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ABSTRACT: 

 

This paper proposes a voxel-based approach for creating a digital twin of an urban environment that is capable of efficiently managing 

smart spaces. The paper explains the registration and localization procedure of the point cloud dataset, which uses the KISS ICP for 

scan point cloud combination and the RANSAC method for the initial alignment of the combined point cloud. The mobile mapping 

point cloud using Riegl VMX-250 serves as the reference map, and Velodyne scans are used for localization purposes. The point-to-

plane iterative closest-point method is then employed to refine the alignment. The paper evaluates the efficacy of the proposed method 

by calculating the errors between the estimated and ground truth positions. The results indicate that the voxel-based approach is capable 

of accurately estimating the position of the sensor platform, which are applicable for various use cases. A specific use case in the 

context is smart parking space management, which is described and initial visualization results are shown. 

 

1. INTRODUCTION 

 

The last decades' improvement of instruments and methods for 

three-dimensional (3D) geodata collection, analysis, and 

representation gives an opportunity for an extensive range of 

applications. The 3D geoinformation has become a basis for 

crisis and disaster management, environmental simulations, 

facility management, and urban planning (Saranet al., 2018). 

Additionally, it plays a significant role in the operation processes 

of modern smart city concepts. Most data related to the city 

topography, communication systems, spatial arrangement, 

infrastructure organization, city resources, and points of interest 

distribution directly or indirectly require geographical 

referencing for efficient functioning (Gotlib and Olszewski, 

2021). The main components of a smart city are defined as 

mobility, governance, environment, and people that ensure the 

functionality of demanded services such as healthcare, 

transportation, education, and energy, the amount of which grows 

permanently (Al Nuaimi et al., 2015). Therefore, the promise of 

today’s smart digital city leads to a significant increase in data 

quantity and systems complexity (Hashem et al., 2016). 

Considering the aforementioned requirements, an urban digital 

twin was introduced as a smart city concept innovation for the 

development of integrated and intelligent systems. In that frame, 

the usage of diverse data from numerous sensors, the design of 

an adaptive digital model that learns from and evolves with the 

real city, and the elaboration of predictive models are realized for 

future scenarios anticipation capability. (Castelli et al., 2019). 

The idea of digital twins first appeared in the context of lifecycle 

management product modelling at the University of Michigan in 

2002 (Grieves and Vickers, 2016). It was represented as mirrored 

real space in a digital or virtual space with data and information 

exchange between these two environments. However, the term 

digital twin was defined later, in 2010, in a NASA integrated 

technology roadmap related to flying vehicles, as “an integrated 

multi-physics, multi-scale, probabilistic simulation of a vehicle 

or system that uses the best available physical models, sensor 

updates, fleet history, etc., to mirror the life of its flying twin” 

(Shafto et al., 2010). The urban digital twin takes the begging 
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from 3D city construction models, which were advanced by 

joining existing digital representations of buildings and 

infrastructure within Building Information Modelling (BIM). 

The continuous, bidirectional data transmission between real and 

virtual space property gives an opportunity to model a city in the 

most accurate form (Ferré-Bigorra et al., 2022). Moreover, the 

3D geodata exchange allows for spatial relationship description 

and environment updates according to the real world at a given 

time (Bacher, 2022).  Beside BIM and landscape planning, the 

CityGML framework was released for the representation, 

storage, and arrangement of virtual 3D city models (Scalas et al., 

2022). 

Recently, a number of urban digital twins were implemented. The 

digital twin of Zurich (Switzerland) includes a 3D city model that 

consists of blocks, roofs, terrain, street space, trees, 

archaeological objects, power lines, and bridges.  (Schrotter and 

Hürzeler, 2020). The National Research Foundation established 

an urban digital twin for Singapore city. Virtual Singapore is a 

dynamic 3D city model that comprises detailed information, such 

as material, the texture of geometrical objects, terrain attributes, 

and models of building compounded from walls, floors, and 

ceilings. (Virtual Singapore, 2018). Furthermore, to improve the 

realism of the Singapore gardens visualization, the CityGML tree 

models framework with multiple levels of details (LoD) was 

elaborated (Gobeawan et al., 2018). The Hong Kong Science and 

Technology Parks Corporation, together with Chain Technology 

Development, has provided the digital twin solution called the 

Hybrid Reality Platform for Hong Kong Science Park. The aim 

of the project is to install a data management system, which is 

capable of large-sized BIM objects and 3D reality meshes 

processing (Yang, Seungho and Kim, 2021). One more 3D city 

model was generated for Herrenberg (Germany). The urban 

digital twin of the town was built based on a hybrid of solid 3D 

models, geographical data, a digital elevation model (DEM), 3D 

laser scan data, and BIM (Dembski et al., 2020). As can be 

noticed, the existing urban digital twins are realized within 

uniform means of solid 3D models, BIM, and CityGML format 

for the virtual city representation. Despite the high accuracy, 

frequent updates of such models according to continuous changes 
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in the real world remain challenging. In addition, the current LoD 

concept of CityGML is not sufficiently flexible for indoor 

applications (Tang et al., 2018). The correspondence of the urban 

indoor and outdoor virtual environment to the real-time condition 

is crucial for emergency service operations, autonomous vehicle 

route planning, and dynamic smart space management.  

Therefore, this paper proposes an approach different from the 

standard digital twin formation and management methods. The 

central idea is capturing the three dimensions of the environment 

in high resolution using a many of different sensor systems and 

breaking it down into billions of voxels, systematically 

addressing and updating them utilizing identification numbers. 

Thus, the system will be able to combine, modern digital twins' 

functionality, fast, up-to-date data performance, and open new 

opportunities for applications. Such a virtual voxel-based 

representation of the real world will enable people and machines 

to meet the growing competition in space use in a more demand-

oriented, efficient, secure, and fair way, both for themselves and 

in the interests of the public. In order to fuse data from different 

sensors, it is necessary to align these data to the current 3D voxel 

model. To this end efficient localization methods are needed.  

 

1.1 Voxel representation 

 

Voxels can be considered as the 3D equivalent of pixels in a two-

dimensional (2D) space. Similar to the 2D case, voxels are placed 

on a 3D grid with uniform spacing in all dimensions. Analogous 

to a 2D square pixel representation, a voxel corresponds to a 3D 

cube (Chajdas, 2015). 

Voxel representation is used for a multitude of tasks including 

finite-element simulation, object detection, classification, 3D 

reconstruction, localization, trajectory planning, computer 

graphics rendering techniques etc. (Koketsu et al., 2023; 

Pantaleoni, 2011; Agus et al., 2010; Ma et al. 2021, Mao et al., 

2021; Xie et al. 2018). A wide range of voxels utilization  can be 

explained by the properties of this type of representation, such as 

uniform resolution, regular structure of independent cells that 

removes the complexities of various computations and 

manipulations, trivial simplification, and easy data stream 

(Chajdas, 2015). Voxel-based models are actively applied to 

define the unexplored space for aerial and terrestrial autonomous 

vehicles (Oleynikova et al., 2017). Furthermore, voxels are 

utilized within various data structures for efficient storage and 

model updates. For instance, Wu et al. (2022) proposed a multi-

level voxel representation for a digital twin model of the 

geological environment, which allows for dynamic updates of 

complex geological structures. Consequently, the voxel model 

can be set as a proper basis for multifunctional, complicated 

systems, and opens promising perspectives for urban digital twin 

realization. 

 

1.2 Localization methods 

 

In the last decades, many methods have been proposed for point 

cloud registration and localization. Iterative closest point (ICP) is 

one the most important methods in registration field, which 

works with iterating the search of corresponding points to 

minimize the difference between two points clouds (Besl and 

McKay, 1992). Another famous method is the normal 

distribution transform (NDT), which assigns a normal 

distribution to each 2D cell (Biber and Straßer, 2003). This kind 

of methods can be used for fine registration, where an initial pose 

estimation is needed. On the other hand, there are some other 

methods that work without any need of initial alignments, like 

the random sample consensus (RANSAC) (Schnabel et al., 2007) 

or the 3D Hough transform (Hulik et al., 2014).  

In addition, there are some other methods for global localization 

to find the position of current point clouds in the reference map, 

such as global feature matching (Luo et al., 2021), and map 

matching (Feng et al., 2017).  

KISS ICP (Vizzo et al., 2023) is an approach for LiDAR 

odometry that can accurately compute a robot's pose during 

navigation. The approach is simple but effective, and its core 

components include motion prediction and scan de-skewing, 

spatial scan sub-sampling, an adaptive threshold for 

correspondence search, and ICP with a robust kernel. In this 

approach, the point-to-point ICP has been used, and it is able to 

be comparable to state-of-the-art odometry systems and can 

accurately compute a robot's odometry in various environments 

without relying on IMUs or wheel odometers. 

In some cases when the initial pose is not available, one of the 

best solutions for point cloud registration is to use coarse to fine 

registration, which we will discuss in this paper. In this case, 

RANSAC is used to estimate the initial pose of scan points for 

coarse registration, and then the alignment result of RANSAC is 

used as initialization of fine registration method like ICP. 

In this paper, we describe a preliminary voxel-based urban 

environment representation, generated from point cloud datasets 

derived from different sensors. In addition, we demonstrate its 

future applicability for a real-time intelligent parking 

management use case. On this account, the most attention in the 

article is given to the registration and localization procedure of 

point clouds measured by distinct sensors. The paper is organized 

as follows: first the methodology is described, as well as the data 

set used. Subsequently, the experiments are conducted and the 

results are evaluated. Based on the aligned data sets, the 

application scenario of smart parking is described. 

 

2. METHODOLOGY 

The objective of this section is to present an approach for 

localizing Velodyne's raw scans on a map, which is crucial for 

accurate positioning and updating the map. As mentioned in the 

introduction, the ICP method is a traditional technique for scan 

localization. However, it is limited by its reliance on an initial 

value for alignment. Unfortunately, accessing the initial value is 

not always feasible. On the other hand, lacking enough features 

in sparse point clouds is another challenge in localization term. 

Therefore, a three-step method is proposed in this research work 

to overcome this limitation. This approach does not rely on an 

initial value and offers a more robust localization solution. The 

three consecutive steps of the localization process in this article 

are:  

1) applying voxelization  

2) applying RANSAC to coarse registration, using the 

Fast Point Feature Histogram, based on a coarse grid 

resolution 

3) applying a Pont-to-Plane ICP to fine registration, based 

on the original voxel size 

As shown in Figure 1, in the first step, the raw Velodyne scans 

are initially processed and combined using the KISS ICP 

algorithm (Vizzo et al., 2023) to create a denser point cloud of 

the area of interest. The resulting point cloud is then used to 

determine an initial alignment value for the Iterative Closest 

Point (ICP) algorithm. To this end, a robust RANSAC method is 

applied to localize the combined point cloud on the reference map 

(MMS). Once the RANSAC process is completed, the resulting 

transformation matrix is used as the initial alignment for each 
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individual scan in the ICP method. In the subsequent sections, we 

describe the details of each of these steps.  

 

2.1 Datasets 

This study focuses on analyzing a point cloud dataset collected 

along a residential street (Am Kleinen Felde) in the city of 

Hanover, Germany, covering 175 meters.  

The dataset consists of two separate parts: a mobile mapping 

point cloud provided by a Riegl VMX-250 system (MMS) 

(Figure 2.top), which is used as reference map, and scans from a 

Velodyne VLP 16 (Velodyne) (Figure 2.bottom), which are to be 

localized. 

 

Figure 2. MMS point cloud with colors (top), a Velodyne scan 

from top view (bottom) 

 

The Riegl VMX-250 technology is used to collect a dense point 

cloud consisting of approx. 4,340,000 points. It is an advanced 

laser scanning system equipped with four cameras that provide 

color information, allowing to colorize the point cloud. The 

Velodyne scans (101 scans) are used to update the map, where 

each scan containing around 25,000 points. The point clouds 

have been measured at different times, the mobile mapping data 

has been obtained earlier than the Velodyne scans. Thus, the goal 

is to localize the Velodyne scans in the reference map generated 

from the Mobile Mapping point cloud. 

 

2.2 Voxelization 

During the voxelization process, a regular 3D grid with a given 

spacing is created from the acquired reference dense point cloud 

(MMS); in this case, a spacing of 10cm was selected. Therefore, 

a cube with a 10 cm edge length describes each voxel. Every 

voxel of the 3D grid is assigned a unique index number and 

contains the corresponding points of the reference point cloud. 

Next, the necessary information for the further processing is 

obtained.  

Firstly, for the localization and registration step, the mean point 

per voxel is computed from all the reference points inside. 

Considering the 3D coordinate system, the mean point 

coordinates are calculated. Afterwards, the covariance matrices 

𝐶 are calculated according to the covariance values 𝜎  between 

all the dimensions: 

𝜎(𝑥,  𝑦) =
1

𝑛−1
∑ (𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)𝑛
𝑖=1    (1)

    

𝐶 = [

𝜎(𝑥,  𝑥) 𝜎(𝑥,  𝑦) 𝜎(𝑥,  𝑧)

𝜎(𝑦,  𝑥) 𝜎(𝑦,  𝑦) 𝜎(𝑦,  𝑧)

𝜎(𝑧,  𝑥) 𝜎(𝑧,  𝑦) 𝜎(𝑧,  𝑧)
]                       (2) 

  

where, 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖  =  coordinates of reference point  

            𝑛  =  total number of reference points inside the voxel 

            𝑥,  𝑦,  𝑧 =  coordinates of the mean point inside the voxel 

The derived covariance matrices allow to determine the surface 

normal, a linear, planar and other features estimation. 

Additionally, the mean RGB color value for every voxel is 

defined. 

Lacking enough features to identify objects make object 

recognition difficult. To overcome this challenge, we propose 

using a batch of scans as a more effective alternative. By utilizing 

the KISS ICP method, we can create a consolidated block of 

scans that can be used to accurately locate objects on the map 

(Figure 3). Using information from multiple scans allows us to 

have a more comprehensive understanding of the environment. 

 

Figure 3. Combined Velodyne point cloud using KISS ICP.  

 

Once the KISS ICP algorithm is performed, a transformation 

matrix is generated for each scan, representing the spatial 

transformation of that scan with respect to the first scan, which 

serves as the starting point (0, 0, 0). These transformation 

matrices can be used to access the combined Velodyne scan. 

Figure 1. The pipeline of localization process 
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2.3   Coarse registration 

 

Determining the initial value has been always a significant 

challenge in the localization field, and several methods have been 

proposed to overcome this problem. One of the commonly used 

methods for rough localization is the Random Sample Consensus 

(RANSAC) algorithm. However, applying RANSAC to each 

Velodyne scan separately can be time-consuming, and there are 

limited features in Velodyne scans alone.  

Since high accuracy results is not required in the coarse 

registration section, to reduce the computation time, the first step 

is to down sample the input data, which includes the mobile 

mapping data and the combined Velodyne scan to 1-meter 

voxels. Using 1-meter voxels for coarse registration will be faster 

than using 10 cm voxels due to the reduced number of voxels. 

Furthermore, the registration results achieved with 1-meter 

voxels are sufficient to be used as an initial transformation matrix 

for fine registration.This voxelization process significantly 

reduces the amount of data and simplifies subsequent feature 

extraction. The calculation of the normal vector for each voxel is 

then performed using the covariance matrix. The normal vectors 

are crucial for calculating the Fast Point Feature Histogram 

(FPFH) for each voxel.  

The FPFH is a feature descriptor that characterizes the local 

geometric properties of a point in a three-dimensional space 

(Rusu et al., 2009). This approach involves the application of a 

pre-defined radius to identify the nearest neighbors of each data 

point, within a three-dimensional spherical region of radius r. In 

the next step, the relationships between each query point and its 

neighbors are defined. For each pair of points (𝑝𝑖 and 𝑝𝑗) and 

their normal (𝑛𝑖 and 𝑛𝑗) the following angular variations are 

computed which is called Simplified Point Feature Histogram 

(SPFH): 

 

𝛼 = 𝑣. 𝑛𝑗  

𝜑 = (𝑢. (𝑝𝑗 − 𝑝𝑖)) /‖𝑝𝑗 − 𝑝𝑖‖ 

𝜃 = arctan(𝑤. 𝑛𝑗 , 𝑢. 𝑛𝑗)                                (3) 

 

Where 𝑢 = 𝑛𝑖  ,  𝑣 = (𝑝𝑗 − 𝑝𝑖) × 𝑢  and 𝑤 = 𝑢 × 𝑣 . 

In the following step, a neighborhood search is performed for 

every neighboring point by recalculating its proximity criteria 

based on the previous radius. Once the neighboring points are 

identified, their SPFH descriptors are computed to characterize 

their geometrical properties, which provide a robust 

representation of the local surface structure around each point. 

Subsequently, a weighted histogram is constructed by combining 

the SPFH descriptors of each neighboring point to create a 

holistic description of the local surface geometry. As shown in 

Figure 4, the red query point is linked only to its neighbors (k-

points), which are enclosed by the gray circle.  

The direct neighbors are then linked to their respective neighbors, 

and the histograms resulting from the direct neighbors and the 

histogram of the query point are combined with weights to create 

the FPFH. 

 

𝐹𝑃𝐹𝐻(𝑝) = 𝑆𝑃𝐹(𝑝) +
1

𝑘
∑

1

𝑤𝑘

𝑘
𝑖=1 . 𝑆𝑃𝐹(𝑝𝑘)         (4)                                                                                                         

 

The value of 𝑤𝑘 indicates the distance between the reference 

point 𝑝  and a neighboring point 𝑝𝑘. 

 

A global registration is achieved by utilizing the RANSAC 

algorithm, whereby a set of points is randomly selected from the 

combined Velodyne scan during each iteration. The 

corresponding points in the MMS point cloud are identified by 

searching for the nearest neighbor in the FPFH feature space. To 

efficiently evaluate a large number of potential correspondences, 

numerous candidate correspondences are sampled and ranked 

rapidly based on the similarity between their corresponding 

histograms. 

 

Figure 4. The relationships between query point and its 

neighbors (Rusu et al., 2009). 

 

2.4    Fine registration 

 

In order to reduce the time of computations, the global 

registration is limited to 1-meter down-sampled point cloud, 

which could potentially lead to a less precise alignment. While 

the initial alignment obtained through the RANSAC method may 

not be accurate enough, it can serve as a good initial 

transformation value for the Point-to-plane Iterative Closest 

Point (ICP) algorithm. The Point-to-plane ICP is a variation of 

the traditional ICP that takes a different approach to distance 

calculations. Rather than computing the distance between point 

pairs, the algorithm measures the distance between a point in one 

point cloud and the plane tangent to the surface of the other point 

cloud at the corresponding point. By iteratively repeating this 

process, a more accurate alignment between the two point clouds 

can be achieved. During this step, instead of utilizing the 

combined Velodyne scan, the focus is shifted towards using 

individual raw Velodyne scans for localization purposes. To 

accomplish this, the transformation matrices obtained from KISS 

ICP are applied to the raw point clouds of the Velodyne scans. 

Following this, the transformation matrix obtained from 

RANSAC is employed as an initial value for the point-to-plane 

ICP process on each of the individual scans. At the end of this 

process, each raw Velodyne scan is successfully localized to our 

global map (MMS), which can help us to accurately navigate and 

analyse the mapped environment. 

 

3. EXPRIMENTS AND RESULTS 

 

3.1 Voxels  

The voxels of 10 centimeters in size are generated to form the 

regular 3D grid. As described in the methodology, for each voxel 

the mean point, RGB color value and covariance matrix are 

calculated. The computed parameters enable the different feature 

estimation and the real-life, “true” color visualization. Figure 5 

shows the voxel-based urban environment within “true” colors. 
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Figure 5. Voxel-based urban environment 

 

3.2 Localization 

As explained in the methodology section, the KISS ICP method 

is used for merging multiple point cloud scans. The outcome of 

this method is a dense and unified point cloud. In addition to the 

transformation matrix generated for each individual scan, the 

unified point cloud can be further processed for point cloud 

classification. For this purpose, the Kernel Point Convolution 

(KPConv) network is employed to classify the combined 

Velodyne scan, as shown in Figure 3. The generated labels can 

be used in the future for map updating and other applications. The 

ability to classify points in the unified point cloud facilitates the 

recognition of objects and features in the environment, which is 

essential for extracting meaningful information. 

As described in the methodology, in the subsequent phase, a 

hierarchical approach is applied to down-sample the combined 

Velodyne scan to 1-meter voxels. This approach ensures 

consistency as the 10 cm voxels in the MMS point cloud is also 

converted to 1-meter voxels. The resulting down-sampled point 

cloud speeds up processing and allows for more efficient 

handling of large volumes of data. 

To perform the alignment between the combined point cloud and 

the reference point cloud, the RANSAC method is used with a 

distance threshold of 2 meters. However, due to the complexity 

of the environment, the output of the registration process may not 

be entirely accurate. As shown in Figure 6, although after coarse 

registration the combined point cloud is generally aligned with 

the reference point cloud; there are some residual misalignments 

in terms of shift and rotation. Despite the slight misalignment, the 

approximate alignment obtained with RANSAC is still suitable 

and sufficient as an initial estimate for the iterative closest point 

(ICP) algorithm to refine the alignment. By using the 

approximate alignment as an initial estimate, the ICP algorithm 

converges faster and provides a more accurate final alignment. 

In the next step, the point-to-plane ICP method is applied to 

improve the alignment. This process uses the original dataset, 

where the down sampled MMS point cloud with 10 cm voxels 

serve as the reference map, and the single Velodyne scans are 

used for localization. 

As shown in Figure 7, using the transformation matrix from the 

RANSAC method as the initial value for ICP, the resulting 

alignment between the raw Velodyne scans and the reference 

map is quite accurate. 

 

3.3 Evaluation  

In this research study, 101 Velodyne scans are utilized for 

localization. Furthermore, as shown in Figure 8, the estimated 

positions are represented in red color, and the ground truth values 

are displayed in green color. The fact that the trajectories of the 

estimated positions and the ground truth values are very close to 

each other suggests that the proposed method can accurately 

estimate the position and orientation of the sensor platform.  

To assess the performance and effectiveness of the proposed 

voxel-based approach, we calculate the errors between the 

estimated and the ground truth positions for each scan in both the 

Figure 6. Coarse registration result using RANSAC 

Figure 7. Fine registration result using point-to-plane ICP 
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XY and Z directions. Figure 9.a presents the error values as a 

histogram.   

The histogram in the XY direction shows that many of the scans 

(88 out of 101) have errors less than 3.6 cm. A smaller number 

of scans (13 scans) have errors greater than this value, but less 

than 6 cm. The maximum error observed in this direction is 6.3 

cm, which occurred in only 3 scans. This suggests that the 

estimation algorithm performed well overall, with most scans 

having relatively small errors.    

The vast majority of scans in the Z direction have errors of less 

than 2 cm, with most of them between 0 to 1 cm. Only a small 

percentage of scans have errors greater than 2 cm, with just four 

scans having errors between 3 to 5 cm (see Figure 9.b). 

                        (a)                                              (b)       

Figure 9. The errors between the estimated and ground truth 

positions for each scan in a)  XY and b)  Z directions. 

 

4. SMART PARKING SPACES MANAGEMENT 

Lack of parking spaces, disordered parking, and insufficient 

parking space use are major problems in big cities nowadays. 

Therefore, smart parking management is an exemplary use case 

for urban digital twins.  Based on the results of the localization 

procedure for mobile mapping and Velodyne sensor data 

measured in different time periods, described in section 3, we 

have investigated the possibility of parking space allocation and 

their occupancy examination for a smart parking space 

management use case within the proposed urban digital twin 

platform. The idea is to define the initial state of parking spaces 

according to the dense reference point cloud and to use the sparse, 

registered Velodyne data for the parking space occupancy state 

update. To this end, the point clouds of both sensors are classified 

with respect to major object classes, for example cars, trees, 

ground etc. Afterwards, the occupied parking spaces are defined 

by bounding boxes according to the clustered reference point 

cloud. Finally, the occupancy of the parking spaces is examined 

by the detection of Velodyne points, classified as cars, inside the 

determined previously bounding boxes. If the Velodyne points of 

the class “car” are detected inside the bounding box – the parking 

space is considered as occupied, if opposite, then the parking 

space is vacant. A more detailed explanation is provided in the 

next subsections.     

 

4.1   Classification 

To effectively distinguish between dynamic and static objects in 

web applications and visualization, it is essential to have a 

classified and labelled point cloud. For this purpose, the Kernel 

Point Convolution (KPConv) is used for point cloud 

classification (see Figure 10). This method operates directly on 

point clouds without the need for an intermediate representation. 

KPConv inputs neighborhoods of a specific radius and processes 

them using weights that have been located by a small number of 

kernel points. 

Figure 10. The classified MMS point cloud using the Kernel 

Point Convolution (KPConv) network 

 

4.2   Bounding boxes  

After classifying the point cloud, the resulting labels can be used 

to separate different objects from each other. For instance, in 

parking space management, identifying the points that represent 

cars is crucial to determine the exact location of each vehicle and 

whether the parking space is occupied or not.  

To extract the cars from the point cloud, the first step is to remove 

all points that do not represent cars. This can be achieved using 

the labels obtained from the point cloud classification. Clustering 

is the next step after extracting the cars from the point cloud. To 

perform the clustering, the Euclidean distance method is used. 

This results in each car being represented by a separate cluster of 

points. However, clustering alone is not enough to accurately 

identify the shape and position of a car. Therefore, bounding 

boxes are fitted to each cluster to better represent the actual size 

and location of the vehicle. This is done by fitting a 3D bounding 

box around the cluster of points that represent the car (Figure 11). 

The output data includes the centroid of each box and its 

dimensions in all three directions (X, Y, and Z), including its 

length and orientation.  

Figure 8. Trajectory of estimated pose of 101 scans. 
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Figure 11. 3D bounding box around cars 

 

The obtained bounding boxes from the reference point cloud are 

set as occupied parking spaces. Further, the classified Velodyne 

point cloud is used to examine whether the occupancy of defined 

parking spaces is valid or not at another point of time. For that 

purpose, a spatial analysis is performed to detect the Velodyne 

points labelled as cars inside the reference bounding boxes. If the 

Velodyne points are detected inside the bounding box, the 

parking space will be kept in the occupancy state, otherwise the 

space will be set as non-occupied. The velodyne scans will be 

also used for updating the reference map to always keep it up to 

date. 

The 3D bounding box can then be used in the voxel environment 

of the initial map, to illustrate the occupancy of the parking 

spaces. Overall, the classification, clustering, and bounding box 

fitting process is used to extract useful information from point 

cloud data and visualize it in the voxel platform. 

 

4.3     Visualization 

 

For the visualization of the voxel-based urban environment the 

created 3D georeferenced grid of 10 cm dimension is transferred 

to the JavaScript library and application programming interface 

(API) “Three.js”. The introduced API allows to create and 

display animated 3D computer graphics in a web browser with a 

further virtual reality extension possibility. To fit the rendering 

scene, the coordinates of the grid are additionally scaled and 

rotated for 90 degrees around X axis. Afterwards, the cube 

geometries of the corresponding dataset are generated using the 

Three.js library and placed according to the 3D grid corner 

positions. In this way, the urban environment is visualized by 

georeferenced voxels in a web browser. Furthermore, the derived 

bounding boxes are integrated in the rendered scene to represent 

the parking spaces. Figure 12 shows the voxel-based 

visualization with the parking spaces occupancy situation 

according to the reference data. In Figure 13, the changes in 

parking spaces’ states after the revision according to the 

Velodyne data is visualized. There are three new free slots, which 

is indicated by the green boxes.  

 

5. CONCLUSION 

This paper has presented an approach to accurately estimate the 

position of a sensor platform using voxels. The voxelization 

process creates a regular 3D grid with 10 cm spacing, and a 

hierarchical approach is applied to down-sample the reference 

map as well as combined Velodyne scan to 1-meter voxels. The 

alignment of the combined point cloud with the reference point 

cloud is achieved using the RANSAC method. The resulting 

alignment is then refined using the point-to-plane ICP method, 

resulting in accurate alignment between the raw Velodyne scans 

and the reference map. The results showed that the estimation 

algorithm performs well overall, with most scans having 

relatively small errors. Furthermore, the paper discusses the 

potential application of the proposed method in the management 

of smart parking spaces, which is a major problem in big cities 

nowadays. This paper provides a basis for future studies on smart 

parking spaces and other urban application management. The 

approach recommended in the paper has the potential to be 

broadened to other applications and uses. 

The following future work can be conducted to advance the 

scientific paper: scenes with less context information can be 

investigated to determine their effect on the accuracy of 

registration; scans obtained from different sensor position, such 

as UAVs, can be studied to evaluate the generalizability and 

robustness of the method; the influence of the size of the 

aggregated individual scans and hierarchy on accuracy and 

computational effort can be examined. Additionally, the labeling 

process can be explored to determine its impact on registration 

accuracy. 

 

Figure 12. Voxel-based urban environment visualization with 

occupied parking spaces (red color) 

 

 

Figure 13. Voxel-based urban environment visualization with 

parking spaces states revised after the revision according to the 

Velodyne data (green color represents the vacant spaces) 
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