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ABSTRACT: 

In recent years, wearable devices such as smart bands and smartwatches have gained widespread popularity due to their ability to 

provide various health and fitness applications by detecting and analyzing the human body and motion information. However, the 

accuracy of location-based services can be limited, especially in urban areas and indoors. This study proposes a series of smartwatch 

Pedestrian Dead Reckoning (PDR) improvements based on 9 Degrees of Freedom (DOF) IMU orientation estimation, which includes 

the heading estimation of human movement and a novel pre-trained velocity regression model. The proposed system holds the potential 

to enhance positioning accuracy and augment navigation availability for smartwatch users, thus offering potential applications across 

various fields. This study makes significant contributions to the field of smartwatch navigation by proposing a GNSS/PDR fusion 

algorithm specifically designed for the consumer-grade IMU, magnetometer, and GNSS receiver built into Apple Watch, tracking 

varied roll and pitch of the sensor caused by hand swing, and integrating a CNN model to predict the 1-D speed and provide ZUPT 

information, offering improved accuracy and reliability. 

 

 

1. INTRODUCTION 

 The location-based services of smartwatches have emerged as a 

highly sought-after concern in recent times. Typically, the 

determination of a user’s outdoor position involves the utilization 

of a global navigation satellite system (GNSS). Nonetheless, 

GNSS cannot give a reliable positioning solution all the time, 

especially in urban areas and indoors. Therefore, alternative 

methods such as Wi-Fi, Bluetooth, or Inertial Measurement Unit 

(IMU) are commonly utilized for indoor positioning. In general, 

WiFi and Bluetooth positioning methods require the installation 

of a significant number of signal-receiving devices during 

operation, which can limit their application in certain scenarios. 

Compared to other sensors, an IMU provides a stable and high-

frequency solution that is not affected by environmental 

conditions. 

Pedestrian Dead Reckoning (PDR) is a widely-used IMU-based 

navigation algorithm for pedestrian navigation and typically 

involves the use of three types of devices: 1) shoe-mounted 

sensors, 2) smartphones, and 3) smartwatches.  Although shoe-

mounted sensors can provide good PDR results, they are not easy 

to be deployed and commercialized. Smartphones, as the most 

common product, do not have a fixed placement, which requires 

further consideration and processing. In contrast, smartwatches 

have the advantages of easy installation and fixed position on the 

wrist, making them the most promising navigation device. Before 

performing PDR on a smartwatch, it is important to address 

several factors such as complex hand postures, shaking during 

walking, and accurate step length estimation in watch mode. 

To solve these issues, a series of smartwatch PDR improvements 

based on the 9 Degrees of Freedom (DOF) IMU orientation 

estimation is proposed. First, a one-size-fits-all Attitude and 

Heading Reference System (AHRS) algorithm——VQF (Laidig 

& Seel, 2022) is adopted, which provides a good solution for 

estimating IMU motion on the arm. Moreover, the estimated 
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orientation is used to level the IMU signal and estimate the 

heading of human movement.  

The pedestrian step detection and step length estimation are 

conducted through the levelled acceleration data. In conventional 

PDR models, there are many algorithms estimating the step 

length through pedestrian behaviors analysis and statistical 

experience. However, these algorithms require determining gain 

(or other parameters) before being applied to PDR. This gain 

remains constant throughout the entire PDR application. 

However, this gain has been shown to be very sensitive to user 

dynamics and difficult to be globally adjusted. The reinforcement 

learning methods thus are adopted to address this problem. We 

decompose step estimation into velocity estimation and propose 

a novel pre-trained velocity regression model that can be labelled 

directly through the smartwatch's GNSS, which can not only 

predict speed but also accurately identify pedestrian stationary 

status. 

By integrating the aforementioned enhancements, our PDR 

system can yield stable positioning results; however, it is 

susceptible to drift and necessitates periodic correction to 

preserve accuracy. Conversely, GNSS offers precise positioning 

without drift over time. Therefore, a PDR/GNSS integrated 

system is proposed based on the Extended Kalman Filter (EKF) 

that synergizes the benefits of GNSS and PDR techniques to 

overcome their respective limitations. Moreover, we integrate a 

Convolutional Neural Network (CNN) speed estimation model 

with static recognition capabilities to provide Zero Velocity 

Update (ZUPT) reducing system drift. 

In summary, a novel GNSS/PDR integration system for 

smartwatches that synergistically combines a robust 9-DOF 

AHRS algorithm, an enhanced step detection scheme, and a 

Convolutional Neural Network (CNN) speed estimation model is 

introduced. The proposed integration system offers the potential 

to not only improve positioning accuracy but enhance navigation 

availability for smartwatch users. 
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This research makes several significant contributions to the field 

of smartwatch navigation: 

1. We propose an algorithm that is specifically designed 

for the consumer-grade IMU, magnetometer, and 

GNSS receiver that are built into Apple Watch. 

2. Utilizing a reliable attitude estimation, the varied roll 

and pitch of the sensor caused by hand swing can be 

tracked, and the heading of human movement can be 

derived from the heading of the sensor. 

3. A CNN model is adopted to predict the 1-D speed and 

provide ZUPT information, which replaces the 

previously used empirical model for step length 

estimation. This new approach offers improved 

accuracy and reliability. 

This system represents a significant advancement in smartwatch 

navigation technology, with potential applications in various 

fields, such as fitness tracking, healthcare, and emergency 

services. 

2. RELATED WORKS 

PDR is a popular technique for indoor and outdoor positioning, 

especially in scenarios where GNSS signals are weak or 

unavailable. PDR utilizes an IMU to estimate the user's position 

by measuring the acceleration and angular rate signals over time. 

PDR relies on motion sensors, such as accelerometers, 

gyroscopes and magnetometers to estimate the user's position by 

tracking their footsteps. PDR can be implemented on various 

devices, including smartphones, smartwatches, and footwear, 

with different motion sensor configurations and algorithms. In 

this literature review, we will discuss the latest advancements in 

PDR technology, including conventional PDR algorithms, deep 

learning-based PDR, and GNSS/PDR integration. We will also 

review the current challenges and limitations of smartwatch PDR 

and propose our solution. 

 

2.1 Conventional PDR Algorithm 

The conventional PDR algorithm typically operates within a 

horizontal plane (2D) and consists of four main components: step 

detection, step length estimation, user heading determination, 

and the final position estimation. The accelerometer 

measurements are utilized to detect pedestrian steps, and step 

length estimation. The step length can be estimated by using a 

variety of methods such as regression-based, biomechanical 

models, or empirical relationships. User heading determination is 

accomplished using gyroscope and magnetometer measurements, 

and accelerometer readings may also be incorporated(Tian et al., 

2022). This information is then used to calculate the overall 

distance travelled and the pedestrian’s estimated position. 

 

𝑥𝑘+1 = 𝑥𝑘 + 𝐿𝑘 sin 𝜙𝑘 

𝑦𝑘+1 = 𝑦𝑘 + 𝐿𝑘 cos 𝜙𝑘 
( 1 ) 

 

where  𝑥𝑘 , 𝑦𝑘   =  𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑡𝑒𝑝 𝑘 

𝐿𝑘  =  𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑒𝑝 𝑙𝑒𝑛𝑔𝑡ℎ 

𝜙𝑘 =  𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 

 

In order to estimate position, it is necessary to first determine the 

occurrence of a step. One common method for detecting a step is 

by employing a peak detection algorithm, which typically 

involves setting a threshold value for the magnitude of 

acceleration and a minimum step period. However, relying solely 

on peak detection methods can be easily influenced by fake peaks. 

Consequently, research has emerged that incorporates peak 

detection and considers more complex pedestrian movements to 

provide more precise step detection results. Nevertheless, 

utilizing increasingly complex pedestrian models results in a 

greater number of parameters that must be considered, making it 

difficult to achieve generalization (Hancock et al., 2022). 

Therefore,  a compromised algorithm that pairs peaks and valleys 

is proposed to improve step detection accuracy without the tuning 

of various parameters in this study.The identification of a step 

involves identifying the time interval between two consecutive 

peaks.  

The calculation of step length is typically based on pedestrian 

dynamics, which considers the step frequency and gains 

adjustment (J. W. Kim et al., 2004; Weinberg, 2002). However, 

adjusting gains can be challenging and prone to estimation errors. 

To address this, some studies propose more generalized empirical 

algorithms that adjust parameters according to the pedestrian's 

height (Chen et al., 2011). Nevertheless, these algorithms may 

still not sufficiently describe the complex models of human 

movement and rely on accurate step frequency estimation. 

Consequently, an increasing number of studies use deep learning 

methods to address the infrequent calculation of pedestrian 

movement. 

 

Weinberg’s step length model is defined as 

 

𝐿 = 𝑘 ∙ √𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛
4  , ( 2 ) 

 

where  𝑘 =  𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝑎𝑚𝑎𝑥 =  𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

𝑎𝑚𝑖𝑛 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑛 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛  
 

Kim’s step length model is defined as 

 

𝐿 = 𝑘 ∙ √
∑ |𝑎𝑖|𝑁

𝑖=1

𝑁

3

 , 
( 3 ) 

 

where  𝑘 =  𝑎 𝑢𝑠𝑒𝑟 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

N =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑒𝑝 

𝑎𝑖 = 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖   
 

Chen’s step length model is defined as 

 

𝐿 = 0.7 + 0.371(ℎ − 1.75) + 0.227(𝑓 − 1.79)
ℎ

1.75
) , ( 4 ) 

 

where  ℎ =  𝑢𝑠𝑒𝑟 ℎ𝑒𝑖𝑔ℎ𝑡 

f =  𝑠𝑡𝑒𝑝 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑒 

 

2.2 Deep Learning-Based PDR 

In recent years, it has been shown that the complex dynamics of 

pedestrians can be described by applying deep learning and 

simply inputting raw IMU data without the need for additional 

parameter adjustments, which has become a popular solution. 

Deep-learning-based activity recognition models have been 

developed to classify the placement of smartphones, addressing 

the limitation of flat placement (Shin et al., 2016). StepNet has 

also proposed a deep-learning-based regressor to predict step 

length, which provides a general solution to the challenging 

parameter problem of pedestrian step length (Klein & Asraf, 

2020; Seethi & Bharti, 2020; Sui & Chang, 2021). RoNIN has 

introduced a deep-learning-based regressor for 2D velocity, 

which can model pedestrian dynamics completely and achieve 

remarkable results in predicting changes in pedestrian heading, 

with the provision of a pre-trained model trained on a large 

amount of data (Herath et al., 2020; K. S. Kim & Shin, 2021).  
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Figure 1. The proposed algorithm architecture 

However, the shaking motion of a smartwatch can lead to 

inaccurate heading prediction. To address this issue, we employ 

RoNIN's pre-trained model, reformatting it as a 1D speed 

regressor to describe pedestrian movement speed, while the 

pedestrian direction is calculated using the AHRS algorithm 

specifically designed for pedestrian motion. The heading of 

pedestrian can be derived and the IMU 6-axis signal can be 

leveled as the input image to the model. 

 

2.3 GNSS/PDR Integration 

GNSS/PDR fusion has emerged as a popular technique for both 

indoor and outdoor positioning. By combining the measurements 

from GNSS and PDR, this approach offers improved accuracy, 

availability, and reliability in position estimation. Extended 

Kalman Filter (EKF) and Factor Graph Optimization (FGO) are 

two popular algorithms for GNSS/PDR fusion (Jiang et al., 2022; 

Lan et al., 2015). EKF is a recursive algorithm that estimates the 

state of a system with a nonlinear model and measurement errors. 

It has been widely used in GNSS/PDR fusion due to its simplicity 

and effectiveness in handling nonlinear models. FGO, on the 

other hand, is a graphical representation of a probabilistic model 

that is used for inference in Bayesian networks. In addition to 

GNSS and PDR, other measurements such as ZUPT (Xie et al., 

2022), Bluetooth, and Wi-Fi can also be integrated into 

GNSS/PDR fusion to further improve positioning accuracy and 

reliability. ZUPT is a method that utilizes the knowledge of a 

stationary period to reset the velocity error in PDR. Bluetooth and 

Wi-Fi are wireless communication technologies that can provide 

additional range and positioning information. 

This study proposes a robust integration scheme for GNSS/PDR-

based pedestrian positioning in complex environments. The 

scheme aims to provide reliable, continuous, and accurate 

positioning results. In terms of algorithm, the integration scheme 

employs EKF as the algorithmic framework takes into account 

the gait characteristics of pedestrians, and fuses GNSS 

positioning results. Furthermore, the scheme incorporates a CNN 

Speed model to provide ZUPT updates. The proposed scheme is 

designed for consumer-grade pedestrian positioning, and its 

effectiveness is evaluated through experiments in a complex 

outdoor environment. 

3. METHODOLOGY 

In this study, a novel algorithm for smartwatch navigation is 

presented. The proposed algorithm, as shown in Figure 1, 

includes heading estimation, step detection, a CNN speed model, 

and a proposed GNSS/PDR integration system. These 

components are designed to work together seamlessly and 

provide continuous and accurate pedestrian navigation. In the 

following sections, we will detail each component of the 

algorithm and explain how they contribute to the overall 

performance of the system. 

 

3.1 Heading Estimation 

A recent research study has conducted a comprehensive review 

and evaluation of several AHRS algorithms and subsequently 

proposed an alternative algorithm based on a 9-DOF IMU 

comprising accelerometers, gyroscopes, and a magnetometer. 

The new algorithm called the Versatile Quaternion-based Filter 

(VQF), has been demonstrated to be more accurate and robust 

than existing solutions (Laidig & Seel, 2022). Specifically, the 

VQF leverages a low-pass filtering strategy to eliminate updates 

from high dynamic accelerations, resulting in a stable estimation 

of roll and pitch. Furthermore, magnetic disturbance rejection 

techniques have been employed to prevent the distortion of 

heading correction. The VQF has been utilized in this study to 

level the IMU signal for step detection and training sequence 

generation for a CNN-Speed model. The estimated heading of the 

sensor has been determined using gyros-only (3-DOF), 

accelerometers-aided (6-DOF), and whole sensor fusion (9-DOF) 

modes. The improvement in the sensor fusion scheme on the 

heading has been depicted in Figure 2.  As shown in the figure, 

incorporating a magnetometer into the sensor configuration can 

effectively suppress heading drift and maintain the approximate 

trajectory shape, in comparison to other sensor configurations. 

Consequently, the 9-DOF VQF algorithm has been adopted for 

subsequent integration. Meanwhile, the heading of VQF 

estimation may exhibit periodic waveform due to the left-right 

movement of the hand. This indicates that the heading 

transformation from the sensor frame to the body frame needs to 
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be considered. Therefore, we propose filtering out the periodic 

variations caused by hand swinging to obtain the actual heading 

in the body frame. We utilize each step's heading for PDR 

calculation, as depicted in the lower section of Figure 3. 

 

 
Figure 2. The comparison between 3D, 6D, 9D attitude-based 

PDR 

 

3.2 Step Detection 

The levelled acceleration is utilized to detect pedestrian steps by 

recognizing the periodic signal. In fact, the vertical component 

(Down) of the acceleration without gravity is used to reflect the 

motion caused by steps. Since the smartwatch is installed only on 

one hand, a periodic waveform with a large and a small 

component can be observed in the vertical axis of the IMU with 

each left-right stride. We propose a parameter-free step detection 

algorithm based on vertical component acceleration. The crests 

and troughs of the signal are detected by slop change. A valid 

step should meet the following requirements: 1) Each valley must 

have a corresponding peak. 2) The minimum interval of nearby 

steps conditional is used to remove incorrect steps. First, the low-

frequency noise is filtered out from the vertical acceleration 

signal, and then peaks and valleys are detected based on the 

aforementioned principles to identify a single step. During this 

process, higher amplitude crests are used to identify false crests. 

To estimate step length, an empirical model (Chen et al., 2011), 

which only considers the user height and step frequency are used 

as a comparison with the proposed CNN-Speed-Model. Figure 3 

demonstrates the result of step detection (upper) and step length 

estimation (middle). 

 
Figure 3. An illustration of the proposed PDR 

3.3 CNN Speed Model 

Since the conventional empirical model has two major shortages: 

1) The personal factors should be fine-tuned. 2) The algorithm 

depends on accurate step detection. Otherwise, the errors (step 

detection and step length) would be propagated to position error. 

To address these issues, we propose a robust and independent 

CNN-Speed-Model method, which is based on a pre-trained Res-

Net18 model of RoNIN (Herath et al., 2020). This method trans-

forms levelled IMU 6 DOF data with a 1-second (50 Hz) window 

size into a sequence and uses it as input for the ResNet18. The 

output is modified to convert RoNIN's 2D velocity to 1D speed. 

Additionally, we use the GNSS speed of the smartwatch in open 

sky areas as the label. To improve the generalization and stability 

of the model, we employ data augmentation techniques such as 

heading rotation and random frame shifts as shown in Figure 4. 

These techniques enhance the model's stability and make it more 

robust against variations in the input data. To evaluate the effec-

tiveness of our proposed method, we collected outdoor walking 

data from four individuals for training. The testing results demon-

strate that the CNN-Speed-Model method outperforms the con-

ventional empirical model in terms of accuracy and stability, as 

shown in Figure 5. Additionally, by incorporating stationary 

states in the training data, the CNN-Speed-Model method can ac-

curately predict the stationary state, enabling its application for 

zero-velocity update (ZUPT) correction. 

 

  
Figure 4. The CNN Speed model architecture 

 

 
Figure 5. An example of the proposed CNN-Speed-Model 

prediction 

 

3.4 Proposed GNSS/PDR Integration System 

GNSS and PDR are two common technologies for the navigation 

of pedestrians. GNSS provides accurate location information but 

can be sheltered by obstacles. PDR uses motion sensors to 

estimate continuous person's location and movement, but sensor 

errors can cause drift over time. By integrating GNSS and PDR, 

Heading rotation
augmentation

Random shift

50 Hz IMU seq.

ResNet18
(RoNIN pre-train)

1D Speed
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we can overcome these weaknesses and achieve better 

positioning in complex environments. Algorithmically, we 

propose a four-state EKF that utilizes the speed predicted by a 

CNN model and the heading change calculated by each step's 

heading as prediction input. The detailed process for integrating 

GNSS and PDR using EKF is as follows: 

As the prediction component of our algorithm, proposed PDR 

model utilizes the product of speed and sample interval to 

estimate the pedestrian's movement distance at each time step. 

The change in heading, on the other hand, is only calculated after 

the completion of a step, as shown in Figure 6. 

 

𝑥𝑡 = [ 𝐸𝑡    𝑁𝑡     𝑆𝑡     𝜙𝑡 ]  𝑇, ( 5 ) 

𝑥𝑡 = [

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

] 𝑥𝑡−1 + [

𝑆𝑡𝑑𝑡 sin(𝜙𝑡−1 + 𝜔𝑡)

𝑆𝑡𝑑𝑡 cos(𝜙𝑡−1 + 𝜔𝑡)
𝑆𝑡

𝜙𝑡−1 + 𝜔𝑡

] , ( 6 ) 

 

where  𝐸𝑡, 𝑁𝑡  =  𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 𝑜𝑓 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 

𝑆𝑡  =  𝑠𝑝𝑒𝑒𝑑 

𝑑𝑡 =  𝑠𝑎𝑚𝑝𝑙𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 
𝜙𝑡 =  𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 

𝜔𝑡 = ℎ𝑒𝑎𝑑𝑖𝑛𝑔 𝑐ℎ𝑎𝑛𝑔𝑒 (𝑜𝑛𝑙𝑦 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑤ℎ𝑒𝑛 𝑎 𝑠𝑡𝑒𝑝  
𝑖𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑;  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑖𝑡 𝑖𝑠 𝑧𝑒𝑟𝑜) 

 

Once the observations, which consist of GNSS positioning 

results or zero-velocity information, are obtained, the 

measurement equation can be formulated. 

 

𝑍𝑝𝑟𝑒𝑑 = H 𝑥𝑡 , ( 7 ) 

 

The accuracy of absolute positioning in the system is mainly 

determined by GNSS positioning, which can effectively suppress 

the error of the inertial sensor. Therefore, the GNSS 

measurements (position, speed) are utilized to update the state 

estimates. 

 

𝑍𝐺𝑁𝑆𝑆 = [𝐸𝐺𝑁𝑆𝑆, 𝑁𝐺𝑁𝑆𝑆, 𝑆𝐺𝑁𝑆𝑆], ( 8 ) 

 

ZUPT is an effective method for mitigating velocity error 

accumulation. The CNN speed model can provide reliable zero-

velocity detection by a simple threshold. Therefore, we utilize the 

CNN-Speed-Model to detect the stationary state and construct a 

zero-velocity observation model: 

 

𝑍𝑍𝑈𝑃𝑇 = [0], 𝑖𝑓 𝑆𝑡 < 𝑍𝑈𝑃𝑇_𝑇ℎ𝑟, ( 9 ) 

 

 
Figure 6. The schematic diagram of proposed PDR with speed 

and heading change input 

 

4. RESULTS AND DISCUSSION 

The CNN-speed model proposed in this paper was trained using 

pre-trained weights provided by RoNIN, with a training dataset 

consisting of IMU 6-axis data from four individuals wearing 

smartwatches while walking in opensky areas. The testing dataset 

consisted of independent walking data from different individuals. 

The trained model achieved a testing accuracy of 0.21 m, 

accurately reflecting the pedestrian’s speed trend and exhibiting 

smoother variations compared to GNSS speed, as shown in 

Figure 5 and Figure 7. 

 

 
Figure 7. The testing result of the proposed CNN-Speed-Model 

prediction 

 

The experimental setup, as shown in Figure 8, involved 

collecting sensor measurements from the smartwatch (Apple 

Watch), including the accelerometer, gyroscope, magnetometer, 

and GNSS. The PwrPak7D-E2 in backpack mode with an 

antenna placed on the shoulder was used as the reference. The 

Novatel raw measurements were processed with the Inertial 

Explorer (IE) software from Novatel, resulting in post-processing 

position errors of less than 5 cm. In this paper, there are two 

experiment routes being tested. The two routes represent 

common outdoor GNSS-challenging environments, where Route 

1 represents a high-rise urban environment and Route 2 

represents a tree-covered shaded environment. 

 

 
Figure 8. Configuration of the navigation sensor on a 

pedestrian. The backpack contains our reference system 

(PwrPak7D-E2) 

 

Each method is computed and compared with the reference 

trajectory. We compared the pure PDR results using Chen's step 

length empirical model and the CNN speed model, followed by 

evaluating the fusion algorithm proposed in this paper. As Figure 

9 and Figure 10 show, the red track shows the reference trajectory. 
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The blue track represents the fusion solution of the proposed 

integration method. The green track and the earls green track 

illustrate the CNN and Empirical model PDR respectively. The 

white dots represent the GNSS positioning result. 

 

Table 1. The horizontal accuracy of different methods in both 

experiment routes. 

Route 1 

Error 

(m) 
Empirical CNN Proposed 

RMSE 13.179 9.912 4.277 

Route 2 

Error 

(m) 
Empirical CNN Proposed 

RMSE 85.746 78.655 3.426 

 

Table 1 describes the accuracy of each method in different routes. 

The travelled distances are about 670(m) and 1260(m) in route 1 

and 2 respectively. Also, the GNSS outage duration time is 100(s) 

and 120(s) respectively. Our proposed fusion method achieved 

the best results among the others in both routes, with accuracies 

of 4 meters and 3 meters, respectively. Moreover, when 

comparing only PDR accuracy, our PDR trajectories based on the 

proposed CNN-speed model were more accurate than those based 

on the empirical model, demonstrating better scale accuracy. In 

the state of the art, our proposed fusion method performed well 

in GNSS-denied or challenging environments and effectively 

reduced PDR drift. In conclusion, integrating CNN-PDR and 

GNSS provides high availability and accuracy advantages. 

 

 
Figure 9. The comparison of trajectory between each method in 

experiment route 1. 

 

Figure 10. The comparison of trajectory between each method 

in experiment route 2. 

 

5. CONCLUSION 

The present study introduces a novel approach for integrating 

PDR/GNSS with a CNN-speed model to achieve accurate and 

continuous pedestrian navigation through the fusion of GNSS 

and IMU sensors. The article outlines the key technologies of the 

proposed scheme, which include leveraging a reliable attitude 

estimation, a parameter-free step detection method, an improved 

CNN-speed model, and a fusion algorithm of GNSS and PDR 

that includes zero-velocity detection. The accuracy of the 

proposed method was evaluated through actual experiments 

using an Apple Watch. The results of the kinematic experiments 

conducted in outdoor open environments and complex 

environments demonstrate that the proposed scheme can 

effectively combine the benefits of GNSS and PDR to achieve a 

pedestrian navigation position error of less than 5 m by the 

smartwatch. This system represents a significant technological 

advancement in smartwatch navigation and has potential 

applications in various fields, including fitness tracking, 

healthcare, and emergency services. 
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