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ABSTRACT: 

SLAM technology is more and more integrated with other sensors for indoor and outdoor seamless navigation. This research topic is 

very active in particular on image matching with deep learning local features, keyframe selection approaches, or tests on new IMU and 

GNSS solutions. Integrating and testing new methodologies on other widely used SLAM implementations, such as ORB-SLAM, can 

be not a trivial task. Therefore, we propose an extension of COLMAP to be used in real-time as a feature-based Visual-SLAM that can 

be also coupled with other sensors. COLMAP has been chosen due to its modularity and the large community that assures the continuity 

of the repository. The paper presents a pipeline mainly thought for real-time evaluation of learning-based tie points and new SLAM 

features, that works with both monocular, stereo and multi-camera systems. It is also shown an example of keyframe selection algorithm 

based on deep learning local features, and a simple example of IMU integration. The code is available on the GitHub repository 

https://github.com/3DOM-FBK/COLMAP_SLAM. 

 

 

1. INTRODUCTION 

Accurate localization is a crucial task for robot navigation in 

applications such as autonomous driving and precise agriculture 

(Bai et al., 2023), where the required positioning accuracy can 

range from several decimeters to few centimeters. Over the years, 

the topic has received significant attention preferring the use of 

low-cost sensors and combining different technologies such as 

GNSS (Global Navigation Satellite System), LiDAR (Light 

Detection And Ranging), V-SLAM (Visual Simultaneous 

Localization And Mapping), VO (Visual Odometry), UWB 

(Ultra-Wide Band) and IMU (Inertial Measurement Unit). For 

integration of other sensors and further insight, see De Gaetani et 

al. (2019), Jia et al. (2019), Masiero et al. (2020), Gupta and 

Fernando (2022), Zhuang et al. (2023). 

V-SLAM and VO are effective solutions typically applied in 

indoor applications and GNSS-denied environments, subjected to 

error drift in long trajectories. In particular, SLAM significantly 

reduces the drift error if loop-closure are detected (Singandhupe 

and La, 2019). In feature-based approaches (Scaramuzza and 

Fraundorfer, 2011) the detection and matching of reliable and 

repeatable interest points is of primary importance, but traditional 

approaches, like RootSIFT (Arandjelović and Zisserman, 2012), 

usually underperform in presence of wide-viewing angles, and 

strong illumination and radiometric changes (Jin et al., 2021; 

Morelli et al., 2022). These situations can be critical in real-time 

applications, looking for loop-closure under different viewing 

angles, or with strong illumination changes passing from brighter 

to darker aeras. In addition, accurate descriptors and keypoint 

repeatability are fundamental in presence of repetitive patterns or 

in poorly textured environments. Performance worsens if 

descriptors thought for lower computation resources instead of 

discriminative ones are used, such as ORB (Rublee et al., 2011) 

or SURF (Bay et al., 2006; Jin et al., 2021). 

To overcome limitations of traditional hand-crafted approaches, 

learning-based methods are trained ad-hoc to be more reliable in 

challenging conditions, starting from TILDE (Verdie et al., 

2015), to state-of-the-art SuperGlue (Sarlin et al., 2020) and 

LoFTR (Sun et al., 2021) methods. Nevertheless, in high 

accuracy scenarios, RootSIFT is still performing very well 

compared to learning-based approaches (Remondino et al., 2021; 

Bellavia et al., 2022a). In addition, most of new approaches are 

generally not invariant to rotation, except for few methods: Ono 

et al. (2018), Bökman and Kahl (2022) and Parihar et al. (2021) 

among end-to-end approaches, and Key.Net (Barroso-Laguna et 

al., 2019) + AffNet (Mishkin et al., 2018) + HardNet (Mishchuk 

et al., 2017) and Bellavia et al. (2022) among detect-then-

describe approaches. For an extensive overview and evaluation 

of state-of-the-art in image matching please refer to Jin et al. 

(2021), Bellavia et al. (2022b), Morelli et al. (2022). 

Despite the potential of these algorithms for SLAM and VO, they 

are usually tested for Structure-from-Motion applications. Few 

works tested them on SLAM: for instance, Mollica et al. (2023) 

extended the work of Campos et al. (2021), replacing ORB with 

SuperGlue.  

To facilitate the integration of new image matching algorithms in 

SLAM, this paper proposes COLMAP-SLAM, an open-source 

framework in Python based on the COLMAP APIs (Schonberger 

and Frahm, 2016). It provides a modular software for developing 

new SLAM algorithms and in particular for a rapid integration 

and evaluation of new local features for feature-based 

SLAM/VO. Both monocular and stereo/multi-cameras cases are 

implemented, with support for hand-crafted as well as deep 

learning-based local features. The keyframe selection is based on 

the innovation of the optical-flow calculated with ORB or 

ALIKE (Zhao et al., 2022) features, but others can be easily 

integrated. Currently, loop-closure detection is supported only 

for the monocular scenario. If GNSS data is stored in the image 

EXIF tag, it is used to georeference the camera trajectory. The 

work is modular, allowing each single task to be studied 

independently. The main framework is in Python, and new 

features can be added using also other languages, and then called 

using Python as a wrapper.  

The proposed pipeline is evaluated on the EuRoC Machine Hall 

dataset (Burri et al., 2016) and compared with OpenVSLAM 

(Sumikura et al., 2019), a VSLAM framework based on 

ORBSLAM2 (Mur-Artal and Tardós, 2017). 

The aim of the paper is to understand the potential of COLMAP 

to be run in real-time, with a focus on the computational effort 

and the accuracy of the recovered camera poses. To the best of 
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author's knowledge, this is the first open-source implementation 

of COLMAP to perform V-SLAM tasks, that includes multi-

cameras support, support for different local features, and 

integration of GNSS data. Similarly, Nocerino et al. (2017) 

presented a 3D reconstruction pipeline to perform video 

acquisitions with a smartphone and geometric 3D reconstruction 

in the Cloud during multi-user concurrent or disjoint acquisition 

sessions. Another similar work is the project An Offline Python 

SLAM using COLMAP1 that has not been released publicly. 

Finally, while we rely on COLMAP API, a similar work22 based 

on PYCOLMAP33 has been recently published on GitHub but not 

yet compared with our approach. 

 

 

2. METHODOLOGY 

2.1 Overview 

The proposed pipeline for real-time navigation and mapping is 

built upon COLMAP. Specifically, its APIs are utilized for the 

extraction of RootSIFT local features, GPU matching and 

incremental bundle/reconstruction. The COLMAP engine was 

chosen due to its modularity and ease in integrating custom local 

features and matches. 

A flowchart of the overall pipeline is reported in Figure 1 and its 

key points are: 

• Frames from a single camera or a synchronized multi-camera 

system are saved locally, grouped per camera. Despite 

COLMAP can perform self-calibration, to limit 

computational time and improve accuracy, the calibration 

parameters of each camera should be provided. 

• New frames are searched at fixed time intervals, and the 

keyframe-selection module (Section 2.2) selects only the 

frames that provide enough innovation in terms of tie points 

distribution. The keyframe selection is carried out only on the 

camera chosen as master. In future we plan to extend 

keyframe selection also to the other slave cameras. In fact, it 

is possible that on the master camera there is not enough 

innovation in terms of tie points distribution, while on the 

others the innovation can be significantly different, for 

instance because of a different viewing angle. To save 

computation time, an option can be to run keyframe selection 

on all frames on the master camera, and with a lower frame 

rate on the other cameras. 

• Keyframes from the master camera are sequentially matched 

among different epochs, while the frames from the slave 

cameras are matched only with the synchronous master 

keyframes. 

 

 
Figure 1: Overview of the proposed COLMAP-SLAM pipeline. 

 

 

  
(a) (b) 

Figure 2: (a) Example of image from EuRoC Machine Hall (MH) 02 dataset selected as keyframe with a Median Matching Distance 

(MMD) of 105.74 px with respect to the last keyframe. Red dots represent the location of the features in the current frame, while green 

vectors denote the location of corresponding features in the last keyframe; (b) example of a frame that was not selected as a keyframe 

(MMD =11.05 px) and therefore rejected. 

 

 

 
1 https://tenhearts.github.io/3dv.html 
2 https://github.com/AlanSavio25/COLMAP_SLAM 

3 https://github.com/colmap/pycolmap  
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• All matches are saved in a SQLite database, then with the 

COLMAP mapper API new keyframes are registered, new 

tie points are triangulated, and finally 3D points and camera 

poses are adjusted. The process is repeated over again: new 

keyframes are searched among the new available frames, and 

the previous map is updated with new features and camera 

poses. 

• The algorithm for the tie points extraction during the 

keyframe selection can be different from the one used for the 

incremental registration of new keyframes. This can be useful 

if the characteristics required by the keyframe selection 

(accuracy, computational resources, etc.) are different from 

those required during image registration. 

• Different camera sensor configurations are supported such as 

monocular, stereo, and multi-camera. Currently, loop closure 

detection can be performed when the RootSIFT local feature 

is used, and it is supported only for the monocular case. 

• The first batch of images (in our case 30 keyframes) defines 

the reference system. If GNSS data is available in the EXIF 

data, it is used to georeference the trajectory whereas IMU 

can be integrated as reported in Section 2.3. Currently the 

scale factor is calculated from the GNSS data or the stereo 

baseline using only the initial batch of images. If only one 

camera is used without additional information from other 

sensors, the camera trajectory is known up to a scale factor. 

• For matching in real-time applications, RootSIFT, ORB, or 

ALIKE can be selected, while for offline simulations or post-

processed image sequences additional local features can be 

used. Currently, SuperPoint (DeTone et al., 2018) and 

Key.Net + HardNet are supported. The offline option has 

been introduced to test local features that are too slow to be 

extracted in real-time or as an easier way to integrate and test 

local features. In fact, it is possible to previously extract the 

local features for all the frames in a target folder, then 

COLMAP-SLAM will look for keypoints when needed. 

Compatibility can be easily extended to a broader range of 

hand-crafted and deep learning-based local features. 

• The sequential_matcher API of COLMAP is used for 

matching on a customized window of k (default k=1) images. 

For n non-oriented images, the matching window expands to 

k+n to increase the chance to ensure image tracking is not 

interrupted by image orientation failures. This approach adds 

re-localization capabilities within an adaptive matching, 

overcoming possible temporary obstacles in the scene or 

sudden change of illumination. 

 

2.2 Keyframe selection 

Keyframe selection is based on the optical flow innovation 

between the last keyframe and the current frame, based on 

corresponding local features. Therefore, optical flow for a tie 

point is defined as the 2D Euclidean distance in pixel between 

the coordinates of a tie point in the last keyframe and the 

coordinates of the same tie point in the current frame.  At every 

iteration of SLAM loop, when a new frame is available, local 

features are extracted either with traditional ORB detector 

(Rublee et al., 2011) or with ALIKE (Zhao et al., 2022), a state-

of-the-art differentiable key point detection algorithm, capable of 

sub-pixel accuracy and fast enough to run at 95 frames per second 

with 640×480 images on a commercial-grade GPU. Detected 

local features are then matched by using a cosine-similarity 

approach, that evaluates the similarity of n-dimensional vectors 

of the descriptors extracted. Corresponding matches are then 

filtered based on the epipolar constraint, by using Pydegensac 

(Mishkin et al., 2015; Jin et al., 2020). To decide whether the new 

frame brings enough innovation to the SLAM localization and 

thus should be selected as a keyframe the Median Matching 

Distance (MMD) is computed (Figure 2) and compared with a 

threshold. That is the median of the 2D Euclidean distance 

between matched keypoints in the current frame and last 

keyframe. Additionally, the algorithm checks if enough new 

matched features are found in the current frame to avoid rejecting 

it. ORB and ALIKE have similar performance: with both ORB 

and ALIKE, keyframe selection algorithm takes ca 0.05 s to 

evaluate a new frame and determine whether it should be 

designated as a keyframe or not (see Section 3 for hardware 

details). 

 

2.3 IMU integration 

The popularity of gyroscopes and accelerometers has increased 

significantly in the last years, and they are now commonly found 

in smartphones, cameras and robotic toys. The miniaturization of 

these sensors has been made possible through improvements in 

Microelectromechanical System (MEMS) technology, resulting 

in sensors with enhanced performance. 

 

 

 

Machine Hall 
Total # 

frames 
Example frames 

MH_01_easy 3682 

  

MH_02_easy 3040 

MH_03_medium 2700 

MH_04_difficult 2033 

  

MH_05_difficult 2273 

Table 1. Example frames and total frame number for the five subsets of the EuRoC Machine Hall dataset. 
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An Inertial Measurement Unit (IMU) comprises 3 gyroscopes 

that measure angular velocity and 3 accelerometers that 

measure acceleration, along with gravity's direction. Although 

both the measurements of angular velocity and acceleration in 

the IMU reference system are valuable as separate 

observations, their integration through a sensor fusion 

algorithm increases the estimation accuracy of the IMU body 

frame orientation respect to the estimate you get integrating 

only gyroscope data.  

Additionally, if a magnetometer is utilized in conjunction with 

the IMU, it is possible to establish the absolute measurement 

of orientation in relation to magnetic north, which facilitates 

the creation of an Attitude and Heading Reference System 

(AHRS). IMU raw data integration is performed via a revised 

AHRS algorithm4 presented in chapter 7 of Madgwick 

(2014)’s PhD thesis. This is a different algorithm to the better-

known initial AHRS algorithm presented in chapter 3, 

commonly referred to as the Madgwick algorithm. This is 

implemented in C and also made available by the authors 

through a Python package called imufusion available on PyPI. 

The algorithm, if magnetometer measurements are not 

available, can also be combined with an external source of 

heading measurements such as GNSS. 

 

3. RESULTS AND DISCUSSION 

COLMAP-SLAM’s accuracy has been tested on the EuRoC 

Machine Hall dataset, that consists of five subsets classified 

by the authors according to an increasing difficulty from easy, 

medium, to difficult (Table 1). They present challenges due to 

variations in speed, high speed and slow movements as well as 

stationary sequences. An accurate ground truth is also 

provided to evaluate the performances of SLAM methods. 

Image sequences are fed as input in COLMAP-SLAM 

simulating a real-time acquisition. The accuracy of the 

computed camera poses is calculated as the Root Mean Square 

Error (RMSE) obtained from a Helmert transformation 

between COLMAP-SLAM trajectory and the ground truth 

trajectory. For each keyframe, 1024 keypoints have been 

extracted. 

All tests described were run on an Ubuntu 20.04.3 LTS x86_64 

machine, with Intel CPU i9-10900F (20) @ 5.200GHz and a 

NVIDIA GeForce GTX 1080 GPU. 

 

3.1 Accuracy evaluation of monocular SLAM 

The initial tests have been conducted for the monocular case 

on the cam0 of the EuRoC Machine Hall 01 dataset. In this 

case, a simple keyframe selection approach based on 

subsampling the 20 Hz stream to 1 Hz has been used. For the 

evaluation of the approach described in Section 2.2, see 

Section 3.3 whereas results are reported in Table2. 

When enabling loop-closure detection, COLMAP-SLAM 

achieved an RMSE of 3.3 cm, almost two times better than the 

6.2 cm obtained using OpenVSLAM. This result can likely be 

attributed to RootSIFT of COLMAP-SLAM, which was 

reported in literature to be more accurate compared to ORB 

(Jin et al., 2021) used in OpenVSLAM. Without loop-closure 

detection, COLMAP-SLAM reached an RMSE two times 

worse respect the usage of loop-closures, an acceptable result 

considering the absence of loop-closures. 

 

 

 
4 https://github.com/xioTechnologies/Fusion 

 OpenVSLAM COLMAP-SLAM 

local feature ORB RootSIFT RootSIFT 

loop closure yes yes no 

RMSE [cm] 6.2 3.3 7.6 

Table 2: Comparison of COLMAP-SLAM with OpenVSLAM 

on MH_01_easy monocular dataset. 

 

3.2 Monocular vs stereo VO 

In Table 3 the Machine Hall datasets 2 and 3 have been used 

to test the stereo case (cam0 + cam1) against the monocular 

one (only cam0). In the stereo case, RMSE is calculated with 

a 6-parameters transformation between the estimated 

trajectory of cam0 and the ground truth, since the estimate of 

the scale factor is known. The RMSE of the monocular case is 

calculated from the same trajectory of the stereo, without 

fixing the scale (7-parameters transformation). This test is 

useful because the stereo RMSE shows the accuracy of both 

trajectory and scale estimation, while the monocular RMSE 

shows the quality of the trajectory shape even if the scale 

factor estimation is not accurate. 

As in Section 3.1, frames at 1 Hz have been selected as 

keyframes. In MH_02_easy the COLMAP-SLAM stereo 

RMSE is 10.4 cm, almost double than the monocular RMSE 

(5.7 cm), while in MH_03_medium the stereo RMSE is 36.0 

cm, more than three times the monocular one (9.0 cm). The 

higher error of the stereo is probably related to the scale factor 

that is calculated only on the first 30 keyframes and then kept 

fixed. Nevertheless, COLMAP-SLAM monocular errors are 

only 2-3 cm worse than OpenVSLAM (see Table 3), showing 

the good potential of COLMAP-SLAM in terms of trajectory 

shape. It also highlights that a more robust approach must be 

used for the calculation of the scale factor, for instance 

continuously updating it when new keyframes are added. 

In addition, in this test COLMAP-SLAM results are without 

loop-closure detection (for both stereo and monocular), since 

such detection is not implemented yet for the stereo scenario. 

On the contrary, OpenVSLAM always performs loop-closures 

as feature generally contributes to achieve better results. 

 

3.3 Keyframe selection 

Table 4 presents a test for the role of keyframe selection, 

performed using only the left camera (cam0) of the EuRoC 

Machine Hall 01 (monocular case). For this initial test, a 

simple temporal selection approach was employed, comparing 

the results for selecting frames at 1Hz and 5Hz from the initial 

input stream of 20 Hz. To ensure statistical robustness, the 

experiment was run five times. No loop closure detection is 

used in this test. With one frame per second, an RMSE of less 

than a decimetre was achieved on a trajectory almost 80.6 

meters long. However, using the timed criterium for frame 

selection, in the case of five frames per second, errors were 

more pronounced, likely due to the shorter baselines between 

the sequentially matched images. With shorter baselines the 

pose error accumulates more significantly due to sequential 

matching and windowed bundle adjustment (BA) being 

performed without any loop closure. Indeed, only two out of 

five runs achieved an accuracy better than one decimetre. The 

processing bottleneck is the global BA performed at each 

iteration, which significantly affects the computation time. 

Attempting to process more than 10 frames per second without 

keyframe selection leads to significant delays, which were 

therefore not included in the evaluation.  

 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W1-2023 
12th International Symposium on Mobile Mapping Technology (MMT 2023), 24–26 May 2023, Padua, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-317-2023 | © Author(s) 2023. CC BY 4.0 License.

 
320



 

 

 
MH_02_easy MH_03_medium 

 

 
OpenVSLAM 

with loop -closures 

COLMAP-SLAM 

without loop-closures 

 Stereo RMSE [cm] Monocular RMSE [cm] Stereo RMSE [cm] 

MH_02_easy 3.1 5.7 10.4 

MH03_medium 5.7 9.0 36.0 

Table 3: COLMAP-SLAM monocular vs stereo case. The ground truth trajectory is reported with a continuous blue line, while 

keyframes are reported with red dots. 

 
colour red green 

frame/sec 1 5 

# keyframes 185 921 

RMSE [cm] 10.3 / 7.9 / 7.3 / 4.9 / 7.4 9.9 / 121.1 / 15.4 / 110.9 / 11.2 

Table 4: Comparison on the impact of the number of processed keyframes with COLMAP-SLAM on MH_01_easy dataset. The ground 

truth trajectory is reported with a continuous blue line.  

 

The keyframe selection algorithm presented in Section 2.2 was 

tested on full EuRoC Machine Hall 04 and 05 datasets 

(labelled as difficult), considering the left camera only (cam0). 

Both ORB and ALIKE local features were used to compute 

MMD and assess the innovation of each frame with respect to 

the last keyframe. Keyframe selection was carried out by 

simulating a camera streaming images at 5Hz. This frame rate 

has been selected to be able to run in real-time both the 

keyframe selection and the incremental frame orientation. 

Innovation threshold (i.e., the value of MMD with respect to 

the last keyframe below which a frame is rejected) was set to 

80 px, based on empirical tests. Selected keyframe were 

oriented by COLMAP sequential matching algorithm and the 

resulting camera trajectory was compared against the ground 

truth trajectory. Table 5 presents the results in terms of RMSE 

of the estimated trajectory and processing time, comparing 

both ORB and ALIKE local features on MH_04 (508 images, 

as the full dataset was subsampled at a frame rate of 5Hz) and 

MH_05 dataset (568 images). Keyframe selection took on 

average 0.05 s per frame evaluated both with ALIKE and ORB 

(with ALIKE that slightly reduces the total processing time 

compared to ORB). The total processing time including 

keyframe selection took less than 85 s for both MH_04 and 

MH_05 datasets, highlighting that COLMAP-SLAM can run 

in real-time with an input stream at 5Hz. For MH_5, the 

COLMAP-SLAM RMSE was 10.7 cm using ORB and 4.8 

using ALIKE in keyframe selection, similar to OpenVSLAM 

with 7.3 cm. In the MH_04 dataset, on the other hand, the 

trajectory RMSE of OpenVSLAM diverged because a part of 

the trajectory was mis-estimated due to very low light 

conditions of a subset of images which affected ORB 

performances, while COLMAP-SLAM managed to fully 

reconstruct the whole trajectory. 

 

3.2 Test for IMU integration 

The EuRoC Machine Hall 01 dataset has been chosen to test 

the imufusion Python package. In particular IMU ground truth 

position and orientation (in quaternions) are available in the 

Hexagon / Leica Geosystem (R) reference system (earth 

reference system). Meanwhile the accelerometers and 

gyroscope data from IMU are available in the body (B) 

reference system.  

In the first two sub-plots of Figure 3 the gyroscopes and 

accelerometers raw data from IMU are reported with a 

frequency of 200 Hz. In the last sub-plot a comparison of the 

quaternions ground truth and the one predicted from IMU data 

is reported. There is a reasonable agreement in terms of data 

trend between the orientation predicted by the IMU 

(continuous line) and the ground truth (dotted line) with some 

divergencies with time, the bias in accelerometers and 

gyroscopes have to be properly corrected for. This test was 

made to understand the feasibility of using the imufusion 

Python package to set the initial orientation of the cameras and 

estimate the evolution of the orientation over time. 
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MH_04 difficult MH_05 difficult 

 

 
OpenVSLAM 

with loop-closures 

COLMAP-SLAM 

without loop-closures 

 Stereo RMSE [cm] 

ORB for keyframe selection 

RMSE [cm] / # keyframes / 

Processing time [sec] 

ALIKE for keyframe selection 

RMSE [cm] / # keyframes / 

Processing time [sec] 

MH_04_difficult 989.9 6.5 / 98 / 72.59 11.5 / 93 / 72.53 

MH_05_difficult 7.3 10.7 / 95 / 81.92 4.8 / 89 / 82.71 

Table 5: Results of the keyframe selection algorithm test in the monocular scenario. For MH_04_difficult dataset the trajectory shown 

is obtained with the ALIKE keyframe selection, while for MH_05_difficult the keyframe selection method uses ORB. The ground truth 

trajectory is reported with a continuous blue line, while with red dots the keyframes are reported. 

 

 
Figure 3: IMU raw data and orientation comparison between quaternions ground truth and quaternion predicted by AHRS algorithm. 

 

 

This is of particular interest during the acquisition process with 

the system because it enables the operator to re-initialize the 

orientation when the tracking is lost in an automatic fashion. 

Moreover, if the trajectory of the acquisition has been roughly 

defined a priori (i.e., acquisition on transept) the IMU orientation 

can be used, together with the last available velocity before losing 

tracking to estimate the next position of the system. If the 

orientation coincides within some degree with the prior 

orientation, then the system would have moved in the same 

direction meanwhile if the orientation is flipped of 180 degrees, 

then the operator have likely changed transept. 
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4. CONCLUSIONS AND FUTURE WORKS 

The paper presented an open-source framework for the 

development of novel SLAM algorithms, with a particular focus 

on the inclusion and evaluation of learning-based detectors and 

descriptors. The framework is coded in Python and it is based on 

the COLMAP APIs for the extraction of RootSIFT local features, 

GPU-based matching and incremental bundle/reconstruction. It 

runs in real-time and it is modular in design to enable the targeted 

development of specific tasks. The platform supports both 

monocular and multi-camera systems. Results show that the 

proposed pipeline can achieve satisfactory results with an 

accuracy comparable to OpenVSLAM. 

We plan to extend the framework under various aspects: 

• Include cooperative SLAM (Poiesi et al., 2017), where 

mapping is performed by more than one moving platform. 

• Extend loop-closure detection to other descriptors than 

RootSIFT and to the multi-camera systems. Currently, only 

loop-closure for RootSIFT under monocular scenario is 

supported. 

• Improve and extend the integration of GNSS data to not be 

used only for scale definition on the initialization batch of 

images (default is the first 30 keyframes). 

• Improve the scale estimation algorithm for multi-camera 

systems, that now utilize only the first batch of images for the 

estimation of baselines between the cameras. 

• Add compatibility with Kornia (Riba et al., 2020) to use the 

wide range of local features already available and add further 

state-of-the-art local features. 

• Currently, the keyframe selection is carried out only on the 

master camera while we plan to extend keyframe selection 

also to the other slave cameras. 

• Integration of the IMU recovered orientation in the proposed 

pipeline. 

• Include sensor fusion with Extended Kalman Filter. 

• Improve efficiency and computational time. 
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