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ABSTRACT:

Forests are irreplaceable and are being studied extensively. Better forest inventory and understanding necessitate effective mapping,
modeling, and automatic analysis. As a result, considerable research effort is being devoted to digitizing forest environments.
Recently, digital twins have come to the attention of the geospatial community as a virtual representation of the Earth’s surface
linked to its corresponding physical asset. This concept is applicable to forests and has been studied in the literature. This requires
initial input data obtained through reality capture. Among mapping techniques, laser scanning has emerged as a state-of-the-art
technology for vegetation modeling. In this paper, we look into the potential of mobile laser scanning for forest digital twinning.
While most studies concentrate on single tree detection, modeling, and estimation of dendrometric parameters, we also include
lower vegetation in our investigations. To accomplish this, we first detect single trees and then investigate different vegetation
densities and levels using geometric metrics. We also demonstrate how to model the underlying layers of vegetation in a digital
twin. We perform the tests on data from mobile laser scanning (MLS) and compare the results to those from airborne laser scanning
(ALS). We show that single tree detection based on crown separation using MLS data works similarly to or slightly better than ALS
data. Furthermore, we demonstrate that MLS data allows for more detailed analysis of understory vegetation taking into account
different height levels and a multi-level representation, whereas ALS data only allows for rough analysis of the lower parts of forest
vegetation.

1. INTRODUCTION

Forests are a large and important part of the natural environ-
ment, essential for clean air and water and a place of recreation.
As carbon sinks, they play an important role in the global car-
bon cycle, which is crucial for the self-regulation of the Earth’s
climate (Pan et al., 2011). At the same time, forests might be
seen as an important source of renewable resources, because
they provide lumber and are used for energy and material ap-
plications. As a result of the climate crisis, forests face chan-
ging water availability and temperature extremes. Understand-
ing resilience and changes in forests due to this stress is part of
current research.

In Germany, numerous federal states have produced an an-
nual report on the condition of their forests. For this pur-
pose, forestry experts go into the forest and collect data by
visually interpreting and manually measuring the trees (Nord-
westdeutsche Forstliche Versuchsanstalt and Hessisches Min-
isterium für Umwelt, Klimaschutz, Landwirtschaft und Ver-
braucherschutz, 2022). They concluded that many tree species
have difficulties coping with the changing climate over the last
few years, even species that have been native for hundreds of
years.

In order to better map and analyse forests as well as understand
the processes involving forests, there are attempts to digitize
forest environments. One of the elements of this digitization is
the reality capture part which is supposed to (1) create a model
of this environment; (2) monitor the changes in forests. Among
remote sensing sensors, LiDAR-based sensor systems turned
out to be one of the mostly used technologies to map vegetation
including forests.
∗ Corresponding author

1.1 Related work

LiDAR point clouds obtained by TLS (terrestrial laser scan-
ning), ULS (UAV laser scanning) and ALS (airborne laser scan-
ning) are a common source of information related to the geo-
metry of trees. In order to retrieve this information on the single
tree level, tree segmentation can be conducted (Weiser et al.,
2022). In such segmented point clouds, some geometric para-
meters, such as height, crown area or trunk perimeter can be
determined. In order to model the forest holistically, not only
trees, but also understory vegetation should be captured and in-
cluded in the model. The potential of TLS and ALS for extract-
ing lower vegetation in forests has been already presented in the
literature. (Huo et al., 2022) showed that TLS improves signi-
ficantly detection of shrubs when symmetrical structure detec-
tion is applied instead of local maximum detection. (Ferrara et
al., 2023) combine TLS and ALS to map understory vegetation
density.

Despite high quality of the data and its high potential for the
forestry, TLS can be applied only locally as a time-consuming
acquisition technique. In recent years, we observe rapid de-
velopment of terrestrial mobile mapping platforms, such as
vehicles, but also backpacks or hand-held devices. Their ap-
plication for reality-capture tasks in forest environments can
open new possible views on forest vegetation including trees
and bushes. Extending the regular inspections by forestry ex-
perts with such mobile mapping systems could improve the ef-
ficiency of the survey and bring new possibilities to model the
forests.

Instead of visual interpretation and specific manual measure-
ments by human effort, technological advancements meanwhile
allow the use of backpack mobile mapping systems for acquir-
ing a dense 3D point cloud by simply walking through the
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scene. Such backpack systems typically involve one or more
laser scanners (Nüchter et al., 2015, Blaser et al., 2018) and
have also been proposed for the acquisition of a 3D counterpart
of a forest area (Blaser et al., 2020, Blaser et al., 2021, Hartley
et al., 2022). The acquired 3D data can in turn be interpreted by
means of automated processes and deliver relevant information
for creating a digital twin of a forest. For this purpose, standard
geometric 3D features may be used (Weinmann et al., 2017a,
Weinmann et al., 2017b). These may contain metrics derived
from the eigenvalues of the 3D structure tensor, e.g. in terms of
linearity, planarity, sphericity, omnivariance, eigenentropy, an-
isotropy, sum of eigenvalues or surface variation. Furthermore,
other geometric properties like height differences or standard
deviations of height values may be taken into account. Fea-
tures specifically dedicated to forest environments have been
addressed with descriptors related to height, cover, and struc-
tural complexity of an ecosystem (Valbuena et al., 2020, Coops
et al., 2016), a combination of radiometric information as well
as descriptors of vegetation cover, height and vertical variabil-
ity (Koma et al., 2021, Moudrý et al., 2023), structural metrics
derived from LiDAR returns from canopy and terrain features
(Carrasco et al., 2019), or a combination of landscape compos-
ition, fragmentation and configuration metrics (Zieba-Kulawik
and Wezyk, 2022). Such features may in turn be used to en-
rich acquired 3D data with semantics up to tree level, to reason
about essential biodiversity variables, or to conduct systematic
and regular monitoring for assessing forest condition and vul-
nerability.

1.2 Contribution

In this study, we investigate the advantages of LiDAR-based
mobile mapping systems (MMS) in forest inventory tasks com-
pared to airborne laser (ALS) scanning as well as discuss their
complementary properties. For this, we investigate state-of-the-
art methods to extract vegetation levels as well as individual
trees and vegetation geometric information, which are used as
processing steps for digital twinning of forests. In contrast to
other studies (Liang et al., 2016, Nit, ă, 2021), we apply those
methods to mobile laser scanning (MLS) and ALS data and
compare the results, particularly regarding the detectability of
bushes and shrubs. For this vegetation layer, we also propose
and analyse a data preparation approach for digital twins. Fi-
nally, we investigate and discuss the potential of fusing the ALS
data with MLS data to combine their advantages.

2. METHODS

In this work, we outline and discuss digital twinning of forests
based on a literature review and implement an exemplary
pipeline. In particular, we investigate two approaches to seg-
ment the forest and park areas. First, we investigate the com-
mon segmentation approaches for extracting individual trees
and derive the information such as tree height and width Then,
we investigate different geometric metrics and divide point
clouds into different vegetation densities and levels. The goal
of this investigation is to show the potential of this approach
to detect bushes and shrubs. Finally, we register airborne data
with mobile mapping data in order to investigate the compli-
mentarity between both data modalities.

2.1 Digital twins of forests

A digital twin can be considered as the digital counterpart of a
physical asset. According to (Grieves, 2014), the digital twin

concept model comprises a) the physical asset, b) the corres-
ponding virtual asset, and c) the connections that link the vir-
tual and real assets to each other. Thus, a digital twin extends
a digital model by its connection to the corresponding physical
counterpart.

Regarding the creation of a digital twin of a forest, a digitiza-
tion of the given ecosystem including different entities and un-
derlying processes is required. In this regard, there are differ-
ent opportunities that depend on the given application and thus
may vary with respect to numerous factors such as the used
input data, the defined representation, the level of detail, the
considered entities or the considered processes. For instance, a
2D representation of large forest areas may be used for address-
ing large-scale applications related to the benefits of a forest for
the local climate. On the other hand, for instance, a detailed
3D representation of a forest area allows for considerations on
both tree level and forest level. On tree level, relevant charac-
teristics are given by tree position, tree species, tree height, tree
structure, stem curve, diameter at any height, or microhabitats.
On forest level, relevant characteristics could be represented by
the number of trees, tree cadaster, relative occurrence of tree
species, biomass distribution or health condition, but also the
composition of different layers could be meaningful.

In the scope of this work, we are mainly interested in the middle
layer of forest vegetation which comprises shrubs and bushes.
The latter are important for many aspects such as flooding
(Leyer et al., 2012) and wildfire simulations or observation of
rejuvenation of forest trees. Hence, we need to focus on the
acquisition of detailed 3D data which is achieved by the use of
a backpack-based mobile mapping system. The acquired data
in turn needs to be enriched by semantic information, e.g. ad-
dressing single trees and their characteristics. Accordingly, a
segmentation of single trees as well as the assessment of tree
top and tree canopy could be important, but also the analysis of
different layers of the forest.

2.2 Segmentation and tree top detection

In order to detect single trees in point clouds, typically meth-
ods based on segmentation are utilized. We select an approach
which separates the ground points, detects tree tops and seg-
ments the point cloud into single trees.

For this, we select the forest area from ALS point cloud, then
use the simple morphological filter (SMRF) algorithm (Pingel
et al., 2013) to segment ground and non-ground points and ex-
tend it with Delaunay triangulation to estimate the ground level
at each point in the ALS point cloud data. Then, we normal-
ize the elevation of each point by subtracting the interpolated
ground elevation from the original elevation.

Subsequently, we generate the Canopy Height Model (CHM).
For this, we use the previously normalized elevation values and
exclude lower and medium vegetation. Then, we use a local
binning algorithm which divides the point cloud into a xy-grid
and we create a binary marker image with tree top locations and
filter the CHM complement by minimal imposition to remove
minima that are not treetops (Pitkünen et al., 2004). Finally,
we use marker-controlled watershed segmentation (Chen et al.,
2006) to segment individual trees.

2.3 Forest layer analysis

The classical approaches for detecting single trees, such as the
method presented in Sec. 2.2, exclude low and medium ve-
getation (typically points below 2 m) in order to improve the
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Table 1. Overview of selected metrics

metric definition source
roughness Local curvature behaviour (Wilke, 2002)
normal change rate Angular change between normals (Wilke, 2002)
sphericity λ3 ÷ λ1, with eigenvalues λ (Chehata et al., 2009)
volume density n points per radius

results by avoiding noisy input data. Consequently, forest mod-
els based on such approaches would lack important information
about the vegetation layer including shrubs and bushes.

Forest can be distinguished into different height levels. The first
level of low vegetation (typically below 0.5 m) consists mainly
of grasslands and meadows. The second level, medium vegeta-
tion (typically 0.5 m - 2 m), includes mainly shrubs and bushes.
The third level of high vegetation (above 2 m) consists of trees.
Simply cutting the point cloud into slices of those levels might
not be the optimal approach, since the tree stems and parts of
the shrubs can also be represented by points below 2 m.

In this study, we define the height level classes dynamically
by observing the border between the vegetation levels in the
given data rather than choosing a fixed height. As shown in
(Goebel et al., 2023), geometric metrics calculated on the 3D
point cloud, such as normal change rate, planarity, sphericity,
linearity and surface variation, differ depending on height levels
of forest vegetation.

All metrics depend on a radius r which describes the included
spherical neighborhood and has to be selected according to the
point density. If a point has less than two neighbors in the
defined neighborhood, the metric cannot be calculated and this
point is not included in the results. This way, outliers are auto-
matically excluded. If the radius is too small, the parameters
for many points cannot be calculated, because there are not al-
ways 3 points within the radius. In addition, the informative
value about large-scale structures is reduced. If the radius is too
large, subtleties of the point cloud will not be represented, such
as distinctions between trail and grass areas. A uniform radius
over all metrics favors good comparability.

In this research, we select the metrics roughness, sphericity,
volume density and normal change rate for our investigations
(Tab. 1). Roughness describes local curvature behaviour of the
curves and surfaces, or deviation from the plane. The normal
change rate represents angular change between the normals of
local surfaces. The degree to which an object’s shape resembles
that of a perfect sphere is determined by the sphericity.

In order to create a model for understory vegetation, we slice
the point cloud and rasterize our data in each slice. We con-
duct this only for slices representing the medium vegetation. In
some sense, we voxelize the space with understory vegetation,
whereas the voxels are not restricted to be cubes. Each voxel
gets assigned the metric value which is calculated as average
value of all points being within this voxel.

2.4 Extraction of lower vegetation

As the result of the layer analysis, we observed, that the geo-
metric metrics are useful for separation of different parts of ve-
getation. Sphericity, for instance, is helpful to separate parts of
the point cloud with very low vegetation, such as meadows as
well as tree stems, from those not belonging to vegetation, such
as ground. The value of sphericity for those surfaces is lower

than those for shrubs, bushes and tree crowns. Volume dens-
ity, instead, helps to separate tree crowns from the understory
vegetation by excluding points with a low volume density.

We propose a method for extracting medium vegetation that is
based on sequential sphericity and volume density thresholding
with an adaptive threshold. At this stage of the research, the
adaptive threshold is empirically extracted from the graph that
displays the metric change over height, but this step has a high
potential for automation.

2.5 Coregistration of MLS and ALS data

In order to compare or use MLS and ALS data together, they
must be represented in the same coordinate system. Direct geor-
eferencing of the MLS data is often not sufficient for direct
fusion of ALS and MLS data. Thus, we perform a coregis-
tration procedure. Having approximate georeferencing of the
point cloud from GNSS data, a procedure for the refinement is
needed. For this, we use the iterative closest point (ICP) ap-
proach (Besl and McKay, 1992). The coregistered data is used
to investigate the complementarity of the ALS and MLS data.

3. EXPERIMENTS

3.1 Data acquisition

For the experiments, two data types were used: ALS and MLS.

The ALS data was collected and processed by order of the State
of Hesse and published by this institution. ALS data is avail-
able as digital surface model (DSM) and seven-responses point
cloud (ALS-7R). For our investigations in this study, we se-
lected ALS-7R data, because it penetrates the vegetation and
points related to bushes and shrubs are included. ALS data was
collected in the winter months of 2016.

The MLS data was collected using a multi-sensor backpack, in-
cluding two Velodyne VLP16 LiDAR and an Xsens Mti 700
IMU (Internatial Measurement Unit). With this mobile map-
ping system we collected data beneath the canopy. The MLS
data was collected in 2022 in multiple measurements between
summer and winter. In this paper, we selected subset of the
data from August 2022 as representation leaf-on data in sum-
mer months and from December 2022 as representation of leaf-
off data. More specifically, we use three following subsets of
the data: (A) point cloud collected in August 2022 in a park
with low density vegetation; (B) point cloud collected in Au-
gust 2022 in a forest with high density vegetation; (C) point
cloud collected in December 2022 in a park with medium dens-
ity. All data is situated in Darmstadt, Germany. Forest layer
analysis is conducted with all three subsets. Comparison with
ALS data is conducted using only winter data in order to ensure
comparability with ALS data,which was collected in winter.

3.2 Data selection

For the presentation of the results and the evaluation we selected
an area, for which MLS and ALS were available. After co-
registration, exactly the same area was cut out from MLS and
ALS data (Fig. 1). The number of points in the MLS data
is about 13 million and for the ALS data about 100 thousand
points.
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Figure 1. Selected study area. MLS (test area C) colored in
height (blue to red) and ALS point cloud, uncut, colored in

height (black to white).

Table 2. Result on quality investigation of MLS point cloud.

Reference height Mean measured height RMSE Standard deviation
1.99 m 1.89 m 0.16 m 0.14 m

3.3 Implementation

For single tree detection, we used in Matlab the functions from
the LiDAR Toolbox. Points below 2 m in height were excluded
before generating the model. To implement the forest layer
analysis and coregistration, we used the software CloudCom-
pare. The radius for calculating the geometric metrics was set
to r = 0.5 m for MLS and r = 1 m for ALS with regard to
the point density and expected size of object details. For the
extraction of lower vegetation, we used sphericity and excluded
values below 0.2. Hereafter, we calculate the volume density
with a radius r = 2 m and excluded points with volume density
values ≤ 300.

4. RESULTS AND EVALUATION

4.1 Quality investigations of MLS point cloud

In order to investigate the quality of the MLS data, we perform
precision investigation in the measured point cloud. For this
purpose, we select an object, which is easy to identify in the
point cloud. We select a fence from our data set and meas-
ure it five times in the point cloud. The reference height was
measured with a ruler in the field during the data acquisition.
From those measurements, we calculate mean height, RMSE
and standard deviation (Tab. 2). Calculated RMSE and standard
deviation define the measurement precision of about 14−16 cm.
We can see, that the difference in the measured mean height
measured in the point cloud and the reference height (10 cm) is
within the measurement precision.

4.2 Results on single tree detection

First, we perform tree top detection and single tree segmenta-
tion on both selected test data sets: MLS and ALS. Results of
this segmentation are presented in Fig. 2.

In the ALS point cloud 31 trees were detected, compared to
MLS point cloud with 27 tree tops. However, when comparing
the results in detail, we can see that the algorithm groups the
tree differently. This is highlighted in Fig. 2 with white and
orange circles. As shown from the side in the highlighted part
of Fig. 2 (bottom, white circle), the three individual trees in
MLS point cloud are recognized and segmented well, while in
ALS point cloud, there is one tree recognized as two.

Figure 2. Single tree segmentation results, test area C

Table 3. Number of detected trees

ALS MLS Manual1 Manual2
31 27 29 28

To verify the results of the automatic tree detection, we coun-
ted the trees twice manually with the result of 29 and 28 trees
respectively (Tab. 3).

The difficulty with the manual counting of the trees and, con-
sequently, differences in the two independent attempts is related
to the fact, that in the test area, many trunks are split very close
to ground and it is not easy to decide visually, whether it is
one or more trees. Besides, in this area, many tiny bushes are
present, which can be also confused with trees.

Furthermore, we observed that large trees are correctly segmen-
ted in both data sets. Most problems with segmentation oc-
cur when trees are close to each other. Additionally, the MLS
data contains more information about the vegetation beneath the
canopy, as it was collected from the ground. This supports the
decisions made during the segmentation computation. How-
ever, in this process, lower vegetation is not regarded as the
focus lies in the segmentation of trees.

4.3 Results on forest layer analysis

To analyse the understory vegetation, we calculated simple geo-
metric features. We have cut point clouds into 0.5 m thick
slices, to see changes of the metric values based on height.
Fig. 3 shows results on normal change rate calculation using
MLS in park and in forest environment and its distribution over
height. In the first one meter, the normal change rate value in-
creases drastically. In both data sets, a drop of this value can
be observed between 2 and 4 m height. Above 6 m the value
stays stable with exception of few values close to maximum
height. We observed in our investigations, that normal change
rate and sphericity behave the same way, as they both describe
curvature, and thus can be utilized in a similar way.

We calculate sphericity and roughness on the same point cloud
as used in the tree segmentation. The results are shown in
Fig. 4. The outcome is similar to the one in (Goebel et al.,
2023). Focusing on the lower vegetation, we cut out the point
cloud from 0.5 m to 2 m, which is the middle vegetation defined
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Figure 3. Normal change rate (radius = 0.5) based on the MLS
point cloud in the Park (MLS subset A) and Forest (MLS subset

B): Results based on height (top), visual results in the park
(middle) and visual results in the forest (bottom). Histograms of
the value distributions are depicted on the righthand side of the

legends.

above. Fig. 5 shows that sphericity can be well used to distin-
guish ground and low vegetation. On the contrary, the metric
roughness does not have a strong difference between ground
and vegetation.

Based on the calculated metrics using MLS, we generate an un-
derstory vegetation model of the vegetation from 0.5 m to 2 m.
We divide the data in three 0.5 m slices and rasterize each slice
with 0.5 m pixels size. For comparison, we generate the same
results for metrics calculated using ALS data. Here, however,
due to the much lower point density we rasterize the slices with
a 1.0 m raster. The results of this process are shown in Fig. 6 on
the example of sphericity.

4.4 Results on extraction of lower vegetation

Finally, Fig. 7 depicts the extraction of the lower vegetation.
The point cloud is reduced from 13 million to 5 million points

Figure 4. Point clouds (MLS subset C) colored by the metrics
sphericity and roughness, with the radius in brackets. (first row)

The point clouds are colored by height.

Figure 5. Lower vegetation colored in sphericity and roughness,
with the radius in brackets. The point clouds (MLS subset C)

include heights from 0.5 m to 2 m.

following the first split based on sphericity. The point number in
the second split, which is based on the point volume density, is
close to 950 thousands. The values of the metrics are preserved
even after the point cloud has been reduced. The resultant point
cloud is shown in the figure, colored once more in sphericity.

4.5 Results on coregistration

For the evaluation of the coregistration, we use Hausdorff Dis-
tance (HD) and Mean Hausdorff Distance (MHD), which de-
scribes the distance between two point clouds. After coregistra-
tion using the ICP approach, HD = 7.5 m and MHD = 1.2
m.

5. DISCUSSION

Single tree detection works well with both data sets: MLS and
ALS-7R. The methodology used in this paper was developed to
cope with airborne data. Therefore, such advantages of MLS
data, as dense point cloud and high level of detail in the bottom
part, remain unused. The algorithm focuses on the tree crowns
and the borders between them. In addition, all points below
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Figure 6. Rasterized point clouds (MLS subset C) colored by sphericity (values from 0.13-0.40). Pixel size 0.5 m MLS and 1 m ALS.

Figure 7. Low vegetation extraction result on MLS point cloud
C. Background is the whole point cloud (MLS subset C) colored

by sphericity as grey scale.

2 m are removed. Yet the segmentation of MLS point cloud
works comparable, or even better than segmentation of ALS
point cloud.

In Fig. 8, we can see the errors in the segmentation of MLS
point cloud, which are related to the reasons mentioned above.
In the first example in Fig. 8 (top), a single tree was recog-
nized and segmented as two trees. Considering points below
2 m would help to understand the geometry of the tree and seg-
ment this tree as one object. In the second example (bottom) a
single tree is well segmented, but some branches of other trees
were added to this tree. Here, algorithms which trace the branch
structure would be helpful for better segmentation of the trees.

This shows the need for further development of the methods for
single tree detection for MLS data, which focuses on stem de-
tection and modelling rather than on crown separation. Stem

Figure 8. Two cases of segmentation results for the MLS point
cloud (subset C). Point cloud coloured by intensity (left) and

segmented into single trees (right).

diameter is an important tree parameter to be included in a di-
gital model of the forest, which can be obviously better meas-
ured in MLS data. Although our MLS is a ground based ap-
proach and the highest point density is about the ground, still
the crowns can be entirely captured and their shape can be mod-
elled. We can observe in our examples that this applies for
winter and summer data sets. In our case, the average point
density of MLS is more than 100 times higher than of the ALS-
7R point cloud, which enables this high level of detail also at
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the tree tops. This shows that path planning is important for
using mobile mapping systems in the forest, since it determines
the point cloud density, its level of detail and it can help to avoid
occlusions.

The main advantage of MLS for forest modelling, however, is
its much higher level of detail regarding the lower and medium
vegetation. Using MLS, bushes and shrubs can be better cap-
tured and also appropriate vegetation models can be developed.
A first analysis shows that the metrics planarity, normal change
rate and sphericity are useful for a separation between ground
and vegetation. A separation between medium and high forest
vegetation can be done well in a low density forest.

To further use the results of the forest layer analysis, the repres-
entation shown in Fig. 6 can be very useful. Here, the vegetation
properties, in this case sphericity of the point cloud, can be rep-
resented in a handy way and can be used as input for simulation
of different processes (e.g. flood simulation). In these results,
we can see that MLS delivers much more information regard-
ing the underlying vegetation levels, as compared to ALS data.
The differentiation in 0.5 m slices can be reasonably done only
in the MLS point cloud, as such refined slicing causes gaps in
ALS data.

Because the ALS data was collected from above the canopy,
the lower vegetation is not included in detail. However, ALS
can cover a much larger area in one campaign, than a mobile
mapping platform in the same time. Fusion of those two data
sets has potential to improve large-area ALS-based acquisition
and extend them with MLS data for selected areas of interest.

The achieved results for coregistration are acceptable for the
test area selection, as described Sec. 3.2, but for a fusion of
both data sets, an accuracy improvement would be needed.

Moreover, a further investigation on the reason for the still high
HD after coregistration could be helpful. It should be con-
sidered that the ALS data originate from 2016 and the MLS
data from 2022. Already this time discrepancy would cause
differences in the point cloud which can explain the remaining
error.

6. CONCLUSION AND OUTLOOK

In this paper, we investigated the potential of MLS to create
digital twins of forests. In particular, we focused on the me-
dium vegetation, such as shrubs and bushes. We observed
that the main advantages of MLS is its very high point dens-
ity compared to ALS-7R, which was about 100 times higher
in our case. Although this data acquisition type is ground-
based, the crowns and tree tops are mapped completely enough
to use tree segmentation approaches based on crown segment-
ation designed for ALS data. At the same time, ground-based
acquisition allows for detailed mapping of tree stems, bushes
and shrubs. We showed that using MLS allows for a slice-wise
analysis of forest vegetation, while ALS-7R data enables only
rough analysis of the lower parts of a forest’s vegetation. In case
of MLS, we observed that using geometric metrics can contrib-
ute to dynamically separate different vegetation levels, instead
of using predefined height thresholds.

Much more research is needed to find out, which geometric
metrics represent the data the best, according to a particular
application. For flood simulation, for instance, the force of ve-
getation to water flux is of high interest (Wunder et al., 2011).

In the future, it should be investigated which of the metrics or
which combination would deliver the most reliable simulation
results. Furthermore, for digital twinning, more flexible data
storage and access are needed. Newest developments in this
field include data spaces (Gaia-X, 2023), which should also be
considered in future work.
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V., Gdulová, K., Malavasi, M., Rocchini, D., Stereńczak, K.,
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