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ABSTRACT: 
 
Precise and robust localization is critical for many navigation tasks, especially autonomous driving systems. The most popular 
localization approach is global navigation satellite systems (GNSS). However, it has several shortcomings such as multipath and non-
line-of-sight reception. Vision-based localization is one of the approaches without using GNSS which is based on vision. This paper 
used visual localization with a prior 3D LiDAR map. Compared to common methods for visual localization using camera-acquired 
maps, this paper used the method that tracks the image feature and poses of a monocular camera to match with prior 3D LiDAR maps. 
This paper reconstructs the image feature to several sets of 3D points by a local bundle adjustment-based visual odometry system. 
Those 3D points matched with the prior 3D point cloud map to track the globe pose of the user. The visual localization approach has 
several advantages. (1) Since it only relies on matching geometry, it is robust to changes in ambient luminosity appearance. (2) Also, 
it uses the prior 3D map to provide viewpoint invariance. Moreover, the proposed method only requires users to use low-cost and 
lightweight camera sensors. 
 

1. INTRODUCTION 

Accurate positioning is an important factor for many navigation 
tasks, especially for autonomous driving systems. Although 
GNSS has been popularly used for many years, it still has some 
limitations. GNSS systems precision is limited within a couple of 
meters and lacks information on orientation. In particular, GNSS 
positioning performance has a tolerance of 100 m in urban 
canyons due to non-line-of-sight (NLOS) and multipath effects 
(Gu et al., 2015). This major limitation is caused by different 
factors occurring in the high density of human structures areas, 
which include buildings, obstacles, and high demand for 
navigation services.  
The recently developed point cloud map matching-based 
localization method (Zou et al., 2022) attracted lots of attention 
due to its high accuracy and robustness. The key idea is to match 
the real-time point clouds captured by the 3D Light Detection and 
Ranging (LiDAR) with the pre-built point cloud map, therefore, 
it can estimate the position of the vehicle within the map 
(Yurtsever et al., 2020). Akai et al. (2017) propose a road 
marking detection method that uses LiDAR reflective intensity 
data to build a pre-built map and match it with the NDT approach. 
However, this method requires a sufficient number of landmarks 
to make the system successful.  
Autonomous driving vehicles which possess Society of 
Automotive Engineers (SEA) Level 3 (Sae International, 2018) 
or above requirements remain a marginal part of the market due 
to the cost of LiDAR being expensive. Toyota operated a 
potential SEA Level 4 service in the Tokyo 2020 Olympic 
Village. However, it still did not popular in the market. The 
vehicle used the LiDAR sensor which required a higher cost than 
the monocular camera. Using LiDAR in consumer autonomous 
driving vehicles will increase the operation cost thus the 
company is prohibitive. Using monocular camera base 
localization to replace LiDAR-based localization could become 
popular. The monocular camera is widely available on a low-cost 
and small platform. Although the monocular camera did not 
directly provide range information, it provided rich visual 
information to establish correspondences with the reference 
images. Therefore, it is promising to investigate the efficient and 

robust camera-based localization solution within the pre-built 
point cloud map. 
The key idea in this research is using matching geometry for 
visual localization which the user only requires a monocular 
camera. This paper proposes a cost-effective camera localization 
solution aided by the prior 3D point cloud map. The prior map 
was built with LiDAR data. However, the point cloud data have 
a distortion problem which is an important element of building 
prior 3D point cloud maps. The key to removing the point cloud 
distortion is to estimate the trajectory of the LiDAR in a scanning 
period. This paper uses ground-truth data to provide the real 
position with angular velocity and acceleration information for 
LiDAR. Also, the LiDAR data provides motion information. The 
real location was measured by using linear interpolation based on 
the time difference and location change. First, the integration of 
the visual/inertial is employed to reconstruct the local 
environment described with sparse but representative 3D feature 
points, so-called the local points map (LPM). Thanks to the 
relative motion estimation from the Visual-Inertial integrated 
system, a good initial guess can be obtained simultaneously. 
Second, given the initial guess of the pose estimation together 
with the generated local points map the iterative closest point 
(ICP) (Segal et al., 2009) is adopted to match the LPM with the 
prior 3D point cloud map to get the pose of the system within the 
map. However, the 3D point of LPM with the prior map has a 
scale problem due to the point estimated by the motion of the 
camera. This paper provides alignment with a 7-DoF 
transformation which is measured by a non-linear least squares 
minimization problem with g2o (Kümmerle et al., 2011) and the 
Levenberg-Marquardt algorithm (Moré, 1978). 

2. RELATED WORKS 

2.1 LiDAR distortion 

LiDAR is an important sensor, especially for SLAM 
(Simultaneous Localization and Mapping). LiDAR provides 
precise distance measurements. LiDAR lacks the effect of visual 
features such as low light conditions. It is ideal for creating highly 
accurate maps and for detecting obstacles in the environment. 
However, LiDAR has a problem with distortion when it moves 
at the same time as starting the scanning process. It impacts the 
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accuracy of the map and the difficulty of localization when 
mapping using LiDAR data. Distortion in LiDAR point clouds is 
typically categorized into two types: ego-motion distortion and 
object-motion distortion. This paper mainly focuses on ego-
motion distortion.  
LOAM (Zhang and Sanjiv Singh, 2014) is one of the examples 
using SLAM-based approaches which achieve efficient and 
accurate scan matching in odometry and mapping. Another 
method is based on iterative closest point (ICP) which matches 
with consecutive scans to correction of the point (Schneider et 
al., 2010). However, it affects the result by moving objects in the 
environment such as vehicles (Hong et al., 2010). One of the 
corrections methods uses the information of IMU or odometry 
measurements to correct the point. However, IMU or odometry 
has the problem of cumulative error (BROSSARD and 
BONNABEL, 2019). Therefore, this paper uses GNSS/INS unit 
to overcome the cumulative error. 

2.2 LiDAR and Visual SLAM 

SLAM is the approach when the robot localizes in an unknown 
environment, at the same time, constructs a map of its 
surroundings (Leonard and Durrant-Whyte, 1991).  Recently, 
researchers have proposed an integrated approach of LiDAR-
SLAM and Visual-SLAM.  This method solves the visual-based 
localization problem by combining with a LiDAR prior map 
which provides accurate range measurements.   
In the mapping process, scan-matching used LiDAR data to 
estimate the motion information and generate the 3D map 
(Debeunne and Vivet, 2020). Typically, the process used 
Iterative Closest Point (ICP) algorithm to register 3D point 
clouds and alignment (Besl and McKay, 1992; Tam et al., 2013). 
The graph-based optimization is used to reduce local errors by 
representing the robot trajectories and map (Konolige et al., 
2010). Also, it used feature-based methods performing loop 
closure to improve the global map consistency (Martín et al., 
2014; Steder et al., 2011). This approach can generate highly 
accurate 3D maps due to the accurate range of information 
provided by LiDAR. 
The LiDAR sensor is expensive which limits application on low-
cost and small platforms. Therefore, Visual SLAM is much 
available on those platforms. Visual SLAM is a method of visual 
localization that use images as the source of information 
(Taketomi et al., 2017). The most common method matches the 
image feature to estimate the robot's motion and build a feature 
map.  Most early visual SLAM approaches use filtering 
frameworks such as the Extended Kalman filter (EKF) or particle 
filter to build probability models. Chiuso et al. (2002) developed 
a real-time reconstructing Structure from Motion (SFM) with 
monocular images. Mono-SLAM (Davison, 2003; Davison et al., 
2007) developed a similar method with used an Extended 
Kalman filter and added a local loop closure process to estimate 
the feature position and the post of the camera. EKF has a 
linearization issue due to inconsistencies happen. Therefore, 
researchers have proposed enhancing the parameterization such 
as the approach of Eade and Drummond (2007) which use a local 
filter to build sub-maps.  Bundle adjustment (BA) (Triggs et al., 
2000) is a method used in SFM as global optimization. Therefore, 
parallel tracking and mapping (PTAM) (Eade and Drummond, 
2007) is based on keyframe BA to perform the tracking and 

mapping process. Strasdat et al. (2010) compare those 
performances and show that the keyframe BA has efficient 
accuracy and computational cost. 
The most typical method of visual localization is structure-based 
which relies on 3D reconstructions (3D point cloud map) and 
localizes in 3D point cloud map (Moulon et al., 2013; Torii et al., 
2015). This method compares the image by the local feature such 
as SIFT descriptor (Lowe, 2004). However, the feature is affected 
by the illumination conditions and the changes in the season, 
which are not suitable in changing environments to locate the 
vehicle's position (Moulon et al., 2013). Meanwhile, using a 
monocular camera have a scale problem that limits its 
applications. 
Recently, researchers have proposed several machine learning 
methods (Dusmanu et al., 2019; Sarlin et al., 2020), such as end-
to-end learning architectures, to relieve the problem (Csurka et 
al., 2019). However, those end-to-end methods did not prove as 
steady as the geometric and probabilistic approaches. On the 
other hand, using image retrieval-based methods directly 
searches the most relevant images from the map which extracts 
all the information in the area of the small gradient (Zhou et al., 
2020). Therefore, it prefers better than a structure-based method 
in the texture, motion blur, and defocuses of the image. It requires 
high computing power (GPUs) for real-time performance. 
However, most of the approaches also focus on matching the 
optical feature of the environment, fewer approaches focus on 
using a 3D point cloud map to extract geometry information and 
match it with the camera image. Wolcott et al. (2014) propose an 
approach to localize the vehicle using a monocular camera in a 
prior point cloud map. It uses a prior 3D point cloud map to create 
2D synthetic images by image rendering and matching with the 
maximum normalized mutual information from real-time images. 
Pascoe et al. (2015) propose an approach to localize the vehicle 
by minimizing the normalized information distance. It uses real-
time camera images and the rendered image from a prior map 
which combines data from LiDAR and cameras. Those 
approaches focus on matching in 2D space and using GPU for 
rendering images. Therefore, Caselitz et al. (2016) propose an 
approach to avoid the use of GPU for image rendering, it directly 
matches 3D geometry. 

3. METHODOLOGY 

This paper proposes a cost-effective camera localization solution 
with reliable initialization aided by the prior 3D point cloud map.  
Based on the method introduced by Caselitz et al. (2016) and 
focuses on the urban condition to find out the scientific problem.  
Figure 1 shows the proposed method's flow chart, which aims to 
use a monocular camera to localize within a prior 3D point cloud 
map. First, the visual feature used to reconstruct the local 
environment is described with sparse but representative 3D 
feature points, known as a local points map (LPM). The relative 
motion estimation from the visual odometers proposed a good 
initial guess can be obtained simultaneously. Second, given the 
initial guess of the pose estimation together with the generated 
local points map, the ICP-based point could registration method 
(Segal et al., 2009) is adopted to match the LPM with the prior 
3D point cloud map to determine the pose of the system within 
the map.  

 
Figure 1. Proposed method’s flow chart 
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3.1 Prior 3D point cloud map 

The prior 3D point cloud map is developed using LiDAR data 
and the group truth data. The inputs are the image and the GNSS 
position data, the output is a point cloud message with a camera 
pose. However, the LiDAR data has a distortion problem related 
to the LiDAR scanning method. Traditionally, the LiDAR 
scanned 360 degrees from points around its center. When the 
vehicle with a LiDAR sensor is static, the coordinates of LiDAR 
origin without change, the start point, and the end point of 
LiDAR scanning are the same. However, if the vehicle is moving 
at the same time the LiDAR is operating, the distortion will occur 
as the longer scanning time caused by the moving of LiDAR 
coordinates origin. Figure 2 explains the reason for LiDAR 
distortion.  

 
Figure 2. Illustration of the LiDAR distortion phenomenon. 

The distortion problem can be solved by using ground truth data 
provided by GNSS. The ground truth data provided the message 
of Latitude, Longitude, and Height position (LLH) and 
quaternion. LLH is used to define the ENU coordinate system for 
local processing. The quaternion is used to find the rotation 
between different coordinate systems.  
 
                    𝐃 = #𝑡!! , 𝐩𝐃𝐧 , 𝒒𝑫𝒏 , 𝑛 = 1,… , 𝑘,,                         (1) 

																							𝐆 = /
𝑡$$ ⋯ 𝑡$%
𝐩𝐆𝟏 ⋯ 𝐩𝐆𝐦
𝐪𝐆𝟏 ⋯ 𝐪𝐆𝐦

2,                                          (2) 

																							𝐏 = #𝑡&! , 𝐩𝐏𝐧 , 𝐪𝐏𝐧 , 𝑛 = 1,… , 𝑘,,                           (3) 
 
Where D is a set of the total number of point cloud data with 
distortion in one frame. G is a set of the number of ground truth 
data. P is a set of the total number of point cloud data without 
distortion in one frame. t	is message time. 𝐩 is coordinated in the 
ENU coordinate system. 𝐪 is the quaternion. 
To calculate the actual position of each point cloud data, 
including the ENU position and quaternion, linear interpolation 
is used for ENU position, while spherical linear interpolation is 
used for the quaternion. 
 
																																	

((!)()*
()+)()*

=
𝐩𝐏𝐧)𝐩𝐆𝐢
𝐩𝐆𝐣)𝐩𝐆𝐢

 ,                                         (4) 

																						𝐪𝐏𝐧= +,-	(0)1)3
+,-	(3)

𝐪𝐆𝐢 +
+,-	(13)
+,-	(3)

𝐪𝐆𝐣,                             (5) 
 
Where i,j is the near ground truth message time with 𝑡!! . r is the 
interpolation coefficient. 𝜃 is the angle between 𝑞$* 	and	𝑞$+. 

 
Figure 3. Timeline of chosen data 

 
Figure 4. Spherical linear interpolation 

3.2 Feature Matching  

This process utilizes the ORB algorithm which is combined with 
the Oriented Features from Accelerated and Segments Test 
(FAST) algorithm and Rotated Binary Robust Independent 
Elementary Features (BRIEF) algorithm (Rublee et al., 2011) , to 
extract image features. The oriented FAST algorithm is 
employed for feature extraction.  
The FAST algorithm computes the feature point by comparing 
the pixel's intensity with the surrounding pixels. However, the 
FAST feature without considering the orientation and multi-scale 
feature. Therefore, the ORB algorithm uses an image pyramid 
with a Harris corner detector to locate each key point at a 
different scale.  To estimate the orientation, it assumed the corner 
intensity is offset from the center. Therefore, the algorithm 
calculates the orientation of the patch by calculating the image 
moments.  
The Rotated BRIEF algorithm improves the original BRIEF 
algorithm(Calonder et al., 2010) by considering the rotation of 
feature points, which is important for matching between images. 
It computes binary feature vectors as descriptors for each key 
point detected by the oriented FAST algorithm. This paper uses 
a 7x7 Gaussian kernel used to smooth image patches, and the 
features vector (	𝐟𝐧(𝐁)) for each patch is defined by n binary 
tests. 
 

																								𝜏(𝐵; 𝑥, 𝑦) = E
1, 	𝐵(𝑥)5 < 	𝐵(𝑦)5
0, 	𝐵(𝑥)5 ≥ 	𝐵(𝑦)5	

,                      (10) 

                   		𝐟𝒏(𝑩) = ∑ 27)0𝜏(𝐵; x7 , 𝑦7)08789 ,                       (11) 
 
Where 𝜏  is the binary test. n is vector length. 	𝐵(𝑥)5  is the 
intensity of pixel x in patch B. 
However, the BRIEF algorithm without consider the orientation 
of the feature point. To address this limitation, the Rotated 
BRIEF algorithm was introduced, which incorporates the 
orientation information by multiplying the cosine and sine values 
with a set of feature points rotated according to the key point 
orientation.  
 
                     𝐒 = N

𝑢0 … 𝑢9
𝑣0 … 𝑣9Q,                                               (12) 

                     𝐑𝜽 = S𝑐𝑜𝑠	θ −𝑠𝑖𝑛	θ
𝑠𝑖𝑛	θ 𝑐𝑜𝑠	θ Y,                                        (13) 

                     𝐒𝜽 = 𝐑𝜽𝐒,                                                           (14) 
                     𝐠𝒏(𝒑, 𝜽) ∶= 𝐟𝒏(𝒑)|(x7 , 𝑦7) ∈ 𝐒𝜽,                          (15) 
 
Where 𝜃 is the key point orientation from oriented FAST. 𝐒 is a 
feature set of n binary tests at location ( u7 , 𝑣7 ). R3  is the 
corresponding rotation matrix. 𝐒𝜽 is a set of feature points rotated 
according to the key point orientation. 
After computing the feature descriptors, key point feature 
descriptors in two consecutive images are matched using the 
Brute-Force Matcher with Hamming distance, which estimates 
the closest distance between descriptors. To increase the 
accuracy, it executes the cross-check. 
 
                     𝐷(𝑏0, 𝑏;) = 	𝑏0⨁𝑏;,                                          (16) 
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Where D is Hamming distance. b1, b2 are feature descriptors of 
two different image 

3.3 Local Points Map Reconstruct 

After obtaining the paired 2D feature points, this module 
calculates the feature point into a 3D map point and keyframe 
poses, which call a local point maps, solving the local Bundle 
Adjustment problem. First, it calculates the fundamental (F) 
matrix and homograph (H) matrix with an eight-point algorithm. 
To improve the stability and accuracy of the solution, it 
normalizes the coordinates of the input point set. 
 
                                     𝐩𝟏𝐓𝐅𝐩𝟐 = 0,                                          (17) 
 
Where 𝐩𝟏, 𝐩𝟐 is a pair of matching points in two Frames. F is a 
fundamental matrix. 
Second, it scores random sample consensus (RANSAC) results 
using reprojection error. It is assumed that the reprojection from 
the current frame to the reference frame will generate a straight 
line (𝑙;). 
 

                                 𝑙; = 𝑭)0 h
𝑢;
𝑣;
1
i,                                              (18) 

 

Where h
𝑢;
𝑣;
1
i is the coordinate of the current frame 

Ideally, the point should be exactly on a straight line, but it has a 
projection error. The RANSAC score is accumulated based on 
RANSAC score by the projection error of the current matrix. 
At the same time, it computes the H matrix with the same process 
as the F matrix. Third, the score ratio of the two matrices is 
calculated to determine which model to choose. Then, recovering 
the rotation and translation from the chosen matrix is achieved by 
singular value decomposition (SVD) of the essential matrix. 
Finally, it calculates the 3D point by the triangulation algorithm. 

3.4 Localization in Prior Map 

This process uses 3D Euclidean spaces and Lie group SE(3) to 
describe the variables. 
 
                        𝐑 = {𝐫𝒊 ∈ ℝ@, 𝑖 = 1,… , 𝑛},                             (19) 
                        𝐏 = #𝐩𝒋 ∈ ℝ@, 𝑗 = 1,… ,𝑚,,                             (20) 
                        𝐓 = {𝐓𝒊 ∈ SE(3), 𝑖 = 1,… , 𝑡},                         (21) 
                        𝐅 = {𝐅𝒊 ∈ SE(3), 𝑖 = 1,… , 𝑓},                          (22) 
 
Where 𝐑 is a set of reconstruction 3D points. 𝐏 is a set of 3D 
points in the prior 3D point cloud map. 𝐓  is a set of 
transformations between 𝐑	and	𝐏. 𝐅 is a set of keyframe poses. 
To compute the correspondences between the reconstructed 
points and the point of the 3D point cloud map, this paper utilizes 
the ICP algorithm with KD-tree to perform nearest neighbor 
search. The method utilizes the local points map and the prior 
point cloud map to determine correspondences. The 
correspondences are updated iteratively by estimating the 
transformation between the two point clouds. The prior point 
cloud map constructed a KD-tree, which is then utilized to find 
the nearest neighbor of each point within a specified search 
radius. 
 
 𝐑B = 𝑎𝑟𝑔𝑚𝑖𝑛x|𝐏	C −	𝐑7|x, 𝑓𝑜𝑟	𝑖 = 1, . . . , 𝑀, 𝑘 = 1,… ,𝑁,  (23) 
 

Where 𝐑B is the closest neighbor point of 𝐏	C. N is the number of 
points in P. M is the number of points in R. 
The correspondence set (C) is comprised of pairs (i, j), 
representing the correspondences between point i in the prior 
point cloud map and point j in the reconstruction of 3D points. 
 
                              𝐂 =	{	(𝑖, 𝑗)|	𝑖 ∈ 𝐑, 𝑗 ∈ 𝐏},                             (24) 
 
This paper estimates the process of alignment by the given set of 
correspondences. It estimates the alignment between the 
reconstructed local point map with the prior 3D point cloud map 
by using the similarity transformation.  
It estimates the transformation with the reference frame and 
current keyframe by solving the non-linear least squares 
minimization problem with g2o (Kümmerle et al., 2011). 
First, this paper uses the VertexSim3Expmap class of g2o to 
estimate the transformation between two 3D point clouds. It uses 
exponential map parametrization for the transformation factor to 
account for differences between the two point clouds. 
The equation for the VertexSim3Expmap can be written as: 
 
                                   𝐓 = [𝑠𝐫	|	𝒕] ∈ 𝑠𝑖𝑚(3),                               (25) 
 
Where r is rotation matrix (3x3). t is translation vector (3x1). s is 
scaling factor (scalar) 
Second, this paper uses sparse optimizer class of g2o to find the 
optimal values of T that minimize the sum of squared errors 
between the transformed points in the prior 3D point cloud map 
and their corresponding points in the reconstructed local point 
map. This optimization problem can be written as: 
 
                            𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒	 ∑𝑤7 ∗ ‖𝐓 ∗ 𝐏7 −𝐑7‖;,                (26) 
 
Where 𝑤7 is the weight assigned to each correspondence 
The sparse optimizer class uses the Levenberg-Marquardt 
algorithm to iteratively update the transformation matrix (T) until 
the sum of squared errors is minimized. At each iteration, the 
algorithm computes the Jacobian matrix (J) of the objective 
function with respect to the parameters of T, and uses it to 
compute the update to T: 
 
            𝐓C = 𝐓C)0 + (𝐉D𝐉 + 𝜆𝐈))0𝐉D𝐫, 𝑓𝑜𝑟	𝑘 = 1… .𝑁 ,         (27) 
 
where J is the Jacobian matrix of the error function with respect 
to T. r is the residual vector. λ is a damping parameter. I is 
identity matrix. N is number of iteratively. 
The optimal values of the relative transformation between the 
two-point clouds are obtained by minimizing the cost function. 
Then, joining all the similarity transformations when estimating 
all the iterations, it estimates the reference frame pose of the map. 
Finally, it estimates the global pose of the vehicle. 

4. EXPERIMENT 

4.1 Experiment Setup 

This paper evaluated the performance of the proposed method by 
using the UrbanNav dataset (Hsu et al., 2021) which data was 
collected in Hong Kong as a typical urban canyon. This paper 
developed the 3D point cloud map by using NovAtel SPAN-CPT 
+ Inertial Explorer (IE) (1 Hz), HDL 32E Velodyne (10 Hz), and 
ZED2 Stereo (15 Hz) to provide ground truth, 3D LiDAR, and 
camera image, respectively. During the data collection, we 
collect raw GPS measurements by a commercial-level u-blox 
F9P GNSS receiver (1 Hz). Figure 5 shows the full experiment 
setup. 
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Figure 5. Experiment setup 

This paper collects image data by using the ZED2 Stereo 
mounted on our vehicle. The cameras were calibrated using the 
MATLAB method. All the data were collected and synchronized 
using a robot operation system (ROS) (Quigley et al., 2009). 
During the evaluation, we compare the following pipelines: 
1) Using the 3D local point by ORB-SLAM to evaluate the 
accuracy of our proposed method.  
• ORB-SLAM (Campos et al., 2021): Using the ORB method 

to extract features and descriptions then calculate the 3D 
local point.  

2) Using different datasets to evaluate our proposed method by 
comparing the estimated camera trajectory and ground truth 
trajectory with the prior map.  
• KITTI odometry dataset (Geiger et al., 2012): Provide 

outdoor data in rural areas by using a vehicle.  
• UrbanNav dataset (Hsu et al., 2021): Provide outdoor data 

in urban areas by using a vehicle.  

4.2 Experimental Evaluation  

4.2.1 Prior 3D point cloud map: This paper uses the prior 3D 
point cloud map to match with the 3D feature point. However, 
the LiDAR data have a distortion problem. Figure 6 shows the 
prior 3D point cloud map with a distortion problem using the 
UrbanNav dataset.  

 
Figure 6. Prior 3D point cloud map with distortion (UrbanNav 

dataset) 

Figure 7 shows that the problem of distortion has been solved. It 
shows the situation of the wall which should show as a 
continuous line. The colors red and purple has represented the 
start and end times of the LiDAR scan. However, the left-hand 
side image shows the line is cut off. After solving the distortion 
problem, the right-hand side image shows the line overlap which 
means the problem has been solved.  

   
                    (a)                                                (b)  
Figure 7. Visualize one frame of LiDAR data from the UrbanNav 
dataset (a) with distortion and (b) without distortion. 

4.2.2 Initialization: It uses the camera data as an input source 
of images. In the initialization process, the ORB algorithm is used 
to extract and describe the detected feature point of the input data. 
Then, the detected feature point of each image is used to match 
the previous image. Figure 8 shows the results of matching the 
feature point in two constant images. 

 
Figure 8. Example of Feature Matching. 

4.2.3 Reconstruct: In the reconstruction process, it used the 
pair feature point to reconstruct the 3D point in each frame. The 
reconstructed feature points are then combined into a 3D map 
point and keyframe poses, forming the local point map. Figure 9 
shows an example of the local point map in one frame and the 
combination of several frames in RViz (Kam et al., 2015).  

  
                         (a)                                                 (b) 
Figure 9. Example of (a) a local point map in one frame and (b) 
a combination of several frames in RViz. 

4.2.4 Matching: This paper evaluated the proposed method in 
two datasets with different environments. First, we evaluated the 
KITTI odometry dataset to evaluate the accuracy of our proposed 
method. Second, we use the UrbanNav dataset to evaluate our 
proposed method in Urban conditions by comparing the 
estimated camera trajectory and ground truth trajectory with the 
prior map. 

4.2.4.1 Evaluate the accuracy: We use the KITTI odometry 
dataset to evaluate the accuracy of our proposed method. KITTI 
dataset provides LiDAR data, stereo image, and ground truth 
data. We only use the image of the left camera.  
In this experiment, we chose the raw dataset which is sequence 
00. The group truth data of the KITTI odometry dataset are 
provided by KITTI Vision Benchmark Suite. We assume the 
group truth data is the correct pose of the camera. Therefore, we 
can compute the 6-DoF camera position error. 
We use ORB-SLAM to provide the 3D point from the left-side 
camera image. Figure 10(a) shows the trajectory of the group 
truth data of the KITTI odometry dataset, the visual odometry of 
ORB-SLAM and our method. It shows that the trajectory of the 
patterns of ORB-SLAM is similar to other results, but the drift 
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happened. Figure 10(b) shows the localization result of our 
proposed method compared with the group truth data of the 
KITTI odometry dataset.  Although some parts did not match 
with the group truth data, it shows that most of the drift is 
corrected. 

  
                         (a)                                           (b)              
Figure 10. The (a) trajectory and the (b) error of the KITTI group 
truth data, ORB-SLAM, and our method. 

The results were run 6 times to reduce the randomness. Table 1 
shows the absolute trajectory error (ATE) of each dataset. The 
results include the error between our method trajectory with the 
KITTI ground truth trajectory and the ORB-SLAM trajectory 
with the KITTI ground truth trajectory. The result shows that our 
method outperforms the visual-only method. 

ATE(Average) Our method ORB-
SLAM 

Rotation 
(Degree) 

RMSE 117.6 127.8 
SD 10.5 13.7 

Translation 
(m) 

RMSE 20.9 309.8 
SD  16.6 181.3 

Transformation RMSE 21.0 309.8 
SD 16.5 181.3 

Table 1. The results of average ATE for 6 runs 

4.2.4.2 Evaluate in Urban conditions: We use the data 
collected by our lab which is the UrbanNav dataset team. The 
data was collected in Kowloon Tong, Hong Kong. The group 
truth data was computed by the data of NovAtel SPAN-CPT + IE 
(1 Hz). We only use the image of the left camera provided by the 
ZED 2 camera. Also, we assume the group truth data is the 
correct pose of the camera. Therefore, we can compute the 6-DoF 
camera position error. 
In this experiment, we chose a straight road in the urban 
environment. The result of the trajectory of ORB-SLAM data, 
and data from our method compared with the trajectory of ground 
truth data, as shown in Figure 11(a). Figure 11(b) shows the 
trajectory error in the translation part.  

  
                          (a)                                               (b) 
Figure 11. The trajectory results of ORB-SLAM and our method 
compared with the ground truth data. (a) Multiple trajectories are 
plotted in a line chart with XZ axis. (b) Multiple trajectories are 
plotted in a line chart with the X-axis representing time, Y-axis 
representing time and Z-axis representing time. 

In the X-axis, those have similar patterns, and our method is close 
to the ground truth data. In the Y-axis and Z-axis, our method has 
more drift than the orb-slam trajectory in the first 15 seconds as 
the scenes of the first 15 seconds are more complicated. Figure 
12(a) shows the absolute trajectory error (ATE) of our trajectory 
and ORB-SLAM trajectory. Figure 12(b) shows the box plot of 
the absolute trajectory error. Although our method initially 
exhibits greater drift in the first 6 seconds, it subsequently 
corrects the camera pose resulting in a better interquartile range 
compared to the ORB-SLAM method. This indicates that our 
method is able to solve for accumulated errors. 

 
                         (a)                                            (b) 
Figure 12. Absolute trajectory error (ATE) of our trajectory and 
ORB-SLAM trajectory shows in (a) line chart and (b) box plot. 

5. CONCLUSION 

This paper proposed the method of using vision-based 
localization with prior 3D LiDAR maps to track the camera pose. 
We combined the benefits of LiDAR and the camera to estimate 
the transformation of the local point map and prior 3D map. It 
continues to track the 6-DoF camera pose. To evaluate the 
performance of the system, we use open-source data. It 
demonstrated the accuracy of this system through real-world 
experiments, which produced notable outcomes. However, the 
challenge of the urban environment still occurs. Our future work 
will improve our method in more dynamic and challenging 
scenarios. 

6. REFERENCES 

Akai, N., Morales, L.Y., Takeuchi, E., Yoshihara, Y., Ninomiya, 
Y., 2017. Robust localization using 3D NDT scan matching with 
experimentally determined uncertainty and road marker 
matching, in: 2017 IEEE Intelligent Vehicles Symposium (IV). 
Presented at the 2017 IEEE Intelligent Vehicles Symposium 
(IV), pp. 1356–1363. https://doi.org/10.1109/IVS.2017.7995900 
 
Besl, P.J., McKay, N.D., 1992. Method for registration of 3-D 
shapes, in: Sensor Fusion IV: Control Paradigms and Data 
Structures. Spie, pp. 586–606. 
 
BROSSARD, M., BONNABEL, S., 2019. Learning Wheel 
Odometry and IMU Errors for Localization, in: 2019 
International Conference on Robotics and Automation (ICRA). 
Presented at the 2019 International Conference on Robotics and 
Automation (ICRA), pp. 291–297. 
https://doi.org/10.1109/ICRA.2019.8794237 
 
Calonder, M., Lepetit, V., Strecha, C., Fua, P., 2010. BRIEF: 
Binary Robust Independent Elementary Features, in: Daniilidis, 
K., Maragos, P., Paragios, N. (Eds.), Computer Vision – ECCV 
2010, Lecture Notes in Computer Science. Springer, Berlin, 
Heidelberg, pp. 778–792. https://doi.org/10.1007/978-3-642-
15561-1_56 
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W1-2023 
12th International Symposium on Mobile Mapping Technology (MMT 2023), 24–26 May 2023, Padua, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-227-2023 | © Author(s) 2023. CC BY 4.0 License.

 
232



 

Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M.M., 
Tardós, J.D., 2021. ORB-SLAM3: An Accurate Open-Source 
Library for Visual, Visual-Inertial and Multi-Map SLAM. IEEE 
Trans. Robot. 37, 1874–1890. 
https://doi.org/10.1109/TRO.2021.3075644 
 
Caselitz, T., Steder, B., Ruhnke, M., Burgard, W., 2016. 
Monocular camera localization in 3D LiDAR maps, in: 2016 
IEEE/RSJ International Conference on Intelligent Robots and 
Systems (IROS). Presented at the 2016 IEEE/RSJ International 
Conference on Intelligent Robots and Systems (IROS), pp. 1926–
1931. https://doi.org/10.1109/IROS.2016.7759304 
 
Chiuso, A., Favaro, P., Jin, H., Soatto, S., 2002. Structure from 
motion causally integrated over time. IEEE transactions on 
pattern analysis and machine intelligence 24, 523–535. 
 
Csurka, G., Dance, C.R., Humenberger, M., 2019. From 
handcrafted to deep local features. arXiv:1807.10254 [cs]. 
 
Davison, A.J., 2003. Real-time simultaneous localisation and 
mapping with a single camera, in: Computer Vision, IEEE 
International Conference On. IEEE Computer Society, pp. 1403–
1403. 
 
Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O., 2007. 
MonoSLAM: Real-Time Single Camera SLAM. IEEE 
Transactions on Pattern Analysis and Machine Intelligence 29, 
1052–1067. https://doi.org/10.1109/TPAMI.2007.1049 
 
Debeunne, C., Vivet, D., 2020. A Review of Visual-LiDAR 
Fusion based Simultaneous Localization and Mapping. Sensors 
20, 2068. https://doi.org/10.3390/s20072068 
 
Dusmanu, M., Rocco, I., Pajdla, T., Pollefeys, M., Sivic, J., Torii, 
A., Sattler, T., 2019. D2-net: A trainable cnn for joint description 
and detection of local features, in: Proceedings of the Ieee/Cvf 
Conference on Computer Vision and Pattern Recognition. pp. 
8092–8101. 
 
Eade, E., Drummond, T., 2007. Monocular SLAM as a graph of 
coalesced observations, in: 2007 IEEE 11th International 
Conference on Computer Vision. IEEE, pp. 1–8. 
 
Geiger, A., Lenz, P., Urtasun, R., 2012. Are we ready for 
autonomous driving? the kitti vision benchmark suite, in: 2012 
IEEE Conference on Computer Vision and Pattern Recognition. 
IEEE, pp. 3354–3361. 
 
Gu, Y., Hsu, L.-T., Kamijo, S., 2015. Passive Sensor Integration 
for Vehicle Self-Localization in Urban Traffic Environment. 
Sensors (Basel) 15, 30199–30220. 
https://doi.org/10.3390/s151229795 
 
Hong, S., Ko, H., Kim, J., 2010. VICP: Velocity updating 
iterative closest point algorithm, in: 2010 IEEE International 
Conference on Robotics and Automation. Presented at the 2010 
IEEE International Conference on Robotics and Automation, pp. 
1893–1898. https://doi.org/10.1109/ROBOT.2010.5509312 
 
Hsu, L.-T., Kubo, N., Wen, W., Chen, W., Liu, Z., Suzuki, T., 
Meguro, J., 2021. UrbanNav:An Open-Sourced Multisensory 
Dataset for Benchmarking Positioning Algorithms Designed for 
Urban Areas. Presented at the Proceedings of the 34th 
International Technical Meeting of the Satellite Division of The 
Institute of Navigation (ION GNSS+ 2021), pp. 226–256. 
https://doi.org/10.33012/2021.17895 

Kam, H.R., Lee, S.-H., Park, T., Kim, C.-H., 2015. RViz: a 
toolkit for real domain data visualization. Telecommun Syst 60, 
337–345. https://doi.org/10.1007/s11235-015-0034-5 
 
Konolige, K., Grisetti, G., Kümmerle, R., Burgard, W., 
Limketkai, B., Vincent, R., 2010. Efficient sparse pose 
adjustment for 2D mapping, in: 2010 IEEE/RSJ International 
Conference on Intelligent Robots and Systems. IEEE, pp. 22–29. 
 
Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, 
W., 2011. G2o: A general framework for graph optimization, in: 
2011 IEEE International Conference on Robotics and 
Automation. Presented at the 2011 IEEE International 
Conference on Robotics and Automation, pp. 3607–3613. 
https://doi.org/10.1109/ICRA.2011.5979949 
 
Leonard, J.J., Durrant-Whyte, H.F., 1991. Simultaneous map 
building and localization for an autonomous mobile robot, in: 
Proceedings IROS ’91:IEEE/RSJ International Workshop on 
Intelligent Robots and Systems ’91. Presented at the Proceedings 
IROS ’91:IEEE/RSJ International Workshop on Intelligent 
Robots and Systems ’91, pp. 1442–1447 vol.3. 
https://doi.org/10.1109/IROS.1991.174711 
 
Lowe, D.G., 2004. Distinctive Image Features from Scale-
Invariant Keypoints. International Journal of Computer Vision 
60, 91–110. 
https://doi.org/10.1023/B:VISI.0000029664.99615.94 
 
Martín, F., Triebel, R., Moreno, L., Siegwart, R., 2014. Two 
different tools for three-dimensional mapping: DE-based scan 
matching and feature-based loop detection. Robotica 32, 19–41. 
 
Moré, J.J., 1978. The Levenberg-Marquardt algorithm: 
Implementation and theory, in: Watson, G.A. (Ed.), Numerical 
Analysis, Lecture Notes in Mathematics. Springer, Berlin, 
Heidelberg, pp. 105–116. https://doi.org/10.1007/BFb0067700 
 
Moulon, P., Monasse, P., Marlet, R., 2013. Global Fusion of 
Relative Motions for Robust, Accurate and Scalable Structure 
from Motion. Presented at the Proceedings of the IEEE 
International Conference on Computer Vision, pp. 3248–3255. 
 
Pascoe, G., Maddern, W., Newman, P., 2015. Direct Visual 
Localisation and Calibration for Road Vehicles in Changing City 
Environments. Presented at the Proceedings of the IEEE 
International Conference on Computer Vision Workshops, pp. 9–
16. 
 
Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, 
J., Berger, E., Wheeler, R., Ng, A., 2009. ROS: an open-source 
Robot Operating System. ICRA workshop on open source 
software 3, 5. 
 
Revaud, J., Weinzaepfel, P., De Souza, C., Pion, N., Csurka, G., 
Cabon, Y., Humenberger, M., 2019. R2D2: Repeatable and 
Reliable Detector and Descriptor. arXiv:1906.06195 [cs]. 
 
Rublee, E., Rabaud, V., Konolige, K., Bradski, G., 2011. ORB: 
An efficient alternative to SIFT or SURF, in: 2011 International 
Conference on Computer Vision. Ieee, pp. 2564–2571. 
 
Sae International, 2018. Taxonomy and definitions for terms 
related to driving automation systems for on-road motor vehicles. 
SAE international 4970, 1–5. 
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W1-2023 
12th International Symposium on Mobile Mapping Technology (MMT 2023), 24–26 May 2023, Padua, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-227-2023 | © Author(s) 2023. CC BY 4.0 License.

 
233



 

Sarlin, P.-E., DeTone, D., Malisiewicz, T., Rabinovich, A., 2020. 
SuperGlue: Learning Feature Matching With Graph Neural 
Networks. Presented at the Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern Recognition, pp. 
4938–4947. 
 
Sattler, T., Leibe, B., Kobbelt, L., 2011. Fast image-based 
localization using direct 2D-to-3D matching, in: 2011 
International Conference on Computer Vision. Presented at the 
2011 International Conference on Computer Vision, pp. 667–
674. https://doi.org/10.1109/ICCV.2011.6126302 
 
Schneider, S., Himmelsbach, M., Luettel, T., Wuensche, H.-J., 
2010. Fusing vision and LIDAR - Synchronization, correction 
and occlusion reasoning, in: 2010 IEEE Intelligent Vehicles 
Symposium. Presented at the 2010 IEEE Intelligent Vehicles 
Symposium, pp. 388–393. 
https://doi.org/10.1109/IVS.2010.5548079 
 
Schonberger, J.L., Hardmeier, H., Sattler, T., Pollefeys, M., 
2017. Comparative Evaluation of Hand-Crafted and Learned 
Local Features. Presented at the Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition, pp. 
1482–1491. 
 
Segal, A.V., Haehnel, D., Thrun, S., 2009. Generalized-ICP. 
Robotics: science and systems 2, 435. 
 
Steder, B., Ruhnke, M., Grzonka, S., Burgard, W., 2011. Place 
recognition in 3D scans using a combination of bag of words and 
point feature based relative pose estimation, in: 2011 IEEE/RSJ 
International Conference on Intelligent Robots and Systems. 
Presented at the 2011 IEEE/RSJ International Conference on 
Intelligent Robots and Systems, pp. 1249–1255. 
https://doi.org/10.1109/IROS.2011.6094638 
 
Strasdat, H., Montiel, J.M.M., Davison, A.J., 2010. Real-time 
monocular SLAM: Why filter?, in: 2010 IEEE International 
Conference on Robotics and Automation. Presented at the 2010 
IEEE International Conference on Robotics and Automation, pp. 
2657–2664. https://doi.org/10.1109/ROBOT.2010.5509636 
 
Taketomi, T., Uchiyama, H., Ikeda, S., 2017. Visual SLAM 
algorithms: A survey from 2010 to 2016. IPSJ Transactions on 
Computer Vision and Applications 9, 1–11. 
 
Tam, G.K.L., Cheng, Z.-Q., Lai, Y.-K., Langbein, F.C., Liu, Y., 
Marshall, D., Martin, R.R., Sun, X.-F., Rosin, P.L., 2013. 
Registration of 3D Point Clouds and Meshes: A Survey from 
Rigid to Nonrigid. IEEE Transactions on Visualization and 
Computer Graphics 19, 1199–1217. 
https://doi.org/10.1109/TVCG.2012.310 
 
Torii, A., Arandjelović, R., Sivic, J., Okutomi, M., Pajdla, T., 
2015. 24/7 place recognition by view synthesis, in: 2015 IEEE 
Conference on Computer Vision and Pattern Recognition 
(CVPR). Presented at the 2015 IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR), pp. 1808–1817. 
https://doi.org/10.1109/CVPR.2015.7298790 
 
Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W., 
2000. Bundle Adjustment — A Modern Synthesis, in: Triggs, B., 
Zisserman, A., Szeliski, R. (Eds.), Vision Algorithms: Theory 
and Practice, Lecture Notes in Computer Science. Springer, 
Berlin, Heidelberg, pp. 298–372. https://doi.org/10.1007/3-540-
44480-7_21 
 

Wolcott, R.W., Eustice, R.M., 2014. Visual localization within 
LIDAR maps for automated urban driving, in: 2014 IEEE/RSJ 
International Conference on Intelligent Robots and Systems. 
Presented at the 2014 IEEE/RSJ International Conference on 
Intelligent Robots and Systems, pp. 176–183. 
https://doi.org/10.1109/IROS.2014.6942558 
 
Yurtsever, E., Lambert, J., Carballo, A., Takeda, K., 2020. A 
Survey of Autonomous Driving: Common Practices and 
Emerging Technologies. IEEE Access 8, 58443–58469. 
https://doi.org/10.1109/ACCESS.2020.2983149 
 
Zhang, J., Sanjiv Singh, 2014. LOAM: Lidar Odometry and 
Mapping in Real-time. Robotics: Science and Systems, pp. 1–9. 
 
Zhou, Q., Sattler, T., Pollefeys, M., Leal-Taixé, L., 2020. To 
Learn or Not to Learn: Visual Localization from Essential 
Matrices, in: 2020 IEEE International Conference on Robotics 
and Automation (ICRA). Presented at the 2020 IEEE 
International Conference on Robotics and Automation (ICRA), 
pp. 3319–3326. 
https://doi.org/10.1109/ICRA40945.2020.9196607 
 
Zou, Q., Sun, Q., Chen, L., Nie, B., Li, Q., 2022. A Comparative 
Analysis of LiDAR SLAM-Based Indoor Navigation for 
Autonomous Vehicles. IEEE Transactions on Intelligent 
Transportation Systems 23, 6907–6921. 
https://doi.org/10.1109/TITS.2021.3063477 
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W1-2023 
12th International Symposium on Mobile Mapping Technology (MMT 2023), 24–26 May 2023, Padua, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-227-2023 | © Author(s) 2023. CC BY 4.0 License.

 
234




