positioning framework proposed in this paper is shown in 
Figure. 1. This paper demonstrates a machine learning-based 
method using the SVM to classify IO. Features from GNSS 
measurements, such as the received and used satellite numbers 
and elevation angle, are extracted for IO classification. 
Improving the GNSS positioning accuracy is the key to 
satisfactory performance under global coordinates. This study 
integrates the state-of-the-art 3DMA GNSS algorithms on 
shadow matching and likelihood-based ranging 3DMA GNSS. 
The 3DMA GNSS solution is then optimized with Doppler 
measurements using FGO in a loosely coupled fashion to 
increase the robustness. The full implementation can be found in 
3DMA GNSS distributes the hypothesis positioning candidates 
around the initial position. Measurements are then simulated as 
each candidate and compared with the received measurements. 
And this study integrates shadow matching and likelihood-based 
ranging 3DMA GNSS, as ܠ௧ǡଷ஽ெ஺, for FGO integration.  

Meanwhile, receiver velocity, ܞ௧ , and clock drift, �ሶݐߜ ௧ , is 
estimated by the Doppler measurements of every satellite ݅  at 
epoch ݐ , ݀௧ ൌ ൣ݀௧ଵǡǥ ǡ ݀௧௜൧ , via the least-squares (LS) method 
(Wen & Hsu, 2021). The 3DMA GNSS also integrates with the 
Doppler measurement estimated velocity using FGO to increase 
the position robustness. The FGO structure consists of three 
factors. The first error factor constraints the 3DMA GNSS 
solution, ܠ௧ǡଷ஽ெ஺, and optimized state, ܠ௧, 

ฮ݁௧ǡ૜۲ۯۻฮો૜۲ۯۻ૛
ଶ ൌ ฮܠ௧ െ ૛ۯۻ௧ǡଷ஽ெ஺ฮો૜۲ܠ

ଶ               (1) 

where ો૜۲ۯۻ૛  is a diagonal variance matrix of the 3DMA GNSS. 
While another two factors connect two consecutive epochs based 
on the motion propagation model, ฮ݁௧ǡܞฮોܞǡ೟૛

ଶ , and constant 

velocity motion model (Li et al., 2018), ฮ݁௧ǡܞതฮોܞത૛
ଶ , given by, 

ฮ݁௧ǡܞฮોܞǡ೟૛
ଶ ൌ ቛܞ௧ െ

ଵ
ο௧
ሺܠ௧ାଵ െ ௧ሻቛܠ

ોܞǡ೟૛

ଶ
(2)
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ฮ݁௧ǡܞതฮોܞത૛
ଶ ൌ ቛଵ

ଶ
ሺܞ௧ ൅ ௧ାଵሻܞ െ

ଵ
ο௧
ሺܠ௧ାଵ െ ௧ሻቛܠ

ોܞത૛

ଶ
 (3) 

where οݐ is the time difference between epoch ݐ and ݐ ൅ ͳ. ોܞ૛ is 
a diagonal covariance matrix associated with the velocity ܞ௧ at x-, 
y-, and z-axis, respectively. ોܞത૛  is the averaged diagonal 
covariance matrix at time ݐ  and ݐ ൅ ͳ . Therefore, FGO 
minimizes the total error of three cost functions of the loosely 
coupled 3DMA GNSS as,  

૏כ ൌ ������
૏

σ ฮ݁௧ǡ૜۲ۯۻฮો૜۲ۯۻ૛
ଶ

௞ ൅ ฮ݁௧ǡܞฮોܞǡ೟૛
ଶ ൅ ฮ݁௧ǡܞതฮોܞത૛

ଶ ��ሺͶ) 

where ૏ ൌ ሾܠଵǡǥ ǡ  כ௧ሿ is the state set of the receiver. And  ૏ܠ
denotes the optimal states set.  

To assist with indoor positioning, visual-inertial odometry is 
fully employed in the GNSS-denied area for bridging the GNSS 
gaps (Leutenegger et al., 2015). As the input, the images, the 
angular velocities, and accelerations are pre-processed. A pose 
graph is defined by skipping frames, pre-integrate IMU between 
keyframes, and then representing most of the IMU measurements 
into a single pose constraint so that the IMU can be manageable. 
The IMU is pre-integrated by adding posterior IMU bias 
correction and alignment with visual measurement to generate 
VIO to provide times, positions, orientations, and velocities. It 
then loosely fuses with GNSS and performs global optimization. 
All stages are refined with a nonlinear optimization (Shen et al., 
2015). Besides the visual and inertial factors, the effectiveness 
varies with respect to indoor or outdoor environments in 
accordance with the different sensor assessments. Consequently, 
the switch factor will also be applied when the attenuated and 
scattered signal is not received in the indoor position. A loosely 
coupled GNSS/VINS integration is then generated to achieve 
pedestrian positioning when GNSS, IMU, and the monocular 
camera are utilized to take advantage of their forte. 

This research focuses on providing reliable sensor fusion twofold: 
1) selecting the reliable sensor for integration; 2) providing 
complete robustness during integration. As a result, reliable
smartphone-level ubiquitous mobile pedestrian positioning is 
proposed. There are three contributions to this study:

x Develop a machine learning-based IO method based on 
GNSS measurement as the feature to select the reliable 
sensor during integration to maximize the positioning 
performance. 

x Coordinate frame alignment between INS in a local 
frame and GNSS in a global frame. 

x Loosely integrating solutions on GNSS and VINS as a 
batch using FGO to provide complete robustness. 

3.2 Indoor Outdoor Detection Approach 

IO detection: Indoor refers to a physically confined area; 
Outdoor refers to a non-completely confined area. (Bai et al., 
2022) (Yan et al., 2019)  

Figure. 2 Flowchart of the SVM 

To classify IO, SVM is adopted by GNSS features, including the 
received and used satellite numbers, the received average carrier-

to-noise ratio (C/N0), and the elevation angle are extracted for IO 
classification. It is a supervised learning approach that transforms 
into a binary result. The data was collected from a university 
campus, indoor/outdoor, fully implementable on the phone. 
Figure. 2 illustrates the algorithm framework of the proposed IO 
detection. The algorithm relies on provided GNSS information 
about pre-existing relationships among a subset of the elements, 
such as the received and used satellite numbers, the received 
average C/N0, and the elevation angle that need to be categorized 
as Indoor or Outdoor. The binary classification result is based on 
the initial assumption of the relationships between the elements 
as the expression pattern data, which is either belonging to Indoor 
or not belonging to Indoor. 

The whole framework consists of two primary phases. The 
training phase is the first phase to utilize the presumptive 
classification (IO) and the expression data (GNSS measurements) 
as inputs to generate a set of weights. These weights are then 
utilized in the subsequent phase. The presumptive classification 
of IO was done manually for ground truth information. The 
second phase is the classification phase to utilize the weights 
from the training phase and the expression data, which are used 
to assign a score to each element. Each element is classified into 
the relevant category or excluded depending on the score.  

3.3 GNSS/VINS estimator 

3.3.1 VINS 

After detection and tracking of the camera image feature and 
matching these features to the next image, a visual trajectory is 
constructed from SfM. It is required to align with IMU to recover 
the scale, velocity, gravitational acceleration, and IMU deviation 
(Zhu et al., 2019). However, every IMU rotation in the world 
coordinate system is required when the speed is updating; those 
IMU speeds and rotations in the world coordinate system are 
required when the translation is updating. Knowing that the IMU 
is in hundreds of Hz, it is unreasonable to update all the states 
every time. Therefore, the pose graph is defined by skipping 
frames, pre-integrate IMU between keyframes, and then 
representing most of the IMU measurements into a single pose 
constraint. 

IMU pre-integrations: utilizing the continuous-time 
quaternion-based approach as previously developed in (Qin et al., 
2018), with the inclusion of IMU biases as described in (Qin et 
al., 2019)(Qin & Shen, 2018). To avoid redundancy, this section 
provides a concise overview of our method in this section. 
IMU measurements, which are measured in the body frame, 
combine the force for countering gravity and the platform 
dynamics, and are affected by acceleration bias ܊ୟ, gyroscope 
bias ܊௪, and additive noise. It is postulated that the additional 
noise present in the measurements obtained from the acceleration 
and gyroscope instruments follows a Gaussian white noise 
distribution. Moreover, the biases associated with the 
measurements obtained from these instruments are represented 
as random walks, whose derivatives are modeled as Gaussian 
white noise. The raw gyroscope and accelerometer 
measurements, denoted as ෝ࣓  and ܉ො , respectively, can be 
expressed as functions of 

ො௧܉ ൌ ௧܉ ൅ ௔೟܊ ൅ ௪܀
௧ ௪܏ ൅ ௔ܖ

ෝ࣓ ௧ ൌ ࣓௧ ൅ ௪೟܊ ൅ ௪Ǥܖ (ͷ) 

This study assumes the acceleration and gyroscope 
measurements error follows a Gaussian white noise distribution. 
We use a random walk process to model the acceleration and 
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gyroscope biases, whose derivatives are also Gaussian white 
noise. 7R�SURSDJDWH�WKH�FRYDULDQFH�RI�WKH�RULHQWDWLRQ�DQJOHV�Į��ȕ��
DQG�Ȗ��ZH�XVH�HTXDWLRQV 

௕ೖశభࢻ
௕ೖ ൌ ׭ ԝ௧אሾ௧ೖǡ௧ೖశభሿ

௧܀
௕ೖ൫܉ො௧ െ ݐ௔೟൯݀܊

ଶ�����������������(6)

௕ೖశభࢼ
௕ೖ ൌ ׬ ԝ௧אሾ௧ೖǡ௧ೖశభሿ

௧܀
௕ೖ൫܉ො௧ െ Ǥ��������������������(7)ݐ௔೟൯݀܊

௕ೖశభࢽ
௕ೖ ൌ ׬ ԝ௧אሾ௧ೖǡ௧ೖశభሿ

ଵ
ଶ
ષ൫ෝ࣓ ௧ െ ௧ࢽ௪೟൯܊

௕ೖ݀(8)            ݐ 

The Equations 6, 7, and 8 are computed using only the IMU 
measurements within the time span ሾݐ௞ǡ ௞ାଵݐ ] between two 
consecutive frames ܾ௞ǡ ܾ௞ାଵ , where ܾ௞  is the reference frame 
given the bias. 

3.3.2 GNSS VINS Alignment 

Yaw offset: Three-dimensional position coordinates and 
quaternion are outputted by the VINS with the acceleration of 
gravity of IMU, the local frame can be aligned with the ENU 
coordinate system using two degrees of freedom. To recover the 
4-DoF local and global frames transformation, we aim to 
determine the yaw offset between the ENU frame and the local
world frame.

The alignment between VINS and GNSS uses WKH�9,2¶V�YHORFLW\, 
௏ூைܞ , and relative position of consecutive epochs from GNSS, 
and minimizes the cost function, 

������
ట

ቛ ଵ
ο௧
ሺܠ௧ାଵ െ ௧ሻܠ െ ா஼ாி܀

ாே௎ ாே௎܀
௟௢௖௔௟ሺ߰ሻܞ௏ூைቛ

ଶ
      (9)

Where ܀ா஼ாி
ாே௎  and ܀ாே௎

௟௢௖௔௟ሺ߰ሻ are the rotational matrix from ENU 
to ECEF, and local frame to ENU, respectively. After this step, 
the transformation between the ENU and local world frames is 
completely calibrated. Therefore, the final positions estimated 
are in a global frame. Although the yaw angle will change when 
every time the system restarts, the yaw offset estimation between 
the ENU and local world frames is needed. 

3.4 Factor Graph Optimization

The multi-sensor integration approach applied for the 
GNSS/VINS is FGO in a loosely coupled way. It is non-linear 
optimization represented in probabilistic graphical models and 
transformed into a factor graph to simulate the relationship 
between the poses and estimate their value. It can improve the 
accuracy of the system and mitigate drift and error accumulation 
issues. After the global and local frame alignment, the result will 
be further optimized. The VINS estimates are represented as 
factors in the graph, while the GNSS measurements are 
incorporated as constraints to optimize the estimates. 

Formulation of the FGO problem for pedestrian positioning: 

���
௫

ଵ
ଶ
σ ௜݌ ቀฮ ௜݂൫ݔ௜ǡ ǥ ǡ ௜ೖ൯ฮݔ

ଶቁ௜    �Ǥ �Ǥ      ௝݈ ൑ ௝ ൑ݔ  ௝�����(10)ݑ

Equation. 10 shown above, is Non-linear Least Square where ݌௜ 
is the loss function, ௜݂  is the cost function. First, define the 
parameter block ൫ݔ௜ǡ ǥ ǡ ௜ೖ൯ݔ  and residual block 

௜݌ ቀฮ ௜݂൫ݔ௜ǡ ǥ ǡ ௜ೖ൯ฮݔ
ଶቁ to compute the residual value. Then, set 

up all parameter blocks and residual blocks to build the problem. 
The solver used here is Ceres solver. The structure is shown in 
Figure. 3. 

Figure. 3 System state illustration. 

ܺ ൌ ሾ�
�
ǡ �

�
� [

�
� «� [

W
]                         (11)
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where p is position, v is velocity, and q is orientation 
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ฮ ௧݂
ீேௌௌฮ ൌ ฮܘ௧ீேௌௌ െ ௧ฮσ௧࢖

ଶ  ���������������������ሺͳͶ) 

ฮ ௧݂
ௌௐฮ ൌ ቛݏ௧ ௧݂ǡீேௌௌ ൅ ቀሺͳ െ ௧ሻݏ ௧݂ǡ௏ூேௌቁቛσ௧

ଶ
����������(15) 

The system states will be estimated in a set X in Equation to 
initialize the system. 11, xt is what we currently want to estimate. 
Each epoch we calculate is to estimate the position, velocity, and 
orientation. There are three factors, including the VINS factor in 
Equation. 13, the GNSSS factor in Equation. 14, and switching 
factor in Equation. 15. And we factories all measurement. 

כ� ൌ ௔௥௚௠௜௡
ଡ଼ σ ฮ ௧݂

௏ூேௌฮσ௧
ଶ ൅ ฮ ௧݂

ீேௌௌฮσ ௧
ଶ

௧ +ฮ ௧݂
ௌௐฮσ ௧

ଶ        (16) 

Finally, the whole problem is organized with a series of factors 
formulated by the estimation from VINS, GNSS, and Switching 
I/O. The optimum system state would be stated as Equation. 16 
after the estimation problem has been transformed and every cost 
corresponding to their specific measurement is minimized. To 
become optimal, the optimum system gives all measurements to 
be as the state at maximizes a posterior (MAP) (Cao et al., 2022). 
And it optimizes all states at the same time.  

4. EXPERIMENT

Figure. 4 Trajectory A          Figure. 5  Trajectory B 

In the experiment, there are two scenarios conducted in two 
places at Hong Kong Polytechnic University to assess the 
performance. The two scenarios, first scenario is starting from 
indoor, having a transition to outdoor and going back to indoor. 
Vice versa, the second scenario is starting outdoor, having a 
transition indoor and going back indoor. The trajectories A and 
B are shown in Figures 4, 5 respectively. This section compares  
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1. VINSMONO: (Qin et al., 2018) is a monocular visual-
inertial state estimator to obtain VIO

2. 3DMA GNSSVINS-IO FGO: Proposed method using
the monocular camera, 3DMA GNSS, IMU and FGO

3. 3DMA GNSSVINS FGO: Proposed method without
using the IO switching factor in FGO

4. 3DMA GNSS

4.1 Experiment Setup 

Figure. 6 Xiaomi Mi8 

We used the Xiaomi Mi8 smartphone in Figure. 6 to obtain the 
IMU, GNSS, and Image data in this experiment. There is a 
Triple-axis MEMS-IMU (TDK-InvenSense ICM-20690) at 
100Hz, GNSS receivers of Broadcom BCM47755 chip, and a 
1280 × 640 resolution monocular camera with 1.4 µm pixel size 
at 30 FPS equipped in the Mi8 smartphone. GNSS receivers have 
a Broadcom BCM47755 chip that receives GPS (L1+L5), Galileo 
(E1+E5a), QZSS (L1+L5), GLONASS (L1), Beidou (B1) at 1 Hz. 
In our system, the intrinsic and extrinsic parameters of the camera 
and IMU of Xiaomi are calibrated, and the window size is set to 
10, as same as VINS-Mono, but the loop closure function is 
disabled. The library chosen is Ceres for the optimization part. 
And the experiments conducted are executed on a desktop 
personal computer equipped with an Intel i9-9900K at 3.6 GHz 
and 31.2-GB memory. 

4.2 Experiment Results 

Table. 1 The RMSE of absolute positioning error along with the 
time and SVM accuracy comparison between 3DMA 

GNSSVINS-IO FGO, 3DMA GNSSVINS FGO, VINSMONO, 
and 3DMA GNSSin all experiments 

In general, GNSSVINS FGO provides the worst positioning 
performance with 4m or more. This is because the VINS-Mono 
accumulates the positioning drift to the operation time. After 
integrating the GNSS in the position solution domain, the 
positioning performance is improved to within 4 m average. 
Together with the IO switching factor, the RMSE of GNSSVINS-
IO-FGO outperforms others across all experiments. Also, It can 

be seen that trajectory A gets a relatively low accuracy result in 
IO detection than trajectory B. It is because trajectory A has a 
more complex environment than trajectory B. 

Figure. 7 The A1 absolute positioning error comparison. 

After that, this section also selects some of the experiment results 
as a case study. Figure. 7 shows the absolute positioning error of 
Experiment A1. It can be observed that the VINSGNSS-IO 
suppressed the positioning error in general. However, a wrong 
estimated covariance of 3DMA GNSS may degrade the 
optimization results, such as in epochs around 620 to 650 
(+1.677e9), due to the covariance cannot bound to the actual 
positioning error, FGO wrongly trusting the wrong 3DMA GNSS 
and degrades the performance. The VINSGNSS FGO even 
affected the performance seriously by the large GNSS error with 
small covariance occurring around 615 (+1.677e9), and the 
whole optimized result deformed. Besides, IO detection can 
VXFFHVVIXOO\� GHWHFW� WKH� *166¶V� ZRUVW� HSRFK� DQG� PLWLJDWH� WKH�
effect of large positioning errors. 

Figure. 8 The A2 absolute positioning error comparison. 

Figure. 8 shows the absolute positioning error of Experiment A2. 
It can be observed that the VINSGNSS-IO recovered the 
positioning while no GNSS signals. However, the VINS error did 
not be suppressed. Since it is added to FGO, the proposed method 
gets a worse result than 3DMA GNSS. 

Figure. 9 The B1 absolute positioning error comparison 

The third study is Experiment B1, the position error is shown in 
Figure 9. It can be observed that the VINS/GNSS integration can 
mitigate the drift caused by the VINS itself and provide a better 
positioning performance. After integrating the IO detection, the 
positioning performance is generally improved more than 
without IO detection.  

Experiment Algorithm RMSE(m) SVM 
TrajectorA 
Senario1 (A1) 

3DMA GNSS 
VINS FGO 

12.87 84% 

3DMA  GNSS 
VINS-IO FGO 

8.34 

VINS MONO 8.80 
3DMA GNSS 11.94 

TrajectorA 
Senario2 (A2) 

3DMA GNSS  
VINS FGO 

44.60 77% 

3DMA GNSS 
VINS-IO FGO 

18.63 

VINS MONO 37.47 
3DMA GNSS 13.00 

TrajectorB 
Senario1 (B1) 

3DMA GNSS 
VINS FGO 

6.80 94% 

3DMA GNSS 
VINS-IO FGO 

5.73 

VINS MONO 10.29 
3DMA GNSS 7.29 

TrajectorB 
Senario2 (B2) 

3DMA GNSS 
VINS FGO 

18.35 97% 

3DMA GNSS 
VINS-IO FGO 

3.91 

VINS MONO 13.86 
3DMA GNSS 8.20 
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Figure. 10 The B2 absolute positioning error comparison 

The last study is the B2 positioning error, the error plot is shown 
in Figure. 10. There is a large positioning error between times 
2,050 to 2,100. However, the positioning error can be 
successfully suppressed after integrating with GNSS. The result 
with IO detection can provide a generally better positioning 
performance, especially at epochs around 2,030. The peak 
positioning error is successfully suppressed, resulting in the 
overall positioning error of VINSGNSS-IO being much lower 
than the result without IO.  

Experimental validation: 

Figure. 11 LiDAR point cloud:   Figure. 12 LiDAR point cloud: 
Trajectory A                               Trajectory B 

LiDAR can provide precise positioning with centimetre-level 
accuracy, so we use it for ground truth referencing. This study 
used HDL 32E Velodyne LiDAR with 360 HFOV, +10 ~ -30 
VFOV, 80m range recorded at 10Hz, and the Tamagawa-
seiki TAG264 IMU model with a frequency of 50 Hz. Figures 11 
and 12 show the LiDAR point cloud generated by the LIO-SAM 
for two trajectories A and B, respectively. 

5. CONCLUSION
This study introduces a framework based on factor graph 
optimization that integrates local estimates derived from prior 
research on VIO and 3DMA GNSS measurements with an IO 
detection switch. The proposed system enables precise 
estimation of pose locally and eliminates global drift. To evaluate 
the performance of the system, The effectiveness of this system 
is demonstrated through real-world experiments, which produced 
notable outcomes. However, there are still some limitations. The 
training model is not applicable to all smartphone devices as there 
is only one smartphone used in the experiment. Since the dataset 
is only covered on the campus, there is still an unexplored area 
for dealing with different environments. It is believed that there 
will have improvements in resolving environmental factors in 
these dynamic and complex urban canyons. 
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