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ABSTRACT: 
 
3D indoor mapping is becoming increasingly critical for a variety of applications such as path planning and navigation for robots. In 
recent years, there is a growing interest in how low-cost sensors, such as monocular or depth cameras, can be used for 3D mapping. In 
our paper, we present an octree-based approach for real-time 3D indoor mapping using a handheld RGB depth camera. One benefit of 
the generated octree map is that it requires less storage and computational resources than point cloud models. Moreover, it explicitly 
represents free space and unmapped areas, which are essential for the robot's navigation tasks. In this work, on the basis of the ORB-
SLAM3 system (Campos et al., 2021), we developed an octree mapping system, which directly calls the keyframes and estimated 
poses provided by ORB-SLAM3 algorithms. Furthermore, we used point cloud library (PCL) for the dense point cloud mapping and 
then OctoMap for the point cloud to octree map conversion. Finally, we implemented an efficient probabilistic 3D mapping in the 
robot operating system (ROS) environment. We used the TUM RGB-D dataset to evaluate the estimated trajectories of the camera. 
The evaluation shows an average translational RMSE of 5.9 cm on the TUM RGB-D dataset. Besides, we also compared the ground 
truth point clouds and our generated point clouds. The result shows the mean cloud-to-cloud distance in the corridor scene is about 6 
cm. All the evaluation results show our proposed approach is a promising solution for advanced indoor voxel mapping and robotic 
navigation systems. 
 
 

1. INTRODUCTION 

With the increasing demand for robotics and autonomous 
systems, 3D indoor mapping is becoming more critical for 
various applications such as robot indoor navigation, building 
inspection, augmented reality (AR), and virtual reality (VR). 
Especially in complex and dynamic environments, to quickly 
generate and maintain accurate 3D maps with low-cost sensors. 
Due to the low cost and the intuitive approach to create a 3D map, 
many visual simultaneous localization and mapping (vSLAM) 
systems have been published in the past decades, such as LSD-
SLAM (Engel et al., 2013), RGB-D SLAM (Endres et al., 2014) 
and ORB-SLAM3 (Campos et al., 2021). 
 
This paper proposes an octree-based approach for real-time 3D 
indoor mapping using RGB-D video data. The proposed 
approach extends ORB-SLAM3 (Campos et al., 2021) algorithm 
with RGB-D video data captured by Intel RealSense D455 
camera to generate an octree-based voxel map in real-time. It 
utilizes an octree structure to divide the indoor space into smaller 
regions, allowing for efficient processing of data and reduced 
computational cost.  
 
The main contribution of this paper is that we extend the state-
of-the-art ORB-SLAM3 (Campos et al., 2021) algorithm to 
octree-based voxel mapping. We utilize an octree structure for 
spatial partitioning of 3D point clouds, enabling a real-time 3D 
indoor voxel mapping in a robot operating system (ROS). Our 
extended system can smoothly run with an Intel RealSense D455 
camera. We evaluate the extended system using TUM RGB-D 
benchmark dataset (Sturm et al., 2012) and a set of ground truth 
point clouds scanned by an industrial laser mobile mapping 
system.  
 

The experimental results demonstrate that the proposed system is 
effective in generating the octree map and occupancy grid map 
required for robot navigation in real time. This work provides a 
promising solution for indoor environment mapping tasks that 
require real-time performance and lightweight 3D mapping, 
which could be further applied in robotic indoor autonomous 
navigation, AR and VR applications. 
 
This paper consists of three main parts: 
 

1. We extend the ORB-SLAM3 (Campos et al., 2021) 
algorithm for real-time 3D indoor mapping using an octree-
based approach. 
 
2. We apply the proposed system and evaluate its accuracy and 
efficiency in real indoor environments with varying levels of 
complexity and clutter. 
 
3. We compare the performance of the proposed system with 
other advanced methods for 3D indoor mapping, in terms of 
accuracy and efficiency. 

 
This paper is organized as follows. Section 2 gives a brief review 
of the main algorithms in the field of RGB-D based SLAM. 
Section 3 describes the proposed octree-based indoor mapping 
system and its three main components. The evaluation of the 
proposed approach using datasets with ground truth is presented 
in Section 4, along with a discussion of the obtained results. 
Section 5 makes a conclusion of this work and provides an 
outlook on future research directions. 
 

2. RELATED WORK 

In the following, we review the literature related to RGB-D based 
SLAM systems, and highlight the main milestones achieved in  
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the field of RGB-D SLAM. 
 
The RGB-D camera-based SLAM algorithm was first proposed 
by (Henry et al., 2010). This paper explores the potential 
applications of such cameras in the field of robotics, particularly 
for the purpose of constructing dense 3D maps of indoor 
environments. The proposed algorithm detects features using the 
scale invariant feature transform (SIFT) (Lowe, 2004) method 
and extracts descriptors from two adjacent RGB frames. Depth 
information is then added to generate 3D-3D feature point pairs 
information. The random sample consensus (RANSAC) 
(Fischler and Bolles, 1981) method is utilized to align the 3D-3D 
matched point pairs and to derive the corresponding 
transformation matrix. The motion transformation is 
subsequently optimized using the iterative closest point (ICP) 
method (Besl and McKay, 1992). To achieve global optimization 
of the 3D map, the tree-based network optimizer (TORO) 
algorithm (Grisetti et al., 2008) is employed at the back end. 
Finally, the view-based loop closure detection is added to the 
algorithm to obtain globally consistent 3D maps. 
 
To overcome the slow processing speed of the SIFT method for 
feature extraction, an improved algorithm was proposed by 
(Henry et al., 2012). Instead of SIFT, the features from 
accelerated segment test (FAST) (Bay et al., 2006) method based 
on accelerated segments is used. Additionally, the sparse beam 
adjustment (SBA) method (Triggs et al., 1999), with better 
performance, is used for global optimization instead of the TORO 
algorithm (Grisetti et al., 2008). Furthermore, scene 
identification is used to improve the efficiency of loop closure 
detection. 
 
A handheld RGB-D SLAM system was developed by (Engelhard 
et al., 2011), from the Department of Computer Science at the 
University of Freiburg , utilizing a Kinect camera as a sensor. The 
feature detection and extraction of feature descriptors from RGB 
images are conducted at the front end of the SLAM algorithm 
using the speeded up robust features (SURF) algorithm (Bay et 
al., 2008). Feature matching is carried out between adjacent RGB 
frames, and the 3D spatial coordinates of matched feature points 
are calculated using depth information from the depth image. For 
motion estimation and optimization, the RANSAC method is 
used to estimate the motion between two frames, and a modified 
ICP method (Segal et al., 2010) is used to optimize the motion 
transfer matrix of the camera. The pose graph solver (Grisetti et 
al., 2010) is used to globally optimize the motion transfer matrix, 
resulting in the optimal global pose. The output of the system is 
a globally consistent 3D model of the perceived surrounding, 
represented as a colored point cloud. 
 
Later, (Endres et al., 2012) developed a new RGB-D SLAM 
system. In the new system, they proposed to use the open-source 
general graph optimization (g2o) library (Kümmerle et al., 2011) 
for global pose graph optimization to generate a global dense 3D 
model of the environment. Finally, the point cloud was converted 
into a voxel representation through OctoMap, an octree-based 3D 
mapping Framework. This resulted a volumetric 3D map of the 
environment, which can be utilized for robot localization, path 
planning, and navigation. In our research, we will compare with 
this RGB-D SLAM system in the context of trajectories 
estimation. 
 
To evaluate RGB-D SLAM algorithms proposed by researchers 
from various institutions and universities around the world, 
researchers from the Technical University of Munich and the 
University of Freiburg produced a standard RGB-D SLAM 
dataset (Sturm et al., 2012). They used a motion capture system 

to record the accurate and time-synchronized poses data of the 
Microsoft Kinect depth camera. These data are used as ground 
truth and can be compared with the poses estimated by the RGB-
D SLAM algorithms. The image sequences from the Microsoft 
Kinect depth camera contain both color and depth images at full 
sensor resolution (640 × 480) with a video frame rate (30 Hz). 
Finally, a total of 39 sequences were recorded across an office 
environment and an industrial hall to create the dataset. The 
dataset provides a diverse range of scenes and camera motions 
for analysis. The dataset has gained significant popularity and is 
commonly utilized for the evaluation of RGB-D SLAM systems. 
In our research, we also use this dataset for system performance 
evaluation. 
 
KinectFusion (Newcombe et al., 2011) is the first SLAM 
algorithm based on the Microsoft Kinect depth camera, which is 
capable of accurate real-time mapping of complex and arbitrary 
indoor scenes under different lighting conditions. Especially, it 
allows real-time reconstruction of dense surfaces. KinectFusion 
system is made up of four components, including surface 
measurement, surface reconstruction update, surface prediction 
and sensor pose estimation. Surface measurement as a pre-
processing stage to generate a dense vertex map and normal map 
pyramid. In their paper, KinectFusion relies on the Kinect camera 
to calculate the camera's poses and generate a 3D map of the 
environment, but the algorithm is not Kinect specific and can be 
applied to any RGB-D camera, including Intel RealSense depth 
camera.  
 
While the original KinectFusion is restricted to small-scale 
scenes, there are meanwhile extensions for large-scale. (Niesner 
et al., 2013) contributed an online system for large and fine scale 
volumetric reconstruction, their system extends a simple spatial 
hashing technique (Teschner et al., 2003) that compresses space 
and allows real-time access and update of implicit surface data. 
Surface data is only densely stored in cells where measurements 
are observed. In addition, surface data can be efficiently flowed 
into and out of the hash table, enabling further scalability during 
sensor motion. However, their approach is designed to be 
efficient for parallel graphics processing unit (GPU) hardware. 
 
ORB-SLAM (Mur-Artal et al., 2015) employs Oriented FAST 
and Rotated BRIEF (ORB) (Rublee et al., 2011) algorithm for 
feature detection and matching, sparse map creation, and loop 
closure detection. ORB-SLAM algorithm is lightweight and can 
therefore be run on a standard central processing unit (CPU) host. 
From a monocular SLAM system by incorporating support for 
stereo and RGB-D cameras (Mur-Artal and Tardos, 2017), ORB-
based SLAM systems have been continuously updated and 
improved in the past few years, with the release of ORB-SLAM3 
(Campos et al., 2021), ORB-SLAM3 has become one of the best 
performing feature-based SLAM systems that operates in real 
time, both indoors and outdoors. In our previous research (Hou 
et al., 2023), we have extended ORB-SLAM3 algorithm and 
implemented real-time tracking and 3D dense reconstruction 
using an Intel RealSense D455 camera. Based on our previous 
3D dense mapping work, we further extend ORB-SLAM3 
algorithm to an octree-based 3D mapping system in this paper, 
which can generate 3D voxel map of the environment in real time. 
 

3. METHODOLOGY 

As shown in Figure 1, the processing pipeline of our system 
consists of three main components: 1) ORB-SLAM3 based 
trajectory estimation for RGB-D cameras. 2) 3D dense mapping 
based on RGB-D data and poses of camera. 3) Octree-based 
indoor mapping with ROS in real-time. In the following sections, 
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we will describe the three main parts of our processing pipeline 
in more detail. 
 

 

Figure 1. Pipeline of our real-time 3D indoor octree mapping 
system, extended from ORB-SLAM3 (Campos et al., 2021). 
 

 
(a)  

 
(b)  

 
(c) 

Figure 2. Example of an RGB-D image sequence from input data. 
(a) RGB image. (b) Depth image with pseudo color. captured by 
Intel RealSense Depth Camera D455 (c). 
 

 
Figure 3. The estimated trajectory of Intel RealSense Depth 
Camera D455, it starts at blue and ends at red. 
 
3.1 ORB-SLAM3 based trajectory estimation for RGB-D 
cameras 

ORB-SLAM3 (Campos et al., 2021) is an accurate vSLAM 
algorithm that supports visual, visual–inertial, and multimap 
SLAM with monocular, stereo and RGB-D cameras, using pin-
hole and fisheye lens models. One major feature of ORB-SLAM3 
is visual-inertial SLAM, it relies entirely on maximum a 
posteriori (MAP) estimation, enabling robust real-time operation 
in a wide range of indoor and outdoor environments. In addition, 
ORB-SLAM3 is also characterised by its multiple map system, 
which provides excellent positioning accuracy, loop closure 
detection and relocalization capability. 
 
In our research, for RGB-D camera tracking and pose estimation, 
we rely on ORB-SLAM3 as it offers a good trade-off between 
speed and accuracy. ORB-SLAM3 system includes four main 

components: 1) Feature extraction and pose estimation. 2) Local 
mapping and local bundle adjustment. 3) Loop closure detection 
and map merging, followed by full bundle adjustment. 4) Altas 
is used to generate a unique DBoW2 (Gálvez-López and Tardós, 
2012) database of keyframes for relocalization, loop closing, and 
map merging. By performing these individual tasks in parallel 
threads, ORB-SLAM3 can achieve a globally consistent, long-
term tracking capability while maintaining a lightweight profile 
that can be run on a standard CPU. 
 
In our pipeline, we mainly use ORB-SLAM3 for estimating 
camera motion and processing keyframes derived from RGB-D 
videos. ORB-SLAM3 supports two different running modes, 
namely normal mode and ROS mode. The former involves using 
an RGB-D camera or RGB-D image dataset as input, while the 
latter involves using the ROS to process the input data obtained 
from an RGB-D camera. In this paper, we will conduct the 
octree-based mapping in ROS mode. 
 
3.2 3D dense mapping based on RGB-D data and poses of 
camera 

In the second stage of our pipeline, we perform a dense point 
cloud mapping based on RGB-D data and estimated camera 
poses. Here, we mainly use the powerful cross-platform open 
source point cloud library (PCL) proposed by (Rusu and Cousins, 
2011) to generate global point clouds. PCL implements a large 
number of common algorithms related to point clouds, such as 
acquisition, filtering, segmentation and surface reconstruction. 
 
In the first stage of the point cloud generation, we create a single 
thread to extend the ORB-SLAM algorithm, and then use a multi-
step process involving various algorithms. First, we invoke 
keyframes from ORB-SLAM3 and RGB-D information to 
generate local point clouds for each session. Finally, we 
transform these point clouds into a global map based on the 
estimated camera poses in keyframes. 
 
To improve the quality and accuracy of the point cloud mapping, 
we use a double-layer filtering method. In the first layer, we 
perform statistical filtering in the local map to remove outlier 
points. This filtering method identifies points that are too far from 
the mean of the local patches and removes them. This helps to 
improve the accuracy of the reconstructed 3D model by 
eliminating points that are unlikely to be part of the actual scene. 
In the second layer of filtering, we use voxel filtering in the point 
clouds to downsample the number of points in the point cloud. 
This filtering method reduces memory usage without causing 
significant distortion of the shape features of the 3D model. The 
voxel filtering algorithm divides the 3D space into voxels, 
keeping only one point per voxel. This reduces the number of 
points while retaining the general shape of the object. In this task, 
we set the voxel resolution to 0.01 m for downsampling. 
 
By using this multi-step approach with a double-layer filtering 
method, we have successfully carried out real-time 3D dense 
point cloud mapping with the Intel RealSense D455 camera. 
 
3.3 Octree-based indoor mapping with robot operating 
system (ROS) in real-time 

For the octree-based indoor mapping, we adopt the work of 
(Hornung et al., 2013) also known as OctoMap, which is an 
octree-based framework for efficient probabilistic 3D mapping. 
In addition, the real-time display of the octomap is achieved by 
means of the ROS visualization (RVIZ). ROS is an open source 
software framework widely used in robotics research and 
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Figure 4. Result of real-time 3D indoor octree mapping using RGB-D video. The ground truth data is scanned by an industrial NavVis 
VLX laser mobile mapping system. 
 
development. It provides a set of tools and libraries for building 
robot applications, such as communication mechanisms, and 
algorithms for perception, planning, and control. 
 
The input data for this algorithm is the voxel filtered point clouds, 
generated during the 3D dense point clouds mapping process. 
The objective is to generate a 3D model of the indoor 
environment in real-time using an octree data structure. The 
algorithm can be split into the following steps: 
 
1) Create a node object to communicate with other nodes in the 

ROS environment. This object allows the current node to 
subscribe to topics, publish messages, and interact with the 
ROS parameter server. 

 
2) After creating the node object, a publisher object is then 

created to advertise a ROS point cloud message 
“sensor_msgs/PointCloud2” to topic “cloud_in” as data 
input for octree mapping. The topic “cloud_in” should be 
the same as the topic in the octree server launch file. In 
addition, we empirically set the message queue size to 
100,000, which determines how many messages can be 
cached if the subscriber cannot keep up with the publishing 
speed. 

 
3) After the definition of a publisher object, a rate object with 

a frequency of 5 Hz is set, which is the loop rate of the node 
that was created in Step 1, this step ensures that the node 
runs at a consistent frequency, regardless of how quickly or 
slowly the loop computation completes. It is important for 
real-time applications and for maintaining efficient use of 
system resources. 
 

4) Using a 3D affine transformation matrix provided by the 
Eigen library to transform the inputted point clouds. This 
transformation is useful for aligning point clouds or 
correcting orientation differences. In this paper, it is used to 
adjust the pose of the currently acquired global point cloud. 
Eigen is a C++ template library for linear algebra. It is 
esigned to be fast, efficient and easy to use for numerical 
computation, particularly linear algebraic operations. 

 

5) After the affine transformation, we then use the method 
“toROSMsg” provided by PCL to convert the transformed 
global point clouds into a ROS point cloud message format. 
followed by setting the ROS frame ID. Using the publisher 
object created in step 2 to publish the ROS point cloud 
message format data to the topic “cloud_in”. 
 

6) Launch the octree server and start the octree mapping. The 
topic "cloud_in" will be subscribed by RVIZ so that the 
generated octree map can be visualised in real time. 
 

The above is the procedure of real-time octree mapping with the 
tool of OctoMap. In our research, the resolution of octree map is 
set as 0.05 m, the result is shown in Figure 4. 
 

4. EVALUATION 

To evaluate our system performance quantitatively. On the one 
hand, we use the TUM RGB-D benchmark dataset (Sturm et al., 
2012) to evaluate the translational root mean square error (Transl. 
RSME) in the estimated camera trajectory by comparing it with 
the ground-truth, as shown in Table 1. On the other hand, we 
apply our octree mapping system with the self-collected data 
scanned by a handheld Intel RealSense D455 camera. Figure 2 
shows our Intel RealSense D455 camera and example of an RGB-
D image sequence from input data. As the octree map is built 
from point clouds, the quality of the generated 3D point clouds 
directly affects the quality of the octree mapping, we also use 
ground truth 3D point cloud data to evaluate the generated 3D 
point clouds. The ground truth 3D point cloud data is scanned by 
an industrial NavVis VLX laser mobile mapping system. We 
evaluate the results with the software CloudCompare. All 
experiments are conducted on a computer with Ubuntu18.04 
operating system, AMD Epyc 7402p, 24-core processor, 256G 
RAM and NVIDIA RTX A4000 GPU. 
 
In this section, we first present the sequences we selected from 
the benchmark dataset for the evaluation of the camera trajectory, 
as shown in Table 1. Then, we detail the evaluation process and 
results, followed by a discussion of the results of our system for 
octree-based 3D indoor mapping. 
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Sequence 
Name Duration Length 

Avg. Transl 
Velocity 

Avg. Angular 
Velocity 

Transl. 
RMSE* 

Transl. 
RMSE 

fr1 xyz 30.09 s 7.11 m 0.24 m/s 8.92 deg/s 0.021 m 0.010 m 

fr1 rpy 27.67 s 1.66 m 0.06 m/s 50.15 deg/s 0.042 m 0.022 m 

fr1 360 28.69 s 5.82 m 0.21 m/s 41.60 deg/s 0.103 m 0.227 m 

fr1 floor 49.87 s 12.57 m 0.26 m/s 15.07 deg/s 0.055 m 0.043 m 

fr1 desk 23.40 s 9.26 m 0.41 m/s 23.33 deg/s 0.049 m 0.017 m 

fr1 desk2 24.86 s 10.16 m 0.43 m/s 29.31 deg/s 0.102 m 0.027 m 

fr1 room 48.90 s 15.99 m 0.33 m/s 29.88 deg/s 0.219 m 0.072 m 

fr1 plant 41.53 s 14.80 m 0.37 m/s 27.89 deg/s 0.142 m 0.019 m 

fr1 teddy 50.82 s 15.71m 0.32 m/s 21.32 deg/s 0.138 m 0.096 m 

Table 1. The statistical information on fr1 sequences of TUM RGB-D dataset. Duration, Length, Avg. translational velocity, Avg. 
angular velocity from TUM RGB-D dataset official website. Transl. RMSE* is the evaluation of RGB-D SLAM from (Endres et al., 
2012). Transl. RMSE is the evaluation of our octree-based 3D indoor mapping system.
 
4.1 Dataset used for evaluation 

TUM RGB-D dataset: The TUM RGB-D dataset is a large-scale 
dataset primarily for texturing office (named as “fr1”) and 
industrial hall (named as “fr2”) scenes. The dataset includes both 
color and depth images taken by the Microsoft Kinect camera, as 
well as the ground truth trajectory of the camera. The data was 
recorded at full frame rate (30Hz) and sensor resolution 
(640x480). The ground truth trajectories were obtained from a 
high precision motion capture system using eight high speed 
tracking cameras (100 Hz). In addition, the dataset also provides 
an automated evaluation script for comparing the estimated 
trajectory with the ground truth trajectory. 
 
In our research, we selected nine sequences of fr1 for evaluation. 
Among these selected sequences, as shown in Table 1, the 
sequences fr1/xyz and fr1/rpy are very simple and the result 
normally represents the best case. The rest of the sequences are 
more challenging as they cover a larger office space and more 
unstable camera movements.  
 
4.2 Evaluation of the estimated trajectory 

First, we evaluated our system on all fr1 sequences of TUM 
RGB-D dataset, see Table 1. However, because our octree 
mapping system is based on ORB-SLAM3 algorithm, it provides 
higher accuracy camera poses estimation, which will guarantee 
our system to achieve greater accuracy in the mapping process. 
For all sequences except the “fr1_360” sequence, the pose 
estimation results outperform RGB-D SLAM (Endres et al., 
2012). On the simple “fr1_xyz” sequence, we obtained the best 
value of 1.0 cm Transl. RSME error. Even in the challenging 
“fr1_room” sequence, it was still possible to obtain a 7.2 cm 
Transl. RSME error. We achieved the worst 22.7 cm Transl. 
RSME in “fr1_360” sequence, because this sequence contains a 
fast 360 degree turn, and it has a relatively high average velocity 
in terms of both translational and angular, this sequence is more 
challenging for the extended ORB-SLAM3 system.  
 
Overall, this evaluation shows that the extended ORB-SLAM3 
system is reliable, which can provide relatively high pose 
estimation for our real-time octree-based mapping. 
 

4.3 Evaluation of the mapping accuracy 

To verify the accuracy of the 3D dense point clouds mapping 
results, we use the point cloud data scanned by a high precision 
NavVis VLX mobile mapping system as ground truth to conduct 
a comparison experiment. We evaluate the mapping accuracy 
using tools on CloudCompare. First, we align point clouds 
through point pair picking, and then make a fine registration with 
the iterative closest point (ICP) algorithm. Finally, we compare 
the cloud-to-cloud (C2C) distances between the ground truth 
point clouds and our generated point clouds. All parameter 
settings are selected as default parameters on CloudCompare. We 
use 0.5 m and 0.2 m C2C absolute distance filters to downweight 
the influence of outlier points caused by noise, respectively. 
 
The evaluation result is shown in Figure 5 and Table 2, and the 
input RGB-D video stream details are shown in the Table 3. For 
the entire point cloud generated, the mean distance of computed 
distances is 7.4 cm, and the standard deviation of computed 
distances is 8.5 cm. We can see that in the left room scene, the 
distance error is large near the window without curtains. But 
inside the corridor, the accuracy of the obtained point cloud is 
higher. Then we filter out outliers with distances greater than 0.2 
m and recalculate the cloud-to-cloud distances, the obtained 
mean distance of computed distances is 5.8 cm, and the standard 
deviation of computed distances is 4.2 cm. In general, this 
evaluation shows the accuracy of our indoor dense point clouds 
mapping is good, although the 3D indoor scenes are not as 
complete due to the camera's perspective. However, the mapping 
accuracy is also affected by the way of the camera movement and 
the light situation of the environment, these are classical 
problems for visual SLAM. Here, we only focus on the mapping 
with an ideal camera moving state, the direction of D455 camera 
movement is shown in Figure 3. 
 

Filter by distance Mean Distance Standard Deviation 
No filter 0.074 m 0.085 m 

0.5 m 0.070 m 0.066 m 
0.2 m 0.058 m 0.042 m 

Table 2. The statistics of computed distances. 
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Figure 5. The comparison results of cloud-to-cloud distances between the ground truth point clouds and our generated point clouds. 
We use 0.5 m and 0.2 m C2C absolute distance filters to downweight the influence of outlier points caused by noise, respectively. 
 

Data Color point 
clouds Color octree  Octree 

Memory 46.6 M 6.7 M 288.6 kB 
Compression 

rate — 85.6% 99.4% 

Table 4. The memory representation of color point clouds map 
in pcd format, color octree map in ot format and octree map in bt 
format. M represents megabyte and kB represents kilobytes, 1M 
= 1024 kB. 
 
 

 
Sensor 

resolution 
Frame rate 

(FPS) Duration Length 

640 x 480 30Hz 153.8 s 35.28 m 
Table 3. The details about the input RGB-D video. FPS: Frames 
per second. 
 
4.4 The results of our octree-based 3D indoor mapping 

Eventually, we succeeded in mapping an indoor octree model in 
real time with a handheld D455 camera, the result of our octree-
based 3D indoor mapping is shown in Figure 4. As described in 
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the methodology section, we set the default resolution of the 
octree map to 0.05 m. As can be seen in Table 4, the octree 
structure provides a compact memory representation for efficient 
storage of maps. The memory of the color point cloud data is 
reduced from 46.6M to 6.7M and 288.6kB, with compression 
rates of 85.6% and 99.4% respectively. 
 

5. CONCLUSION & FUTURE WORK 

We present an octree-based approach for real-time 3D indoor 
mapping using a handheld Intel RealSense D455 camera. In this 
work, we extend the ORB-SLAM3 (Campos et al., 2021) 
algorithm to build large-scale octree voxel maps on the fly. For 
our indoor mapping system, first, we invoke the keyframes and 
estimated poses from ORB-SLAM3. Then we apply point cloud 
library (PCL) to generate 3D dense point clouds. Finally, we use 
OctoMap, an octree-based mapping framework, to construct and 
update the octree map based on the published point clouds topic 
in the robot operating system (ROS) environment. The real-time 
octree mapping of indoor environments can be further used for 
robot path planning and navigation. 
 
We evaluate our system on the TUM RGB-D dataset. The 
average translational RMSE on TUM RGB-D dataset is 5.9 cm. 
In addition, we use ground truth 3D point clouds to evaluate the 
accuracy of the dense point clouds generated by our system. 
However, the good accuracy of point clouds also ensures the high 
quality of the 3D octree mapping. 
 
During the evaluation of our system, we have also discovered 
some aspects that we need to further improve and verify. For 
instance, we just utilized the rough camera trajectory from ORB-
SLAM3 algorithm, without adding loop closure detection for our 
octree-based system. Moreover, the mapping results of 3D indoor 
scenes are not complete, and the point cloud processing still 
needs to be further improved. Therefore, in the future, we will 
mainly optimize our octree-based mapping system from the 
above aspects. 
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