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ABSTRACT: 

Accurately georeferenced data acquired using mobile mapping systems is of great importance for many geospatial applications. The 
accuracy of direct georeferencing – the standard procedure in the field of outdoor mobile mapping – strongly relies on GNSS 
reception and therefore varies greatly depending on the environment. By incorporating control point observations, integrated 
georeferencing enables homogenous accuracy and reliability over the whole mapping perimeter. Unfortunately, exact measurement 
and documentation of control points is needed, which often must be done manually. To automate this process, approaches from the 
field of autonomous vehicles use pole-like objects to support localization in complex urban environments, with the disadvantage of 
requiring a prior mapping campaign. However, various classes of pole-like objects have been recorded with accurate location and 
entered in public cadastres, so they could serve as 2D control points. In this paper, we present an approach for improving the 
trajectory accuracy in challenging urban environments by means of integrated georeferencing. It uses range image observations to 
pole-like objects from publicly available cadastres. Our approach achieves sub-metre accuracy, with a maximal cross-track 
difference of 98 cm, using real-world data acquired with our low-cost mobile mapping system. We further demonstrate that it 
significantly improves discontinuities and inaccuracy peaks in direct georeferencing and that the limiting factors are errors in the 
depth estimation of available range imaging sensors. 

 
* Corresponding author 

1. INTRODUCTION

A transformation of urban mobility from individual motorized 
transportation towards an increasing variety of multimodal 
mobility offerings is ongoing. This transformation is expected 
to result in a reduced need for on-street parking spaces. In 
addition, government agencies are interested in freeing street 
space, including areas currently occupied by on-street parking, 
to accommodate new bike lanes and other alternative modes of 
transportation. To provide automated, reliable base data in form 
of on-street parking statistics for government agency and policy 
makers Nebiker et al. (2021) developed a low-cost Mobile 
Mapping System (MMS) to cover entire cities with regular 
revisit capabilities. The system uses point clouds from range 
imaging sensors, edge computing and AI-based 3D object 
detection methods to detect vehicles directly on the MMS 
(Meyer et al., 2022). However, reliable on-street parking 
statistics require accurate georeferencing of the detected 
vehicles at the dm- to sub-metre-level (Nebiker et al., 2021). 
Direct georeferencing based on GNSS/INS sensor integration is 
the current technology of choice. However, in complex urban 
areas, even direct georeferencing using high-end system 
components can be affected by positioning errors of up to 
several metres due to multipath effects and GNSS signal 
obstruction (Eugster et al., 2012). Further investigations con-
firmed that the required sub-metre accuracy cannot be consis-
tently ensured with low-cost system components (Nebiker et al., 
2021). Therefore, other georeferencing methods are needed to 
ensure sub-metre accuracy in challenging urban environments. 

On-street parking statistics are only one of many use cases 
supported by our low-cost MMS and its latest further develop-
ment (Meyer et al., 2022). In particular, the modular and 

flexible architecture of the acquisition software allows 
additional mapping tasks to be carried out in parallel. To enable 
a variety of use cases, the new georeferencing method must 
meet several requirements: 1) it has to be real-time capable, 2) it 
has to provide absolute position and orientation parameters in a 
global reference frame, 3) it has to be computationally feasible 
to be executed in parallel to the mapping tasks, and 4) it has to 
provide area-wide sub-metre accuracy using low-cost sensors. 

Integrated georeferencing (Eugster et al., 2012) is widely used 
to ensure homogenous accurate and reliable georeferencing over 
the entire mapping perimeter. By incorporating a number of 
ground control point (GCP) observations that have been 
accurately measured along the trajectory, integrated geo-
referencing refines the trajectory of direct georeferencing. It can 
achieve centimetre-level accuracy even in GNSS-denied areas 
such as tunnels or urban canyons depending on the accuracy of 
the used observation sensors and control points. However, 
integrated georeferencing places high demands on the exact 
measurement and documentation of control points, which often 
cannot be automated (Eugster et al., 2012; Cavegn et al., 2016). 

With the aim to automate the process of control point 
determination and observation, various approaches from the 
field of autonomous navigation use pole-like objects to support 
localization in complex urban environments (Brenner, 2009; 
Spangenberg et al., 2016; Sefati et al., 2017; Schaefer et al., 
2019). Due to their ubiquity, distinctiveness, and long-term 
stability, pole-like objects are well suited for localization or 
georeferencing approaches in urban scenarios. Although all 
approaches require no manual work, they have one major 
drawback. They all depend on a preliminary acquisition phase 
for mapping pole-like objects within the relevant perimeter. 
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Pole-like objects serve various purposes in cities, for example, 
as posts for street lighting, traffic signs and traffic lights, as a 
carrier of electricity for public transport, or simply in the form 
of trees. In Switzerland, especially in the city of Basel, many of 
these objects are recorded with accurate location and entered in 
a cadastre due to public interest. Thus, exactly determined and 
clearly identifiable pole-like objects are often available in public 
cadastres and could serve as 2D ground control points for robust 
and accurate georeferencing in urban areas. 
 
In this contribution we present an approach for improving the 
trajectory accuracy by means of integrated georeferencing using 
range image observations to pole-like objects available in public 
cadastres. We evaluate this approach with real-world data from 
our low-cost mobile mapping system and present quantitative as 
well as qualitative results. 
 

2. RELATED WORK 

2.1 Georeferencing of mobile mapping data 

Direct georeferencing (DG) generally refers to platform and 
sensor pose estimation using on-board sensors, which are 
independent from the mapping sensors. The combination of 
GNSS and INS raw data using a Kalman Filter is widely used 
for DG since the early days of MMS (Schwarz et al., 1993). 
Two predominant strategies, loosely coupled and tightly 
coupled sensor integration, have become established 
(Angrisano, 2010). While loosely coupled approaches process 
raw data from GNSS and INS independently and fuse them 
afterwards, tightly coupled approaches directly fuse the raw 
data from both sensors. Loosely coupled sensor integration has 
the advantage of shorter processing time, higher robustness, and 
independent navigation solutions. By contrast, tightly coupled 
sensor integration results in lower process noise and benefits 
even from GNSS satellite constellations with less than four 
satellites (Cramer, 2001). Thus, tightly coupled sensor integra-
tion is advantageous in areas with degraded GNSS reception 
(Angrisano, 2010). The accuracy of DG strongly depends on 
GNSS reception. In case of partial or total signal shading, i.e., in 
urban canyons, under dense tree canopies or in tunnels, the 
accuracy can decrease from the centimetre range to the deci-
metre or even metre range, also with high-end equipment 
(Cavegn et al., 2018). Therefore, DG works well in outdoor 
environments with good GNSS coverage. DG is also real-time 
capable and provides trajectories in a global reference frame. 
 
To ensure homogeneous, accurate and reliable georeferencing 
across the entire mapping perimeter Eugster et al. (2012) 
propose integrated georeferencing (IG) method. This solution 
uses coordinate updates (CUPT) to support a loosely coupled 
sensor integration of GNSS and INS during GNSS outages 
(Eugster et al., 2012). A CUPT is obtained by applying the 
difference between the ground truth coordinates of the GCP and 
the GCP coordinates observed by the mapping sensors to the 
current pose. This results in a corrected trajectory, where the 
accuracy of the resulting trajectory depends on the accuracy of 
the GCP determination by the mapping sensors and the 
accuracy of the GCP ground truth coordinates. Eugster et al. 
(2012) demonstrated an improvement from decimetre- to 
centimetre-level in comparison with DG. IG provides a 
trajectory directly within a global reference frame, in real-time 
and with homogenous accuracy and reliability if enough GCPs 
are available. However, it places high demands on the exact 
initial measurement and documentation as well as on the 
subsequent observation of GCPs, which often cannot be 
automated (Eugster et al., 2012). Blaser (2022) adapted IG and 

used a tightly coupled sensor integration to calculate the 
trajectory of a portable MMS (Blaser et al., 2020). 
 
Besides DG and IG also LiDAR- (Nüchter et al., 2015; Blaser et 
al., 2019; Karam et al., 2019; Blaser et al., 2020) and image-
based (Cavegn et al., 2018; Blaser et al., 2020) georeferencing 
methods are used to determine MMS trajectories. However, 
these approaches provide trajectories in a local reference frame 
which must be transformed to the global reference frame via 
GCPs or additional GNSS observations if necessary. A 
comprehensive overview of the mentioned georeferencing 
strategies is given by Blaser (2022). 
 
2.2 Pole-like objects for georeferencing tasks 

Due to their ubiquity, distinctiveness and long-term stability, 
pole-like objects are well suited for localization or 
georeferencing approaches in urban scenarios. Moreover, thanks 
to their distinct geometric shape, they can easily be detected in 
data from cameras and LiDAR sensors even when they are 
partly obscured. Several approaches from the field of 
autonomous vehicles use pole-like objects to support 
localization in complex urban environments and to automate the 
processes of control point determination and control point 
observation. Pole-like objects are observed in LiDAR data 
(Brenner, 2009; Kümmerle et al., 2009; Weng et al., 2018; 
Schaefer et al., 2019; Chen et al., 2021), stereo images 
(Spangenberg et al., 2016) or both (Sefati et al., 2017). These 
observations are then fused with data from IMU, GNSS, vehicle 
odometry or other sensors using state estimation techniques 
such as Kalman filters or particle filters to obtain the vehicle 
poses. The resulting trajectory accuracies are stated to be all in 
the lower decimetre range. Although all approaches require no 
manual work, they have one major drawback. They all depend 
on a prior data acquisition phase in which pole-like objects 
within the relevant perimeter are captured and stored either 
directly as point cloud objects or as feature representations of 
any kind. This step is typically performed using an expensive 
high-end mobile mapping system. However, since the perimeter 
of interest is mapped in advance the proposed solutions have no 
necessity for poses within a global reference frame. 
 

3. MATERIALS AND METHODS 

3.1 Low-cost Mobile Mapping System (MMS) 

In previous works we introduced a versatile low-cost MMS 
(Figure 1) and a corresponding postprocessing workflow for the 
creation of on street-parking statistics (Nebiker et al., 2021; 
Meyer et al., 2022). 
 

 
Figure 1. Mobile mapping system with low-cost sensor setup 

(Nebiker et al., 2021). 
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The MMS consists of an electric tricycle as mapping platform 
and a low-cost sensor setup on the front luggage carrier (Figure 
1). The sensor setup integrates two Intel RealSense D455 RGB-
D cameras (Intel Corporation, 2023) as mapping sensors (Figure 
1, a), a consumer grade GNSS/IMU-based navigation unit 
SwiftNav Piksi Multi (Swift Navigation, 2019) (Figure 1, b) and 
a single-board computer (Figure 1, c). Nebiker et al. (2021) 
showed an average 2D localization accuracy in a challenging 
urban environment of 0.9 m, with peaks of over one metre in 
position and over 2.5 m in height. The peaks could be attributed 
to areas with poor GNSS signal coverage and clearly showed 
the limited performance of the used low-cost navigation unit. 
 
3.1.1 Navigation unit 
The GNSS- and IMU-based navigation unit SwiftNav Piksi 
Multi (Swift Navigation, 2019) consists of a multi-band and 
multi-constellation GNSS RTK receiver board and a geodetic 
GNSS antenna. The GNSS receiver board also includes the 
consumer-grade IMU Bosch BMI160 (Bosch Sensortec, 2020). 
 
3.1.2 Depth camera 
Besides the navigation unit, the accuracy of the mapping sensor 
Intel RealSense D455 (Intel Corporation, 2023) is crucial for 
this work. The camera acquires colour images as well as depth 
maps with a resolution of 1280 x 720 pixels and a frame rate of 
up to 30 Hz. The active stereo-based depth estimation range is 
specified from 0.4 to 10m, but may vary depending on lighting 
conditions, especially outdoors (Intel Corporation, 2023). The 
camera only provides an interface for external hardware-based 
triggering of the depth sensor, but not of the RGB image sensor. 
The resulting point clouds are very noisy compared to LiDAR 
data commonly used in mobile mapping applications. 
 
Nebiker et al. (2021) evaluated the accuracy of the depth 
estimation for different Intel RealSense D455 cameras. They 
decoupled the depth error into bias and precision as proposed by 
Halmetschlager-Funek et al. (2019). The calculated bias and 
precision vary greatly between the cameras and in some cases 
exceed the specified value of 2% of the object distance by an 
order of magnitude. It has also been demonstrated that different 
cameras of the same type do not behave comparably. Therefore, 
an error model must be estimated or assumed for each camera 
independently. Based on the bias and precision parameters 
determined by Nebiker et al. (2021) and due to the lack of 
additional information about the long-term behaviour, we took 
the conservative assumption, that the depth estimation accuracy 
is around 8% of the estimated depth value. 
 
3.2 Study area and data 

The study area represents a typical European city in terms of 
building heights, street widths and vegetation. In the study area, 
a 7.95 km trajectory (Figure 2, black line) was traversed with 
our MMS in the summer of 2021 three times on the same day – 
at noon, in the afternoon, and in the. At the beginning and the 
end of each campaign the system was initialized in a location 
with good GNSS coverage (Figure 2, start/stop). During the 
campaigns, RGB-D images were acquired with 5 frames per 
seconds (fps), resulting in an average distance between two 
consecutive images of around 1 metre. Due to a problem with 
the bandwidth of the USB interface of the on-board computer, 
only the data from the camera pointing to the right has been 
collected. For this paper, only the data from the noon campaign 
are considered, which comprises at total of 9187 RGB-D 
images. 
 

3.3 Reference data 

3.3.1 Reference trajectory 
To obtain an accurate reference trajectory (Figure 2, black line), 
we performed image-based georeferencing (Cavegn et al., 2016; 
Blaser et al., 2020) in Agisoft Metashape (Agisoft, 2023) for all 
colour images using pose priors from DG. 
 

 
 

Figure 2. Reference trajectory (black) obtained from image-
based georeferencing and the used control points (3D blue; 2D 
light blue) and check points (3D red; 2D light red) (data source: 

Geodaten Kanton Basel-Stadt) 
 

 RMSE E 
[m] 

RMSE N 
[m] 

RMSE H 
[m] 

Control points 0.038 0.036 0.032 
Check points 0.043 0.032 0.037 

Table 1. RMSE of image-based georeferencing of the reference 
trajectory for each coordinate dimension (E = easting, 

N = northing, H = height) 
 
For image-based georeferencing a total of 237 control points 
were incorporated, of which 155 were determined in 2D and 82 
in 3D. Additionally, 17 check points were used to verify the 
georeferencing quality independently. 8 of the check points 
were determined in 2D and 9 in 3D. Control and check points 
were measured manually in at least eight images. We achieved 
RMSE values of the image-based georeferencing in each 
coordinate dimension of 3-4 cm (Table 1). 
The control and check points used are natural, clearly visible, 
and recognizable features such as base points of traffic signs, 
curb corner points as well as window or balcony corners. The 
coordinates of the 3D control and check points were measured 
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using a Leica GS18I GNSS system (Leica Geosystems AG, 
2022) in RTK-mode. The accuracy of these points is around 2-3 
cm. The coordinates of the 2D control and check points were 
obtained from the official cadastre of the city of Basel. Since 
this cadastre was proven to be very accurate, the accuracy of 
these points is subsequently assumed to be better than 5 cm. 
 
3.3.2 Pole-like objects from cadastre 
In the city of Basel, pole-like objects are included in the tree 
and electricity cadastres. The tree cadastre contains all trees 
along roads or in parks with a location coordinate for the centre 
of the trunk at ground level and various attributes such as age, 
year of planting, species, etc. However, no information about 
the trunk diameter is included (Kanton Basel-Stadt, 2023). 
 

 
 

Figure 3. Pole-like objects used for trajectory processing 
divided into two classes: trees (blue points) and electricity poles 

(red points) (data source: Geodaten Kanton Basel-Stadt) 
 
The electricity cadastre includes – apart from the electricity 
infrastructure in the underground – all electricity-related objects 
above ground, such as distribution boxes, traffic lights, traffic 
safety installations and electricity supply for public 
transportation. Several of these objects are of pole-like shape. 
Each pole-like object in the electricity cadastre has an accurate 
2D coordinate representing the centre of the pole as well as 
information about its diameter (Kanton Basel-Stadt, 2023). 
 
Both datasets were obtained from the land registry and survey 
office of the canton Basel-Stadt. By using a buffer of 12 metres 
around the reference trajectory all potentially usable pole-like 
objects along the trajectory were determined, resulting in a total 
of 668 objects (Table 2). Since we only observed the right side 

in direction of motion, many of these objects were not captured. 
We then manually measured all visible poles from the 
electricity cadastre and various trees in well-suited locations in 
the depth maps (Table 2, Figure 3). In the remainder of this 
paper, we refer to trees and poles instead ‘pole-like objects from 
the tree and electricity cadastre’ respectively. 
 

 poles tree 
along trajectory 157 511 
measured in depth maps 66 118 

Table 2. Number of pole-like objects in the vicinity of the 
trajectory and number of objects measured in the depth maps. 

 
As can be seen in Figure 3, trees are present in many places 
along the trajectory. In contrast, poles occur only sporadically 
and mostly in groups. Groups of poles typically represent 
intersections of main roads where traffic lights as well as other 
safety installations are present. Furthermore, there are poles 
where there is a lack of buildings and infrastructure for 
attaching the power supply for public transportation. 
 
3.4 Georeferencing methods 

3.4.1 Direct georeferencing 
For DG a combined tightly coupled forward and backward 
processed GNSS and IMU sensor data fusion and trajectory 
processing is performed in Waypoint Inertial Explorer 
(NovAtel, 2020). By interpolating the precise trigger 
timestamps of the camera triggering and by considering lever 
arm and misalignment between the navigation centre and the 
camera we obtain georeferenced poses for each depth map. 
 
3.4.2 Integrated georeferencing using pole-like objects 
For IG using pole-like objects, we apply the workflow described 
in Blaser (2022), which relies on an undocumented legacy 
feature of Inertial Explorer (NovAtel, 2020). First, DG is 
performed as described above. Then the 3D coordinates of the 
observed GCPs are calculated via the known interior camera 
geometry and the depth values and are subsequently 
transformed into the superordinate reference frame via the 
camera pose. The camera pose from DG is then corrected by the 
2D coordinate difference between the ground truth and the 
observed coordinates of the GCP. A Python-based tool by 
Blaser (2022) creates the CUPTs based on the corrected camera 
poses. Additionally, each coordinate component can be 
weighted individually. Thus, the observation error is specified 
as weight for the 2D position. The observation error is 
calculated using the error model of the depth camera and an 
additional error term for the pole-like object. The errors are 
added quadratically (1). 
 

 
,             (1) 
 

 
The created coordinate updates are then integrated into Inertial 
Explorer and a combined tightly coupled forward and backward 
processed GNSS and IMU sensor data fusion and trajectory 
processing is performed. The resulting poses for the depth 
sensor are obtained by applying lever arm and misalignment. 
 
3.5 Trajectory comparison 

Due to the lack of an interface for external hardware-based 
triggering of the RGB sensor, colour and depth images are not 
exactly synchronized. Thus, an unknown time delay between 
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colour images and depth maps is present, leading to along-track 
differences of up to around 50 cm. For this reason, common 
evaluation metrics such as absolute trajectory error (ATE) and 
relative pose error (RPE) (Sturm et al., 2012) are not applicable. 
Moreover, a comparison of the rotational part of the poses is 
also not possible. Therefore, the quality of the georeferencing 
methods is assessed based on the cross-track differences 
between the resulting trajectory and the reference trajectory. 

4. EXPERIMENTS AND RESULTS

4.1 Accuracy of cadastral pole-like objects 

To evaluate the accuracy of the coordinates of the pole-like 
objects within the electricity cadastre, we measured 20 different 
pole objects with a Leica GS18I GNSS system (Leica 
Geosystems AG, 2022) in RTK mode. The comparison of the 
coordinates showed an average 2D difference of less than 10 
cm. The accuracy of tree centre coordinates within the tree
cadastre is considered as accurate as pole-like objects from the
electricity cadastre. However, since there is no information
about the trunk diameter of the tree, which also varies greatly
depending on the height above the ground, and since trees
usually do not grow exactly vertically, a conservative accuracy
of the tree centre coordinates of 0.5 meter is assumed for this
work.

4.2 Georeferencing methods 

4.2.1 Direct georeferencing 

Figure 4. Cross-track differences of DG. Cross-track 
differences are colourized by their length (data source: 

Geodaten Kanton Basel-Stadt) 

DG was processed as described before. Figure 4 shows the 
cross-track differences between the directly georeferenced 
trajectory and the reference trajectory colourized by their 
length. 99% of the trajectory has a cross-track difference of less 
than 65 cm to the reference trajectory, 95% even less than 37 
cm (Figure 4 green and yellow parts of trajectory, Table 3). 
However, there are some areas, where the cross-track 
differences reach or even exceed one metre with a maximum of 
1.17 m (Figure 4 orange and red parts of trajectory, Table 3).  

median 
[m] 

quantile 95% 
[m] 

quantile 99% 
[m] 

max value 
[m] 

0.036 0.370 0.648 1.169

Table 3. Summary of cross-track differences of directly 
georeferenced trajectory vs. reference trajectory. 

4.2.2 Integrated georeferencing using pole-like objects 
Since CUPTs from trees are assumed to be less accurate than 
CUPTs from poles, we processed two different trajectories with 
our proposed IG approach. In the first processing, we 
incorporated coordinate updates from trees and poles, while in 
the second, we included poles only. Both trajectories were 
processed as described in section 3.4.2 using 10 cm and 50 cm 
as position error values for poles and trees respectively. 

Integrated georeferencing using poles and trees 

Figure 5. Cross-track differences of IG using poles and trees 
(black dots). Cross-track differences are colourized by their 

length (data source: Geodaten Kanton Basel-Stadt) 

IG using poles and trees was processed leveraging CUPTs for 
1264 camera poses created from measurements of 66 poles and 
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118 trees (Figure 5, black dots). The cross-track differences of 
the resulting trajectory are all smaller than 1 metre with a 
maximum value of 98 cm (Figure 5, Table 4). The 95% and 
99% quantiles are 50 and 74 cm respectively (Table 4). 

median 
[m] 

quantile 95% 
[m] 

quantile 99% 
[m] 

max value 
[m] 

0.036 0.496 0.739 0.981

Table 4. Summary of cross-track differences of IG using all 
poles and trees vs. reference trajectory. 

Integrated georeferencing using poles only 
For IG using poles only, a total of 484 CUPTs created from 
measurements of 66 poles were incorporated (Figure 6, black 
dots). 99% of the trajectory has a cross-track difference of less 
than 60 cm to the reference trajectory, 95% even less than 40 
cm (Table 5). The maximum cross-track difference is 1.14 m 
(Figure 6 red part of trajectory, Table 5). 

Figure 6. Cross-track differences of IG using poles only (black 
dots). Cross-track differences are colourized by their length 

(data source: Geodaten Kanton Basel-Stadt) 

median 
[m] 

quantile 95% 
[m] 

quantile 99% 
[m] 

max value 
[m] 

0.037 0.402 0.599 1.137 

Table 5. Summary of cross-track differences of IG using poles 
only vs. reference trajectory. 

4.2.3 Comparison of georeferencing in selected areas 
To assess the potential and challenges of the proposed IG 
approach, a closer look at selected areas of the trajectory is 
necessary. The accuracy of DG is usually compromised by 
strong GNSS signal obstruction. In combination with long 
standstills or very slow motion the resulting trajectory has a 
poor accuracy, possibly with discontinuities. 

Figure 7. Improvement of IG (red line) using poles (red dots) 
over DG (blue line) during a phase with slow motion and a 

standstill combined with strong GNSS signal obstructions in 
front of a traffic light (data source: Geodaten Kanton Basel-

Stadt) 
Figure 7 shows a crossroad where the trajectory from DG 
(Figure 7, blue line) has a strong discontinuity because of a 
phase with slow motion and a standstill of about 38 seconds in 
front of a traffic light. Additionally, several high buildings are 
situated around the crossroad, causing significant GNSS signal 
obstructions. Our IG approach reduces the drift and produces a 
significantly more continuous trajectory (Figure 7, red line). 
However, small discontinuities are still apparent. The higher 
accuracy of IG is also evident from the key statistical indicators 
(Table 6) calculated for the cross-track differences in Figure 7. 
The maximum, quantile 95% and the 99% quantile values of IG 
are about 40% smaller than those of DG (Table 6). 

georeferencing DG IG  
median [m] 0.386 0.348 
quantile 95% [m] 0.713 0.433 
quantile 99% [m] 0.787 0.450 
max value [m] 0.800 0.464 

Table 6. Summary of cross-track differences for direct and IG 
for the subset of the trajectory depicted in Figure 7. 

There are other areas with GNSS signal obstructions like the 
one shown in Figure 8. There the trajectory leads through a 
narrow street lined with trees forming a dense canopy. At the 
southern end of the street (Figure 8, bottom) there is a large 
square with no signal obstruction. At the northern end there is a 
small square with trees and a building to the south, also causing 
GNSS signal obstructions. As expected, also in this case DG 
was degraded under these conditions, exhibiting peaks with 
high inaccuracies (Figure 8, a). IG using poles and trees as well 
as poles only reduced the peak of inaccuracy significantly 
(Figure 8 b & c, Table 7). However, IG using poles and trees 
(Figure 8, b) deviates significantly from the reference trajectory 
in the region where tree based CUPTs were incorporated.  
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a) b) c) 

Figure 8. Comparison of trajectories from a) DG, b) IG using 
poles + trees and c) IG using poles only in an area with GNSS 
signal obstructions. Cross-track differences are colourized by 

their length, pole-like objects used are displayed as black dots. 
(data source: Geodaten Kanton Basel-Stadt) 

 
georeferencing DG IG  

(poles + trees) 
IG  

(poles) 
median [m] 0.512 0.535 0.081 
quantile 95% [m] 1.110 0.789 0.572 
quantile 99% [m] 1.163 0.800 0.602 
max value [m] 1.169 0.808 0.606 

Table 7. Summary of cross-track differences for DG, IG using 
poles and trees and IG using poles only for the subset of the 

trajectory depicted in Figure 8. 

 
5. DISCUSSION 

IG using pole-like objects from cadastre data has the potential to 
provide fully automated and accurate georeferencing of mobile 
mapping data. By using pole-like objects inventoried in publicly 
available cadastres, the need for preliminary mapping of such 
objects across entire cities is eliminated. In Swiss public 
cadastres, objects are typically recorded in two dimensions 
without height information. Consequently, the accuracy of the 
height component achieved using cadastral pole-like objects for 
IG is similar to the height accuracy of DG. Pole-like objects are 
assumed to be stable over a long period of time. However, the 
timeliness of the reference data remains a critical factor. 
 
By using poles and trees as support information in IG, we 
achieved the targeted accuracy of better than one metre for the 
entire trajectory (Table 4, Figure 5). However, it can be 
assumed that long-track differences will also occur, so that the 
total 2D position error might slightly exceed the 1 m goal in 
some cases. 
 
The investigations have shown that discontinuities and peaks of 
inaccuracies can be significantly improved by IG using pole-
like objects (Figure 7 & 8, Table 6 & 7). The investigations 
further demonstrated that the definition and determination 
accuracy of pole-like objects has a direct influence on the 
accuracy of the resulting trajectory. This is nicely depicted in 
Figure 8, where the observations of the trees used were likely 
inaccurate and led to a trajectory with a lower accuracy 
compared to DG. However, it is unclear yet whether the 
inaccurate observations arise from inaccurate reference data, 
including unknown tree diameters, or from incorrect depth 
values derived from the camera. In general, the results of IG 
using ‘poles only’ show that an increase in accuracy can be 
expected with more accurate and better defined GCPs (Figure 6, 
Table5). Comparing the 95% and 99% quantile values of the IG 
using poles only (Table 5) and IG using poles and trees (Table 
4) an improvement of about 20% is observed.  

The accuracy of pole-like objects in the order of 10 cm can be 
considered as excellent, which most likely will not be available 
in other cities. Consequently, it can be inferred that the mapping 
sensor is the primary factor affecting the accuracy of our IG 
approach. The used Intel RealSense D455 RGB-D camera has a 
specified bias and precision of 2% of the object distance, which 
would be acceptable. In reality, however, the investigated 
cameras of this type show significantly larger errors in depth 
estimation and are not comparable with each other. This makes 
the determination of a suitable error model difficult.  
 
The results obtained in this paper are to be considered as a base-
line, since we performed a combined forward and backward 
processing. In real-time applications, only the part of the 
trajectory already covered is available, which leads to a less 
accurate directly georeferenced pose. Hence, we expect the 
proposed IG approach to produce an even greater improvement 
over DG in real-time scenarios. 
 

6. CONCLUSION AND OUTLOOK 

In this paper, we presented an approach for improving the 
trajectory accuracy of an MMS in demanding urban areas by 
means of IG using range image observations to pole-like 
objects. We showed that pole-like objects inventoried in 
publicly available cadastres are suitable 2D GCPs for 
supporting IG and have the potential to fully automate the 
georeferencing process – even eliminating the need for a 
preliminary mapping phase of areas of interest. The proposed 
IG using pole-like objects from cadastres can reach the targeted 
sub-metre accuracy over the entire trajectory with the employed 
low-cost sensors. We also demonstrated that discontinuities and 
peaks of inaccuracies from DG can be significantly improved 
by our approach. However, the large depth estimation error of 
our RGB-D mapping sensor led to new areas of inaccuracies. 
 
In future work we intend to examine our approach for real-time 
applications and will therefore investigate the accuracy of 
forward processing only. In addition, extensive accuracy 
investigations of our mapping sensors, including long-term 
stability as well as behaviour during long campaigns, would 
lead to better error models for the creation of CUPTs. Another 
component towards a fully automated georeferencing approach 
is the robust automatic detection of pole-like objects in the 
range imaging data provided by our MMS. 
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