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ABSTRACT: 

 

Stereo Visual Odometry (SVO) is a technique used to estimate the continuous position and orientation of a moving platform using a 

dual-camera system that captures stereo image pairs. To obtain accurate results, A SVO system must be calibrated before use. System 

calibration is necessary to determine the intrinsic camera parameters (ICPs) and the relative orientation parameters (ROPs) between 

the cameras at real scale. Compared to monocular visual odometry, a calibrated SVO system can recover the real scale of the translation 

vector without additional sensors. 

The proposed method in this study utilizes ROP adjustment for SVO. Instead of conventional bundle adjustment, this method adopts 

all sets of ROPs as measurements in the designed network adjustment model. Specifically, there are six sets of ROPs among time-

adjacent stereo image pairs. 

A SVO system was designed to implement the proposed SVO method. Two experiments were conducted in outdoor and indoor test 

fields to evaluate the performance. Several ground check points were set up for distance and position verification. The drift ratio was 

also evaluated. The results demonstrate that the designed SVO system has great feasibility and accuracy for navigation applications.  

 

 

1. INTRODUCTION 

The development of visual odometry (VO) systems can be 

categorized as either using a monocular camera or a stereo pair 

of cameras. Monocular visual odometry (MVO) (Tian et al., 

2021), which employs only one camera, estimates the moving 

trajectory based on relative measurements between consecutive 

image frames, specifically relative orientation parameters (ROPs) 

that can be divided into relative orientation and relative 

translation. However, MVO cannot directly solve for the real 

scale of relative translation between image frames, so each 

relative translation vector is normalized. MVO generally uses 

2D-to-2D correspondences for motion computation (Scaramuzza 

and Fraundorfer, 2011). 

 

In contrast, Stereo Visual Odometry (SVO) is a technique that 

uses a dual-camera system taking sequences of stereo image pairs 

to estimate the continuous attitude and position of a moving 

platform (Nistér et al., 2006). Before application, this dual-

camera system must be calibrated to acquire the intrinsic camera 

parameters (ICPs) and the ROPs between the cameras with real 

scale. Compared to MVO, SVO can recover the real scale of the 

relative translation vector without the need for additional sensors. 

SVO typically uses 3D-to-3D and 3D-to-2D correspondences for 

motion estimation. 

 

In the conventional procedure of SVO algorithm, local 

optimization is a critical step in improving the estimated attitude 

and position. Two commonly used strategies for local 

optimization are bundle adjustment and loop closure. However, 

these methods have limitations, such as enormous computing 

requirements and revisiting the same location, respectively. 

Additionally, ROPs describe the geometry between two adjacent 

images, and six sets of ROPs can be formed among time-adjacent 
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stereo image pairs. However, only parts of these sets of ROPs are 

used for motion estimation and local optimization. This indicates 

the potential for generating and utilizing redundant 

measurements to achieve better performance in SVO. 

 

Therefore, this study proposes a novel SVO method based on 

ROP adjustment, which establishes a network geometric 

constraint of multiple images. The main contributions of this 

study can be summarized as follows. First, instead of using image 

conjugate points through conventional bundle adjustment, as in 

(Xu, 2015; Yoon and Kim, 2019), all sets of ROPs obtained 

among time-adjacent stereo image pairs are discussed and 

utilized as vision measurements. Second, our SVO method 

applies 2D-to-2D correspondences to estimate the initial motion 

while solving the scale ambiguity. In contrast to the conventional 

use of 3D-to-3D and 3D-to-2D correspondences, as in (Geiger et 

al., 2011) and (Nistér et al., 2006), respectively, the procedure of 

our SVO method does not require generating 3D point clouds. 

Accordingly, both calculation complexity and resource 

requirements could be decreased. Finally, a network adjustment 

model based on adjusting all sets of ROPs is developed. The 

motion can be optimized locally while achieving reasonable 

accuracy. Through our SVO method, all sets of solved ROPs and 

calibrated ROPs would be adopted and then estimate the final 

exterior orientation parameters (EOPs) of SVO system. 

 

2. METHODOLOGY 

2.1 Overview of Proposed Method 

The proposed SVO based on ROP adjustment follows the 

workflow shown in Figure 1. Given two stereo image pairs, there 

are six possible sets of ROPs that can be formed for any pairs of 

images. In the subsequent image matching step, four sets of ROPs 
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need to be estimated. Two sets of ROPs are obtained through 

calibration in advance. 

 

The image matching process is critical for detecting 

corresponding feature points on the two images and establishing 

matching pairs, which enable the estimation of ROPs. In this 

study, the feature-based method, SURF is adopted due to its 

robustness for VO applications. A random sample consensus 

(RANSAC) scheme is adopted to extract correct matching pairs. 

These filtered matching pairs can generate the essential matrix to 

solve ROPs. 

 

Once all sets of ROPs are obtained from the time-adjacent stereo 

image pairs, they can be transformed into EOPs that represent the 

attitude and position in the object frame (O frame). In this study, 

the first left camera frame is defined as the O frame, even though 

each captured image has its individual camera frame. By 

transforming the continuous attitudes and positions into EOPs 

defined in the same O frame, the EOPs can be optimized using 

the proposed local optimization based on ROP adjustment. 

 

 
Figure 1. Workflow of proposed SVO based on ROP 

adjustment. 

 

2.2 Relative Orientation 

Relative orientation refers to the geometric relationship between 

two images captured in the same object space. This relationship 

includes differences in both attitude and position between the two 

images. When an image is captured using a frame camera, it is 

formed based on the principles of perspective projection, where 

the center of projection represents the image position, and the 

optical axis represents the image orientation. To deal with image 

geometry, a three-dimensional (3D) camera frame is usually 

formed, associated with the image position and orientation. The 

origin of the camera frame of an image usually corresponds to 

the center of projection, and one of the frame axes coincides with 

the optical axis. Under these circumstances, the relative 

orientation of two images can be described as a 3D translation 

and rotation between the two camera frames. 

 

As shown in Figure 2, the left and right camera frames represent 

the camera coordinate systems of the two images, and the relative 

orientation can be mathematically modeled using a rotation 

matrix, 𝑅𝑅
𝐿 , and a translation vector, 𝑟𝑅

𝐿. Therefore, there are six 

parameters associated with relative orientation, three of which 

correspond to the rotation matrix and the other three correspond 

to the translation vector. 

 

 
Figure 2. Relative orientation of two images mathematically 

modelled as a rotation matrix and a translation vector. 

 

When a stereo pair of images are captured with a calibrated dual 

camera system, the relative orientation of this image pair can be 

known form the calibration. In this case, the six ROPs are known. 

However, if the relative orientation of two overlapping images is 

estimated using detected tie points, only five out of six ROPs can 

be determined, since the baseline scale can be arbitrary. 

Therefore, the estimated ROPs suffer from the issue of scale 

ambiguity. Under this circumstance, as depicted in Figure 3, the 

translation vector is normalized to be a unit vector denoted as �̂�𝑅
𝐿, 

and the vector scale, 𝜆𝑅
𝐿 , is remaining unknown. 

 

 
Figure 3. Estimated relative orientation of two 

overlapped images by using detected tie points, in which the 

translation vector scale is unknown. 

 

In summary, the difference between ROPs for a stereo pair and 

an image pair is that the scale of relative translation is known or 

not. Monocular cameras require scale determination through 

direct measurement, motion constraints, or integration with 

additional sensors (Fraundorfer & Scaramuzza, 2011). Stereo 

cameras can solve the scale ambiguity themselves. In this study 

both types of ROPs are used for initial motion estimation and 

then adopted as measurements in the network adjustment for 

optimizing the original attitude and position.  

 

2.3 Motion Estimation 

As mentioned previously, there are six sets of ROPs that can be 

formed among time-adjacent stereo image pairs. As shown in 

Figure 4, if the image pair captured at t epoch is denoted images 

1 and 2 and the image pair captured at t+1 epoch are denoted 

images 3 and 4, the six ROP sets are (𝑟2
1, 𝑅2

1), (𝑟4
3, 𝑅4

3), (𝑟3
1, 𝑅3

1), 

(𝑟4
1, 𝑅4

1), (𝑟3
2, 𝑅3

2), and (𝑟4
2, 𝑅4

2). Among the six ROP sets, (𝑟2
1, 

𝑅2
1) and (𝑟4

3, 𝑅4
3) are known from the system calibration of the 

applied SVO system and remain constant. The other four ROP 

sets can be evaluated with image tie points obtained through 

image matching.  

 

Table 1 lists the notations of all sets of ROPs in the time-adjacent 

stereo image pairs. The coordinate systems of the left image and 

right image at 𝑡  moment are named 𝐶1  frame and 𝐶2  frame 

respectively. The coordinate systems of the left image and right 

image at 𝑡 + 1  moment are named 𝐶3  frame and 𝐶4  frame 

respectively. 𝑅2
1 is a rotation matrix from 𝐶2 frame to 𝐶1 frame. 

�̂�2
1 is a normalized direction vector defined in 𝐶1 frame from the 
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origin of 𝐶1 frame to the origin of 𝐶2 frame. 𝜆2
1  is the scale of 

relative translation, which is the distance from the origin of 𝐶1 

frame to the origin of 𝐶2 frame. The definition is also the same 

for the other notations. 

 

 
Figure 4. Six sets of ROPs in the time adjacent stereo 

image pairs. 

 

ROPs 

Relative rotation 𝑅2
1, 𝑅4

2, 𝑅4
3, 𝑅3

1, 

𝑅4
1, 𝑅3

2 

Relative 

translation 

(normalized 

direction vector) 

�̂�2
1, �̂�4

2, �̂�4
3, �̂�3

1, �̂�4
1, 

�̂�3
2 

Scale of relative 

translation 
𝜆2
1 , 𝜆4

2, 𝜆4
3, 𝜆3

1 , 𝜆4
1 , 

𝜆3
2 

EOPs 

Attitude 𝑅1
𝑂, 𝑅2

𝑂, 𝑅3
𝑂, 𝑅4

𝑂 

Position 

(direction vector) 
𝑟1
𝑂, 𝑟2

𝑂, 𝑟3
𝑂, 𝑟4

𝑂 

Table 1. Notations of ROPs and EOPs among two-time 

adjacent image pairs. 

 

Two sets of ROPs, (𝑅2
1, 𝑟2

1) and (𝑅4
3, 𝑟4

3) belong to the stereo pairs 

are known due to the calibration in advance. The remaining four 

sets of ROPs belong to the image pair are solved after the 

RANSAC process. In this step, the initial EOPs can be solved 

based on geometric relation among time-adjacent stereo image 

pairs. 

 

2.4 Local Optimization Based on ROP Adjustment 

To optimize the EOPs obtained in the previous step, a two-step 

network adjustment based on ROPs is developed for local 

optimization in SVO. In the first step, only relative rotations are 

used as measurements in the adjustment, along with six inner 

constraints of a rotation matrix in each.  

 

The weights of measurements are determined based on the inlier 

number from RANSAC results. All inner constraints of rotation 

matrices, as well as the known relative rotation, 𝑅4
3 are assigned 

an extremely large weight. The entire least-squares form of the 

rotation adjustment is shown in Equation (1). 

 

This adjustment model has a total of 57 measurements and 18 

unknown parameters, which composes two rotation matrices in 

the O frame. The output of this rotation adjustment is then used 

as known coefficients in the next step of the network adjustment. 

[
 
 
 
 
 
 
 
 
 
 
 
 

𝑅4
2

𝑅4
3

𝑅3
1

𝑅4
1

𝑅3
2

𝑇ℎ𝑒 1𝑠𝑡𝑐𝑜𝑛𝑡𝑟𝑎𝑖𝑡𝑠 𝑖𝑛 𝑅3
𝑂

⋮
𝑇ℎ𝑒 6𝑡ℎ𝑐𝑜𝑛𝑡𝑟𝑎𝑖𝑡𝑠 𝑖𝑛 𝑅3

𝑂

𝑇ℎ𝑒 1𝑠𝑡𝑐𝑜𝑛𝑡𝑟𝑎𝑖𝑡𝑠 𝑖𝑛 𝑅4
𝑂

⋮
𝑇ℎ𝑒 6𝑡ℎ𝑐𝑜𝑛𝑡𝑟𝑎𝑖𝑡𝑠 𝑖𝑛 𝑅4

𝑂]
 
 
 
 
 
 
 
 
 
 
 
 

+ 𝑉 = 𝐴 × [
𝑅3
𝑂

𝑅4
𝑂]~W (1) 

where 𝑉 denotes the residual vector. 𝐴 denotes the design matrix. 

𝑊 denotes the weight matrix. 

 

 

Second, only the relative translations are used as measurements 

in the adjustment. Equation (2) displays the entire least-squares 

form translation adjustment. The weights of measurements are 

set based on the inlier number from RANSAC results. Only the 

known relative translation, �̂�4
3  is assigned an extremely large 

weight. That is the constraints in this adjustment model. 

Therefore, there are 15 measurements and 6 unknown parameters, 

which composes two positions in the O frame. 

 

 

[
 
 
 
 
 
�̂�4
2

�̂�4
3

�̂�3
1

�̂�4
1

�̂�3
2]
 
 
 
 
 

+ 𝑉 = 𝐴 × [
𝑟3
𝑂

𝑟4
𝑂]~W (2) 

where 𝑉 denotes the residual vector. 𝐴 denotes the design matrix. 

𝑊 denotes the weight matrix. 

 

During the adjustment process, it is necessary to calculate and 

update the scales based on the solved EOPs in each iteration. The 

only fixed coefficient is the known scale, 𝜆4
3. Equation (3) shows 

how the scale is calculated.  

 

{
 
 
 
 

 
 
 
 𝜆4

2 = √(𝑟4
𝑂 − 𝑟2

𝑂)2

𝜆1
3 = √(𝑟1

𝑂 − 𝑟3
𝑂)2

𝜆4
1 = √(𝑟4

𝑂 − 𝑟1
𝑂)2

𝜆3
2 = √(𝑟3

𝑂 − 𝑟2
𝑂)2

 (3) 

 

Figure 5 illustrates an example of network adjustment. In this 

example, each set of ROPs in different camera frames has been 

transformed into the corresponding direction vector in the O 

frame, represented by different colors. Before the network 

adjustment, these six direction vectors can not be aligned 

properly. However, after the network adjustment, they are 

perfectly aligned, demonstrating an improvement in SVO. 
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(a)                                                (b) 

Figure 5. An example of the network adjustment: (a) before the 

network adjustment (b) after the network adjustment. 

 

Compared to the conventional bundle adjustment of image points, 

the network adjustment based on ROPs offers the advantage of 

requiring less computation. In the network adjustment, the 

measurements of ROPs in the least-squares form are fixed and 

relatively few. There are only 57 measurements in the relative 

rotation adjustment model and 15 measurements in the 

translation adjustment model. However, for bundle adjustment, 

there are numerous measurements in the least-squares form. 

 

3. IMPLEMENTATION AND EXPERIMENTS 

This section begins by demonstrating the implementation of an 

SVO system. Next, the design and calibration of the SVO system 

are explained. Finally, two tests are conducted, and the 

experimental results are provided for both outdoor and indoor 

scenarios. A detailed analysis is also presented to evaluate the 

proposed SVO method. The position difference between the 

estimated trajectory and the corresponding GCP is calculated. 

Corresponding mean difference and Root Mean Square 

Difference (RMSD) are computed. Furthermore, the total 

difference based on the endpoint and the drift ratio are also 

calculated for evaluation. 

 

3.1 Design of SVO System 

To implement the proposed SVO method, a SVO system was 

designed, as shown in Figure 6. The system consists of two Sony 

RX0 II cameras mounted on a rigid bar for stability. A 

synchronized shutter was also developed to capture a stereo 

image pair at each epoch. The baseline of the cameras to the depth 

of the scene (B/D) ratio is similar to the baseline to height (B/H) 

ratio used in aerial photogrammetry (PH), and it is critical for 

depth accuracy. According to (Shen, 2018), a longer camera 

baseline leads to better accuracy at the same distance. The current 

products of stereo cameras, such as the ZED and ZED mini 

cameras, have baseline lengths of only 6.3 and 12 centimeters, 

respectively. For better geometrical intersection, the baseline 

length of our system was set to about 27 centimeters. The overlap 

of the two cameras is approximately 69% and 96% when the 

cameras are 1 meter and 10 meters away from the scene, 

respectively.  

 

In addition, the proposed SVO method can be applied in various 

scenarios using the SVO system, which can be mounted on a 

tripod, camping cart, or land vehicle. This system has potential 

applications in navigation and mobile mapping. Figure 7 shows 

the camping cart attached with the SVO system. The stands on 

the camping cart is made of aluminum extrusions for easy 

assembly. 

 

 

Figure 6. The designed SVO system. 

 

  

Figure 7. The camping cart attached with the SVO system. 

3.2 System Calibration 

3.2.1 Calibration of ICPs 

Accurate system calibration is essential for obtaining precise 

ICPs and ROPs in the proposed SVO method. The distribution of 

detected object points during camera calibration determines the 

accuracy of the derived ICPs. Instead of using computer vision 

(CV) calibration method with a flat checkerboard, we adopted the 

photogrammetry (PH) calibration method to acquire accurate 

ICPs and ROPs for the SVO system. The calibration was 

conducted in an indoor calibration field with coded targets. 50 

stereo image pairs were taken and solved for the ICPs using 

Australis photogrammetric software. The overall estimated 

precision of the calibration was 0.16 pixels. To ensure 

compatibility with the CV standard, the PH ICPs were converted 

to the CV standard using the ICP transformation method 

proposed by (Lin et al., 2022), as listed in Table 2. Finally, the 

rectified images generated using these CV ICPs were used as 

input to the proposed SVO method. 

 

The Left Camera The Right Camera 

ICPs Value ICPs Value 

𝒇𝒙(𝒑𝒊𝒙𝒆𝒍) 3362.10 𝒇𝒙(𝒑𝒊𝒙𝒆𝒍) 3366.02 

𝒇𝒚(𝒑𝒊𝒙𝒆𝒍) 3362.10 𝒇𝒚(𝒑𝒊𝒙𝒆𝒍) 3366.02 

𝒄𝟎(𝒑𝒊𝒙𝒆𝒍) 2406.70 𝒄𝟎(𝒑𝒊𝒙𝒆𝒍) 2429.80 

𝒓𝟎(𝒑𝒊𝒙𝒆𝒍) 1601.75 𝒓𝟎(𝒑𝒊𝒙𝒆𝒍) 1604.78 

�̂�𝟏(𝒖𝒏𝒊𝒕) 0.0176 �̂�𝟏(𝒖𝒏𝒊𝒕) 0.0176 

�̂�𝟐(𝒖𝒏𝒊𝒕) -0.0356 �̂�𝟐(𝒖𝒏𝒊𝒕) -0.0373 

�̂�𝟑(𝒖𝒏𝒊𝒕) 0.0507 �̂�𝟑(𝒖𝒏𝒊𝒕) 0.0444 

�̂�𝟏(𝒖𝒏𝒊𝒕) -0.0006 �̂�𝟏(𝒖𝒏𝒊𝒕) -0.0001 

�̂�𝟐(𝒖𝒏𝒊𝒕) -0.0005 �̂�𝟐(𝒖𝒏𝒊𝒕) 0.0008 

Table 2. Results of system calibration for ICPs (CV standard). 

 

3.2.2 Calibration of ROPs 

By calculating the ROPs of each of the 50 stereo image pairs 

based on the EOPs generated by the Australis photogrammetric 

software, the calibrated ROPs were obtained. The average of 

these ROPs was then used as the final calibrated ROPs in the 
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proposed SVO method as constraints. The calibration results for 

the ROPs are listed in Table 3. 

Relative 

rotation 

Average (degree) 

𝜔 𝜑 𝜅 

-0.01406  -0.75671  0.80437  

Relative 

translation 

Average (m) 

𝑋 𝑌 𝑍 

0.2857 0.0005 -0.0041 

Baseline length (m) 0.2857 

Table 3. Results of system calibration for ROPs. 

The EOPs in the O frame include the attitude and position 

parameters. The rotation angles around the X, Y, and Z axes are 

denoted as 𝜔, 𝜑, and 𝜅, respectively. The position in the X, Y, 

and Z directions are denoted as 𝑋, 𝑌, and 𝑍, respectively. The 

units for the attitude and position parameters are degrees and 

meters, respectively. 

 

3.3 Outdoor Test 

3.3.1 Test Field 

The outdoor test field is located around the museum in National 

Cheng Kung University (NCKU). The museum building and its 

surroundings provide clear texture for the scene, as shown in 

Figure 8. The outdoor environment provides sufficient GNSS 

signal for accurate measurement of ground control points (GCPs). 

Seven GCPs are set up to evaluate the performance of the SVO 

system in the test field. The horizontal and vertical precision of 

GCPs are less than 0.015 (m) and 0.03 (m), respectively. 

 

 

Figure 8. The scenarios in the outdoor test. 

 

3.3.2 Test Results 

The horizontal trajectory of the SVO system during the outdoor 

test is illustrated in Figure 9. The estimated trajectory is shown 

in a blue curve and the GCPs are indicated by red dots. The 

results are summarized in Table 4.  

 

Figure 9. The horizontal trajectory of SVO in the outdoor test. 

 

GCP 

Diff. in X 

direction 

(m) 

Diff. in Y 

direction 

(m) 

Diff. in Z 

direction 

(m) 

C01 -0.635 0.668 -0.159 

C02 -0.927 0.330 -0.503 

C03 -0.833 0.111 -1.082 

C04 -0.257 -0.262 -0.465 

C05 0.161 -0.260 0.101 

C06 0.593 -0.083 1.065 

Mean Diff.(m) -0.316 0.084 -0.174 

RMSD (m) ±0.632 ±0.344 ±0.684 

Total length for GCP (m) 91.175 

Total length for SVO(m) 91.837 

Total diff. (m) 0.662 

Drift ratio (%) 0.73 

Table 4. The results of outdoor test. 

 

3.3.3 Analysis and Evaluation 

As shown in Figure 9, the estimated trajectory generated by our 

SVO system is consistent with the GCPs. The movement is 

continuous and similar to reality. The position differences 

between estimated positions and GCPs are mostly less than 1 (m), 

with mean differences of -0.316, 0.084, and -0.174 in the X, Y, 

and Z directions, respectively. The RMSDs in the X, Y, and Z 

directions are ±0.632 (m), ±0.344 (m), and ±0.684 (m), 

respectively. For the entire route, the overall drift is 0.662 (m), 

with a translation ratio of 0.73 (%), and the scales estimated by 

our SVO method are reasonable and consistent with the GCPs. 

 

In conclusion, our SVO method is feasible and has been 

successfully implemented using the designed SVO system. The 

estimated positions and total distance compared to GCPs 

demonstrate that our method produces suitable results. 

 

3.4 Indoor Test 

3.4.1 Test Field 

The indoor test field is located on the first floor of the Department 

of Geomatics at NCKU. The scenario is quite diverse, and some 

areas lack texture, such as the white walls. The entire space is 

compact, measuring about 16 (m) × 12 (m). This indoor scenario 

is quite challenging for the SVO method. Figure 10 shows 

various scenes where our SVO system passes through. Several 

GCPs are set up in this indoor field, and their coordinates are 
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defined in a local frame. The coordinates of these GCPs were 

measured using a total station and level. The horizontal and 

vertical precision of GCPs is both less than 0.030 (m). 

 

Figure 10. The scenarios in the indoor test. 

 

3.4.2 Test Results 

The horizontal trajectory of the SVO system during the indoor 

test is illustrated in Figure 11. The estimated trajectory is shown 

in a blue curve, and the GCPs are indicated by red dots. The 

results of the SVO system are summarized in Table 5. 

 

Figure 11. The horizontal trajectory of SVO in the indoor test. 

 

Table 5. The results of indoor test. 

GCP 

Diff. in X 

direction 

(m) 

Diff. in Y 

direction 

(m) 

Diff. in Z 

direction 

(m) 

P02 -0.007  -0.307  0.023  

P03 -0.538 0.467 -0.138 

P01  -0.014 -0.072 -0.303 

Mean Diff. (m) -0.187  0.029  -0.139  

RMSD (m) ±0.311 ±0.325  ±0.193  

Total length for GCP (m) 20.741 

Total length for SVO(m) 21.000 

Total diff. (m) 0.259 

Drift ratio (%) 1.25 

 

3.4.3 Analysis and Evaluation 

Based on Figure 11, the estimated trajectory aligns with the GCPs, 

indicating the movement is consistent with the actual experiment. 

For the entire route, the overall drift for the entire route is 0.259 

(m), with a translation ratio of 1.25 (%). The position differences 

between P01, P02 and corresponding GCPs are acceptable, with 

minimal differences in the X direction (about 0.01 m). However, 

P03 has the maximum position differences in X and Y direction. 

The reason might the scenes near the P03 is only a white wall, 

with a distance of less than 2 (m). Thus, the conjugate points of 

time adjacent stereo image pairs are much less that causes the 

worse results. The RMSDs in X, Y, and Z directions are ±0.311 

(m), ±0.325 (m), and ±0.193 (m) respectively. Although these 

values are not ideal due to the challenging indoor field, the SVO 

system successfully recovers the moving trajectory, indicating its 

feasibility. 

4. CONCLUSIONS 

This study presents a novel approach to SVO, using ROPs instead 

of image points as vision measurements to estimate the attitude 

and position of a vehicle-mounted SVO system. Unlike 

conventional bundle adjustment methods that require calculating 

3D point clouds, the developed network adjustment model 

reduces complexity by using fewer measurements. 

 

A SVO system is developed and mounted on a camping cart, with 

a longer baseline than commercial stereo cameras for better 

geometric intersection. The system is calibrated using the PH 

method to obtain ICPs and ROPs, which are then transformed to 

the CV standard for SVO implementation.  

 

Two experiments are conducted in outdoor and indoor test fields 

with changing textures, lighting, shadows, and pedestrian and 

vehicle traffic. In both tests, the estimated positions are 

comparable to GCPs, with an overall drift of 0.662 (m) and 0.259 

(m), and translation ratios of 0.73 (%) and 1.25 (%), respectively. 

The proposed SVO method successfully achieves continuous 

attitude and position estimation, and the developed computation 

method is evaluated and performs consistently with reality. 
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