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ABSTRACT: 

Self-driving car technology has become increasingly popular in recent years. Traditionally, these cars rely on GNSS and INS, but 

limitations in urban environments can affect their effectiveness. GNSS technology has developed to address this issue, but it still has 

limitations in certain environments. LiDAR technology has emerged as a solution to obtain high-precision point cloud maps and SLAM 

technology is now used to integrate these maps with sensor data, such as cameras, to achieve precise positioning. This enables visual 

SLAM to be performed in environments where GNSS signals are blocked. In this research, we aim to use SLAM technology to obtain 

posterior environmental information and match it with prior high-precision point cloud maps. The research will start with hardware 

configuration, actual measurement and analysis of SLAM algorithms, and 3D point cloud matching methods. Results and benefits will 

be analysed to compare the advantages and disadvantages of point cloud matching algorithms and applicable hardware. 

1. INTRODUCTION

In recent years, the smart industry has experienced remarkable 

growth, particularly in the field of self-driving cars. As AI 

technology continues to mature, an increasing number of 

manufacturers are investing in research and development in this 

area. According to Intel and the SA International Research 

Institute, the passenger economy generated by fully automatic 

driving is predicted to create a $7 trillion market by 2050, 

indicating enormous market development potential. The Boston 

Consulting Group (BCG) has estimated that the self-driving car 

market will have an output value of approximately $42 billion by 

2025. Additionally, BCG predicts that sales of new cars with self-

driving capabilities will account for roughly 25% of total sales in 

2035. With this rapid growth, accurate navigation and positioning 

technology have become increasingly crucial. Self-driving cars 

traditionally rely on GNSS and INS for positioning, but signal 

limitations in urban environments and other obstructions have 

made multi-spatial and integrated positioning technology 

increasingly popular. Using Simultaneous Localization and 

Mapping (SLAM) technology, multiple sensors can be used for 

real-time positioning by comparing features. This research uses 

SLAM algorithms to generate visual point clouds and match 

them with LiDAR point clouds. It is expected to be used in GNSS 

In case of signal failure, precise positioning can still be 

maintained. 

Figure 1. Process of SLAM and LiDAR point cloud matching 

* Corresponding author 

SLAM technology utilizes multiple sensors with image data to 

achieve real-time positioning and map construction while 

moving in an unknown environment by comparing features. 

Currently, there are two main methods of SLAM: Laser SLAM 

and Visual SLAM. Laser SLAM was the main research method 

in the early stage, with relatively mature theory, low 

computational requirements, high accuracy, and immediate 

response. However, it is expensive and has the problem of 

passing through object planes due to its long wavelength 

characteristics. On the other hand, Visual SLAM mainly uses 

cameras to capture image information, which can extract a large 

amount of feature information from the environment, and has 

gradually become the main research focus due to its low cost and 

wide application range. Based on the main visual sensor, Visual 

SLAM can be divided into three types: Monocular Camera, 

Stereo Camera, and Depth Camera (RGB-D Camera). 

Visual SLAM (Simultaneous Localization and Mapping) is a 

technique that uses a camera to obtain images of an unknown 

environment and construct a map while simultaneously 

estimating the camera's position and orientation. This is done by 

comparing observed features in the images to features in the map 

to determine the camera's location. However, Visual SLAM 

requires repeated observations of the same location to improve 

accuracy through loop closure detection. In the context of self-

driving cars, repeating the same route multiple times is not 

practical as it adds unnecessary cost and time. Instead, LiDAR 

technology has become popular for obtaining 3D point cloud 

maps of environments by scanning. These maps can be used to 

achieve high-precision navigation and positioning by matching 

the real-time point clouds obtained by the vehicle-mounted 

LiDAR to the pre-built high-precision point cloud map. However, 

the cost of LiDAR is high, making it impractical to equip each 

vehicle with one. To overcome this, a lower-cost camera can be 

used as the sensor instead, and the high-precision point cloud 

map can be used to replace repeated observations in Visual 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W1-2023 
12th International Symposium on Mobile Mapping Technology (MMT 2023), 24–26 May 2023, Padua, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-257-2023 | © Author(s) 2023. CC BY 4.0 License.

 
257

mailto:jasonlin@artc.org.tw
mailto:evan@artc.org.tw


 

SLAM. By matching the point cloud and the obtained image 

information in real-time, the car can perform positioning without 

the need to pass through the same location multiple times. 

 

2. RELATED WORK 

The concept of Simultaneous Localization and Mapping (SLAM) 

was first proposed in 1986. Professor A. J. Davison later 

introduced vision-based monocular SLAM, which combines 

vision with the SLAM algorithm for positioning(Davison et al., 

2007). The architecture of visual SLAM is as Figure 2. 

 

Figure 2 .Visual SLAM flowchart(Davison et al., 2007) 

To start, sensor data is used to gather environmental information. 

The camera is primarily utilized to obtain image data and pre-

process it. The pre-processed data is used for estimating camera 

motion and creating a local map, which is the front-end visual 

odometry (VO). The loop closure detection is used to determine 

if the camera has been in the same location before and provides 

this information to the back end for processing. The back end 

receives the camera position and attitude observed by the visual 

odometer at each moment and the information provided by the 

loop closure detection. The data is optimized to obtain a 

consistent trajectory and map for the entire area(Optimization), 

and finally, a map is built based on the processed trajectory data 

(Mapping). 

 

In 2007, Klein et al. proposed PTAM (Parallel Tracking and 

Mapping)(Klein & Murray, 2007), which achieved the 

parallelization of the tracking and mapping process. This 

research divided SLAM into front and back ends, which is the 

system design used by most SLAM systems today. This allows 

the back-end optimization to be performed synchronously in the 

execution thread. PTAM is also the first SLAM system to use 

nonlinear optimization. However, the scene size is limited, and 

tracking can be lost easily. 

 

 

Figure 3. PTAM Demo Result(Klein & Murray, 2007) 

In 2014, J. Engel et al. proposed the LSD SLAM (Large Scale 

Direct monocular SLAM) architecture(Engel et al., 2014), which 

uses a monocular direct method for feature extraction. The study 

employs a semi-dense direct method for extracting features from 

pixels. Specifically, it takes 5 points at equal distances on a line, 

calculates the sum of squared errors (SSD), and adjusts the scale 

by standardizing the estimated depth average value. However, the 

direct method alone is not currently sufficient for loop closure 

detection, so it needs to be combined with the feature point 

method. 

 

Figure 4. Structure of LSD-SLAM(Engel et al., 2014) 

In 2015, ORB-SLAM was a feature point method algorithm that 

used Oriented FAST corner detection and Rotated BRIEF 

descriptor for feature extraction(Mur-Artal et al., 2015). It 

employed three threads to complete SLAM: Tracking, Co-

visibility Graph, and Essential Graph. The system had good 

rotation and scaling invariance and reduced calculation time. The 

Tracking thread calculated feature point positions and roughly 

estimated camera pose, while the Co-visibility Graph used local 

bundle adjustment to obtain refined camera pose and feature 

point spatial position. The Essential Graph performed loop 

closure detection on the global pose graph, maps, and key frames 

to eliminate cumulative errors, allowing ORB-SLAM to obtain a 

globally consistent trajectory map. 

 

Figure 5. Structure of ORB-SLAM(Mur-Artal et al., 2015) 

Visual odometry can be classified into two types: direct method 

and feature-based method. The direct method estimates the 

camera motion using the gray value of pixels without the need 

for feature point operation and descriptors(Chen et al., 2018). It 

assumes that the gray value of the same pixel in two images is 

constant, and the camera pose is estimated using the minimum 

photometric error between two pixels. According to the source of 

the known point P, it is classified into three categories: Sparse 

Direct Method (SDM), Semi-dense Direct Method (SDDM), and 

Dense Direct Method (DDM). 

 

The sparse direct method (SDM) estimates the camera poses 

using sparse key points, and it tracks the photometric positions of 

pixels instead of using descriptors. Since it doesn't require 

descriptor calculation, it saves computing time and is a key point-

based pose estimation method. The Semidense Direct Method 

(SDDM) estimates P using pixels with significant pixel gradients 

and a large number of voxels, similar to the Sparse Direct Method. 

However, SDDM is a more sophisticated version of the direct 

method that uses more pixels to estimate the pose, making it more 

accurate and stable. LSD-SLAM employs this method to ensure 
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reliable and immediate tracking. The Dense Direct Method 

(DDM) uses all pixels in the image for estimating camera motion, 

which means all pixels contribute to the calculation. However, 

because it involves a large amount of data, this method requires 

significant computing resources and high-quality hardware 

equipment to achieve accurate results. 

 

When the gray value of the image is unstable due to factors such 

as light sources and materials, we need to use feature points in 

image analysis as reference points to estimate the camera position. 

Feature point methods find stable points during camera 

movement, and some well-known algorithms include Scale-

invariant feature transform(SIFT), Oriented FAST and Rotated 

BRIEF(ORB), and Speeded Up Robust Features(SURF). 

 

The Scale-invariant feature transform (SIFT) algorithm uses a 

multistage process to identify stable feature points in images. 

First, the image is down-sampled using Laplassian of Gaussian 

(LOG) to create a pyramid of images at different resolutions. 

Then, each layer of the pyramid is filtered using Gaussian 

convolution. In each image, pixels with a large gradient of gray 

value across the entire image are identified by computing the 

Difference of Gaussian (DOG) between adjacent images, 

resulting in a new pyramid. Key points are then selected from 

these pixels based on extreme values. The descriptors for these 

key points are used as SIFT feature points. This method considers 

luminosity, scale, and rotation, but requires a significant amount 

of computation, making it impractical for use in most SLAM 

architectures. (Lowe, 2004) 

 

ORB (Oriented FAST and Rotated BRIEF) is a feature detection 

and description method used in computer vision. It combines the 

advantages of the FAST corner detection algorithm and the 

BRIEF descriptor. FAST is known for its fast processing speed 

and the ability to detect areas where the gray levels of local pixels 

change significantly. However, it lacks directionality and has 

scale uncertainty. ORB solves these problems by using image 

pyramids to detect key points at different scales, and using the 

gray scale centroid method to calculate the center of gravity of 

key points within a certain range to define a main direction. The 

BRIEF descriptor is then used to describe the key points by 

randomly selecting pixels around the key points and using binary 

encoding. This method has the advantages of fast speed and 

convenient storage, making it suitable for feature analysis, 

especially in areas where the scene changes are not 

obvious.(Rublee et al., 2011) 

 

The SURF algorithm uses a BOX filter to quickly calculate 

approximate Laplacian of Gaussian, allowing for real-time 

applications such as tracking and object recognition. It uses the 

Integral Image or Summed-Area Table to quickly calculate the 

average intensity of pixels within a given range and employs the 

Hessian matrix to select feature point positions based on 

quadratic differential extrema. The algorithm assigns a main 

direction to each feature point and uses Haar wavelet to operate 

on the image, with the calculation amount being independent of 

the selection range.(Bay et al., 2006) 

 

LiDAR point cloud matching methods are divided into three 

types: (1) Point-Based Scan Matching; (2) Feature-Based Scan 

Matching; and (3) Scan Matching Based on Mathematical 

Characteristics(Ren et al., 2019). The most common point-based 

method is the Iterative Closest/Corresponding Point (ICP), which 

finds the corresponding relationship between points in space 

using iterative methods(Marani et al., 2016). In the case where 

the density of the camera and lidar point clouds differs 

significantly, there may be a situation where the matched scale 

cannot converge. The feature-based method matches feature 

points and structural lines or planes, typically using curvature or 

normal, to achieve high-precision pose estimation, but can suffer 

from poor estimation accuracy in scenes with inconspicuous 

feature textures. The most common feature-based method is the 

Lidar Odometry And Mapping (LOAM)(Zhang & Singh, 2014). 

The distribution method characterizes scan data and pose changes 

using mathematical properties, with the Normal Distributions 

Transform (NDT) being the most famous. NDT subdivides the 

model's space into regularly sized pixels and can obtain more 

accurate and stable results compared to point-to-point matching, 

especially when the overlapping area is small or the initial 

alignment method is poor(Magnusson et al., 2007). This study 

mainly uses NDT as the research method because ICP requires a 

large amount of computation and may match to noise points, 

causing positioning errors, which is not suitable for ORB-

SLAM2 that uses feature extraction to extract point clouds.  

 

Figure 6. ICP Flow Chart(Marani et al., 2016) 

 

Figure 7. The schematic diagram of the feature points extracted 

by the LOAM algorithm.(Zhang & Singh, 2014) 

 

Figure 8. (a) 2D NDT map (b) 3D NDT map 

(Magnusson et al., 2007) 

 

3. METHODOLOGY 

This study focuses on utilizing visual SLAM and LiDAR point 

clouds for positioning and navigation research on a vehicle. The 

sensor is mounted on the vehicle, which moves to obtain spatial 

information and match it with the established 3D point cloud. The 

algorithm will be tested first in a small field using a cart and then 

in a larger field using a vehicle. The research process involves 
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five steps also shown in Figure 9, which are: (1) collecting spatial 

data using the camera, (2) extracting feature points from camera 

data, (3) using the prior LiDAR point cloud map to perform 

matching operations, (4) determining the camera position and 

updating the trajectory, and (5) integrating and developing future 

positioning methods. 

 

Figure 9. Flowchart of the implementation process 

3.1 Hardware 

This research mainly uses the ZED stereo camera to collect 

spatial information, and uses the VLP-16 lidar to create 

environmental point clouds in the experiment for algorithm 

testing purposes. 

 

 

Figure 10. Zed Camera 

 

Figure 11. VLP-16 LiDAR 

3.2 Experimental field 

In this study, we conducted small-scale tests in various fields to 

evaluate the performance of the algorithms in a larger setting. 

Field 1 was a conference room environment, which provided a 

relatively monotonous testing ground for the ORB-SLAM2 

algorithm. However, we encountered some issues with lost 

tracking. Field 2 was a laboratory and corridor area, where 

irregularly shaped objects such as desks and chairs, as well as 

debris, offered more features to track than Field 1. In addition, 

the algorithms were tested in a linear field such as the corridor to 

assess their performance in that domain. The third field was the 

underground parking lot of the library, where sensors were 

mainly installed on the vehicle to simulate a real-world 

environment and improve the algorithm's performance. 

3.2.1 Field 1: Conference room 

 
3.2.2 Field 2: Laboratory and Corridor 

 

Figure 12. Laboratory and Corridor Route map 

3.2.3 Field 3: Underground parking lot of National Cheng 

Kung University Library 

 

Figure 13. Underground parking lot floor plan 
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3.3 Point cloud data 

3.3.1 Laboratory and Corridor Point Cloud Map: In the 

small field research, the VLP-16 LiDAR was used to collect 

environmental information, and then the LOAM 

algorithm(Zhang & Singh, 2014) was used to generate a 

laboratory point cloud map, which was used as a base map for 

rough point cloud matching. 

 

Figure 14. Point Cloud Map of Laboratory and Corridor 

3.3.2 Underground parking Point Cloud Map: In the 

experimental field of the underground parking lot, the HDL-64 

lidar is utilized to generate denser point cloud maps in the general 

map. To produce these point clouds, the Lili-om algorithm(Kailai 

Li, 2021) is employed, which is an improved version of the 

LOAM algorithm. Figure 15 shows the results obtained. 

 

 

Figure 15. Point Cloud Map of Underground parking 

 

4. RESEARCH RESULTS 

4.1 Field 1: Conference room 

In this experiment, we aimed to collect environmental data by 

using a camera loaded on a cart to patrol the interior of a meeting 

room. We modified the original code of ORB-SLAM2, 

specifically the Tracking thread, and used the PCL library to 

convert the feature points in each current frame into a pcd file. 

The result is presented in the Figure 16. However, using the point 

cloud of the entire data for matching is not practical for actual 

application. Therefore, we attempted to modify the code to output 

the point cloud of each current frame into a pcd file, and 

simultaneously change the field. This modification is expected to 

enhance the SLAM effect in a field with more features. 

 

Figure 16. Point Cloud of Entire Dataset 

4.2 Field 2: Laboratory and Corridor 

For the second field, we moved on to the laboratory and corridor 

areas, which had more distinctive features. We loaded the camera 

onto the cart and travelled around the field twice. Using ORB-

SLAM2, we generated a point cloud for each frame, as shown in 

the Figure 17. Then we down-sampled the point cloud image 

produced by LOAM and attempted to match the visual point 

cloud of each frame with the LiDAR point cloud in the form of 

NDT, in order to obtain the transformation matrix between the 

two systems. Figure 18 shows the point clouds of the two 

systems before matching. The white point cloud is the LiDAR 

point cloud, and the red point cloud is the visual point cloud. 

After matching, the visual point cloud overlaps with the LiDAR 

point cloud like Figure 19. After this test, we used the ROS 

system to visualize the entire matching process, and a video of 

the entire matching update process was captured. By viewing the 

trajectory shown in Figure 20, it was found that the updated 

position is closer to the lidar trajectory. This shows that matching 

the visual point cloud with the lidar point cloud can improve the 

positioning accuracy of low-cost sensors. 

 

 

Figure 17. Point Cloud of Laboratory and Corridor 
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Figure 18. Before NDT Matching 

 

 

Figure 19. After NDT Matching 

 

Figure 20. The trajectory of the entire process in conference 

room 

4.3 Field 3: Underground parking lot of National Cheng Kung 

University Library 

After implementing and testing the algorithm in a small field, the 

environment data in a large field is collected in a vehicular 

manner, and the underground parking lot of the main library is 

chosen as the experimental field. 

 

The same steps were taken to import both visual and lidar point 

clouds into the integrated program, and the resulting trajectory is 

shown in Figure 22. The shape of the green matched trajectory 

is similar to that of the original camera trajectory, because in the 

trajectory updating settings, this study uses the camera trajectory 

as the target for transformation. Therefore, if the correction 

amount is not significant, the trajectory will be dominated by the 

camera trajectory, which results in the phenomenon of similar 

trajectories. This indicates that the point clouds were not matched, 

and the trajectory was almost not updated. Further adjustments 

are needed in the matching algorithm in the future. 

 

 

Figure 21. Camera Trajectory of Underground Parking lot 

 

Figure 22. Trajectory of Underground parking lot 

 

5. CONCLUSIONS 

In small-scale field tests, the use of low-cost sensors such as 

cameras, coupled with point cloud matching with prior 

knowledge of the point cloud map, can improve the accuracy of 

the sensor's raw trajectory, but there are still many problems to 

be overcome in the process. Although running ORB-SLAM2 

does not suffer from the scale problem that monocular cameras 

have, it still experiences drift at turning points due to the number 

of feature points and initialization position issues. Therefore, it 

requires high-precision maps for localization. In large-scale field 

tests, errors occurred in the time synchronization of visual point 

clouds and lidar point clouds, resulting in lower-than-expected 

results. Therefore, the entire algorithm needs improvement to 

synchronize the camera and lidar data in time to improve 

matching accuracy. 

 

Currently, point clouds are only extracted and matched with high-

precision maps in stages. In the future, it is expected to integrate 

this process into ORB-SLAM2. If ORB-SLAM2 is executed, it 

outputs the position and point cloud of the current frame, then 

simultaneously matches that data to obtain a new position using 

point cloud matching, and uses EKF to integrate point cloud 

matching with ORB-SLAM2 for prediction and matching for 

updating. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W1-2023 
12th International Symposium on Mobile Mapping Technology (MMT 2023), 24–26 May 2023, Padua, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-257-2023 | © Author(s) 2023. CC BY 4.0 License.

 
262



 

 

We are also attempting to incorporate IMU to develop Visual 

Inertial Odometry, which improves the shortcomings of 

monocular cameras in terms of scale and compensates for 

situations where the camera cannot capture sufficient 

environmental information due to high dynamics and limited 

frame rate, providing a high-frequency position output. 
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