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ABSTRACT: 

 

Recent works have attempted to extract features such as road markings from sparse mobile LiDAR scanning point cloud-derived 

images via convolutional neural networks (CNN). In this paper, the use of such methods for ground segmentation was explored. To 

begin, point clouds from each channel will be projected onto the y-z plane to generate the images that will be used for training and 

testing the CNN model. Then, for the main workflow, the following steps were performed for each channel: (1) point cloud-to-image 

conversion; (2) CNN classification; and (3) image-to-point cloud projection. Then utilizing multi-threading, each channel is processed 

in parallel to generate our ground-segmented sparse point cloud. Our findings have shown successful ground segmentation, achieving 

an f1-score of 98.9%. However, it performed 27.81% slower as compared to RANSAC. Overall, this initial investigation has 

demonstrated that ground segmentation from sparse point cloud-derived imagery is possible, and with further improvements to the 

CNN model, to make it faster, it has good potential to act as an alternative to conventional point cloud processing. 

 

 

1. INTRODUCTION 

1.1 Background 

Recent research has attempted to extract features from sparse 

point cloud-derived images using convolutional neural networks 

(CNN) generated by low-cost mobile light detection and ranging 

(LiDAR) scanning. One example is the extraction of road 

markings such as lane lines and crossing marks that return 

relatively high intensity values (Lagahit & Matsuoka, 2023). The 

successful extraction of features from sparse point clouds enables 

the usage of low-cost LiDARs which leads to a more practical 

alternative for mobile mapping tasks, especially for those that 

monitor and track changes in dynamic environments. 

 

An essential task for mobile mapping is the extraction of the 

ground surface. This enables the generation of digital terrain 

models (DTM), a digital elevation model (DEM) that represents 

the ‘bare earth’ (Guth et al., 2021). It also provides the necessary 

information for roadway-related tasks such as road surface 

extraction, object detection, and asset management, to name a 

few (Ma et al., 2018; Elhashash et al., 2022).  

 

Common methods for ground surface extraction include 

successions of gridding and thresholding (Wu et al., 2016; Yadav 

et al., 2018; Lim et al., 2021). All of these, are related to iterations 

of forming a planar surface and determining which points fit or 

are close to it. In areas where surface (including vegetations and 

infrastructure) elevations greatly vary this approach faces 

difficulty and compensates by minimizing the sampling area to 

form the reference plane. As such, it is intriguing to see the 

performance of CNNs, which have been demonstrated to work 

well in situations where conventional methods struggle (Lagahit 

& Matsuoka, 2023). 

 

1.2 Objective 

This work explores ground segmentation from sparse point 

cloud-derived cross-sectional imagery using CNNs, conducting 

parallel classifications on each LiDAR channel. To accomplish 

this goal the following have been done: (1) The resulting CNN 

predictions on the images, using a variety of loss functions to 

improve performance, were evaluated; (2) The running time of 

the implemented procedure in comparison to conventional 

methods was examined; and (3) the resulting ground segmented 

point clouds were investigated.  

 

2. METHODOLOGY 

2.1 Dataset Gathering and Preparation 

The point cloud scanning was obtained by mounting a Velodyne 

16-channel LiDAR in front of a vehicle tilted 45 degrees 

downward. It was done on the roads of the Ookayama campus, 

Tokyo Institute of Technology. To reduce unnecessary points 

such as those of trees, the point cloud was filtered to retain only 

an area in front. It is then projected to the y-z plane with intensity 

as pixel values, to produce a cross-sectional or profile-view 

image of the road with a ground resolution of 4 by 4 centimeters 

and a size of 512 by 64 pixels, as shown in Figure 2-1.   

Figure 1-1. A sample generated point cloud-derived image. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W1-2023 
12th International Symposium on Mobile Mapping Technology (MMT 2023), 24–26 May 2023, Padua, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-221-2023 | © Author(s) 2023. CC BY 4.0 License.

 
221



 

The images are then manually labeled into three classes: ‘black’, 

‘others’, and ‘ground’, as can be seen in Figure 2-2. The ‘ground’ 

class, the green pixels, represents the target ground points. The 

‘others’ class, the red pixels, represents all other point features. 

The ‘black’ class or pixels, represents the regions with no 

corresponding value in the point cloud. 

 

Table 2-1 shows the distribution of images in the training, 

validation, and testing datasets, which are composed of pairs of 

intensity and labeled images as well as the number of class pixels. 

It can be observed that our target class accounts for roughly only 

10% of the datasets while the black class, which has no value, 

makes up nearly 72%. This severe class imbalance can pose to be 

a challenge to the performance of the CNN model in obtaining 

good segmentation results. 

 

Table 2-1. Dataset statistics. 

Dataset 
Number 

of Images 

Number of Pixels per Class 

Black Others Ground 

Training 30,720 71.11% 17.78% 11.11% 

Validation 7,680 71.51% 17.89% 10.60% 

Testing 4,800 71.24% 17.81% 10.95% 

 

2.2 Model Training 

The Fast-SCNN model will be applied in this experiment. This 

CNN model, which is seen in Figure 2-3, has been developed for 

real-time segmentation utilizing recent developments, such as 

pyramid pooling, bottlenecks, and feature fusion (Poudel et al., 

2019). It was able to outperform U-Net in terms of prediction 

speed by up to 15 times (Lagahit & Matsuoka, 2023). 

 

Additionally, to improve performance on a severely class-

imbalanced dataset, varying loss functions will also be tested. 

During model training, in general, the loss function guides the 

CNN by calculating differences between predictions and masks 

to adjust the network weights accordingly (Wang et al., 2022). 

The loss functions that have been implemented, such as the 

weighted cross-entropy, focal, focal dice, and combo loss 

functions, were developed to focus on harder class features.  

A computer with an 11th Gen Intel i7 processor and 32 GB of 

memory has been used. A batch size of 16, an Adam optimizer, 

and a learning rate of 0.0001 were used in model training. 

Furthermore, a total of 100 epochs were performed for each test, 

using the model at an epoch with the lowest loss value.  

 

2.3 Segmentation Workflow 

The entire segmentation procedure is shown in Figure 2-4. It 

takes in the sparse point cloud and results in a classified, ground 

and non-ground sparse point cloud. Firstly, similar to how the 

dataset for CNN training and testing was prepared, geometric 

filters are applied to constrict the point cloud and remove noise. 

Then the point cloud for each LiDAR channel is projected to the 

y-z plane to generate cross-sectional images of the scanning. 

Then, multi-threading is employed to enable nearly simultaneous 

CNN predictions on each of the LiDAR channel-derived images 

for faster segmentation results. Finally, the classified images will 

be projected back to 3D space and collated to generate our 

classified sparse point cloud.  

 

 
Figure 2-4. General Workflow. 

Figure 2-3. Fast-SCNN structure. 

 

Figure 2-2. A sample labeled point cloud-derived image. 
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2.4 Assessment Criteria 

The equations below are common evaluation metrics, derived 

from the confusion matrix, for assessing the resulting image 

segmentation. The proportion of actual positive cases that are 

correctly predicted as positive is known as recall; the proportion 

of predicted positive cases that are correctly predicted as positive 

is known as precision, and the harmonic mean between the two 

is known as the f1-score. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 , (1) 

Precision =  
True Positive

True Positive+False Positive
 , (2) 

𝐹1𝑠𝑐𝑜𝑟𝑒 =  
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
, (3) 

 

3. RESULTS AND DISCUSSION 

 

3.1 Classified Images 

Figure 3-1 shows the classification results on sparse point cloud-

derived images using our proposed method on varying loss 

functions. It can be seen that models trained with cross-entropy 

and dice or focal dice (β=1) loss functions greatly struggled to 

detect features on the point cloud-derived image. Meanwhile, 

models trained with weighted cross-entropy, weighted focal 

(γ=2), and combo loss (α=0.75) functions gained prediction 

results that seemed to overreach and largely misclassify the 

surrounding pixels.  However, the final objective is to project the 

classifications back into or to a point cloud so misclassifications 

in the black pixel regions can be omitted since they hold no 

corresponding point value (Lagahit & Matsuoka, 2023).    

 

After masking out misclassifications in the black class regions, 

Figure 3-2 shows the resulting classification results on various 

loss functions. Huge improvements can easily be seen in the 

ground segmentation brought on by the masking process. In 

hindsight, it is clear that using weighted cross-entropy or 

weighted focal (γ=0) and combo (α=0.75) loss yielded the best 

results. Although, we can still spot that the model fails to identify 

the ground class along the edges of the image. 

 

 

Reference 

 

Cross-Entropy 

 

Weighted Cross-Entropy 

 

Weighted Focal 

 

Focal Dice 

 

Focal Dice 

 

Combo 

Figure 3-1. Sample resulting classified images. 
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Reference 

 

Cross-Entropy 

 

Weighted Cross-Entropy / Weighted Focal 

 

Dice / Focal Dice 

 

Combo 

Figure 3-2. Sample resulting classified images after masking. (Results for some loss functions have been merged since they yielded 

the same sample results after masking.) 

3.2 Ground Segmentation  

Taking a look at the numerical evaluations or our resulting 

classifications as shown in Table 3-2, all our models performed 

poorly in precision as was reflected by the misclassifications seen 

in Figure 3-1. The model trained with a weighted focal loss (γ=2) 

[WF] performed best but it is not far from the results of models 

trained with a weighted cross-entropy [WCE] and combo 

(α=0.75) [C] loss, having 0.2 and 0.5 differences in the F1-score, 

respectively. However, it is important to note that recall from the 

aforementioned loss functions are high, meaning that a huge 

number of pixels based on the reference are correctly classified. 

 

Table 3-1. Evaluation results of Fast-SCNN predictions for the 

target ground class. (%) 

Loss 

Function 
Recall Precision F1-Score 

CE 11.5 57.3 19.1 

WCE 97.8 18.8 31.5 

WF 97.6 18.9 31.7 

D/FD 5.9 0.9 1.5 

C 97.7 18.5 31.2 

 

Taking a look at numerical evaluations after the ‘black’ pixel 

omission shown in Table 3-3, while combo (α=0.75) [C] came 

close, weighted cross-entropy [WCE] or weighted focal (γ=0) 

[WF] outperformed all other loss functions in terms of f1-score 

for the ‘ground’ class. It can also be seen that the addition of 

weights, derived from class pixel ratios, had a significant impact 

on cross-entropy [CE] results. Furthermore, it has been observed 

that dice [D] or focal dice (β=1), which utilized the f1-score 

metric, performed poorly in comparison to the others even after 

masking. 

 

Table 3-2. Evaluation results of Fast-SCNN predictions after 

masking for the target ground class. (%) 

Loss 

Function 
Recall Precision F1-Score 

CE 11.5 100.0 20.6 

WCE/WF 97.8 100.0 98.9 

D/FD 5.9 100.0 11.1 

C 97.7 100.0 98.8 

 

3.3 Processing Speed 

Table 3-3 shows the execution time for each component of the 

workflow presented in Figure 2-4. The pre-processing section 

contains the initial geometric filtering procedure. The exporting 

section contains the procedure of merging the classified points 

and saving them. The classification section contains all the other 

steps in-between. It can be seen that the classification step takes 

up the bulk of the processing time. 

 

Table 3-3. Processing speeds of the workflow components.  

Section 
Time Taken 

(seconds) 

Pre-Processing 0.178 

Classification 1.037 

Exporting 0.003 

Total 1.218 
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Table 3-4 shows a comparison to RANSAC, a popular surface 

fitting method. The input point cloud was also downsampled with 

a voxel size of 4 cm for a fair comparison. Even after 1000 

iterations, our method still falls behind by roughly 0.3 seconds or 

around 30%. This is largely caused by the slowness of the CNN 

classification procedure.  

 

Table 3-4. Comparison to RANSAC. 

Method Iterations 
Speed 

(seconds) 

Ours --- 1.218 

RANSAC 

(downsampled) 
1000 0.953 

 

3.4 Classified Sparse Point Cloud 

What’s more, as shown in Table 3-5, the number of ground points 

produced by our method is greatly reduced, even less than that of 

a downsampled point cloud undergoing RANSAC. Depending 

on how it is perceived, it can become advantageous in terms of 

file size and disadvantageous in terms of accuracy, considering a 

mean point distance of 2.3 cm to the reference.  

 

Table 3-5. Generated ground point statistics. 

Method 
Number of 

Ground Points 

Mean Point  

Distance 

Ours 4,912 2.3 cm 

RANSAC 

(downsampled) 
5,550 3.2 cm 

Reference 12,660 --- 

 

Figure 3-3 shows the resulting classified point cloud using our 

proposed method. Visually, there is very little difference between 

the ground segmentation between RANSAC and our method. 

Although, as was observed in the resulting classified images we 

can also see some point clouds misclassified as non-ground along 

the edges. 

 

4. CONCLUSION 

Our proposed method of ground segmentation through point 

cloud-derived cross-sectional images using CNN has proven to 

be successful in terms of accuracy, achieving an f1-score of 

98.9%. However, it still has a long way to go in terms of speed, 

with a runtime that is 27.81% slower than the conventional 

RANSAC method. Furthermore, due to image conversion, less 

than half of the original points have also vanished, which can be 

concerning in terms of data loss but useful in terms of size 

reduction. The authors also acknowledge that huge 

improvements are still needed to be done in each of the 

workflow’s sections, such as the CNN structure, to make the 

proposed method much faster and thus more practical than the 

conventional methods. It is quite unfortunate that our findings did 

not result in significant overall improvements, but this 

preliminary attempt has demonstrated that ground segmentation 

from sparse point cloud-derived imagery is possible and could be 

a potential alternative. 

 

 

  
 

 

Figure 4-1. Resulting classified sparse point cloud. (Top) 

RANSAC and (Bottom) Ours. 
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APPENDIX 

This appendix contains the classification results (raw predictions 

and projected versions) for every even LiDAR channel, together 

with their intensity (input) and labeled image (mask) 

counterparts, in one scanning to better visualize the results of the 

procedure shown in Figure 2-4. The intensity and labeled images 

should also provide more visual insights into the datasets used for 

training, validation, and testing.  
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