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ABSTRACT:

Kinematic laser scanning enables efficient and accurate acquisition of 3D data, specifically point clouds. Transforming the laser
ranging measurements from the scanner coordinate system to a georeferenced coordinate system requires integration with auxiliary
navigation systems, in this case using GNSS (global navigation satellite system) and an IMU (inertial measurement unit). GNSS
and IMU data are commonly fused via Kalman filter, and the resulting trajectory is used for georeferencing. Errors in the trajectory
propagate through the georeferencing and cause discrepancies in the point cloud. To mitigate this, we present a holistic integration
method incorporating GNSS, IMU and LiDAR measurements in a single adjustment, which can be seamlessly adapted to a setup
with two GNSS receivers and antennas. This tight coupling of LiDAR and IMU together with the dual-GNSS setup allows the use
of an ultra low-cost IMU while still achieving high-quality point clouds. We demonstrate this methodology on two datsets, where
we discuss in particular the boresight calibration of such a system, and the impact of the LiDAR measurements and the dual-GNSS
set-up on the trajectory and the point cloud.

1. INTRODUCTION

Kinematic laser scanning is a widely used surveying technique
for efficient and accurate acquisition of 3D data, specifically
point clouds. Laser scanning is based on light detection and
ranging (LiDAR) together with a scanning mechanism. There-
fore, the measurements are primarily distances together with
angles, which are transformed into Cartesian coordinates re-
spective the laser scanner’s own coordinate system. Transform-
ing the measurements from the scanner coordinate system to
a georeferenced coordinate system requires knowledge of the
scanner’s position and orientation. This is achieved by integrat-
ing auxiliary navigation systems, in this case global navigation
satellite system (GNSS) receivers/antennas and an inertial meas-
urement unit (IMU). These two technologies synergize well, as
GNSS provides absolute positioning and the IMU provides rel-
ative position and orientation through integration of the inertial
measurements. The inertial sensors suffer from time-varying
measurement errors, which may be calibrated in-run by fusing
the IMU with the GNSS measurements in a Kalman filter. How-
ever, the resulting trajectory (position and orientation over time)
still contains errors, which manifest as discrepancies in over-
lapping point clouds. These discrepancies can be minimized in
a strip adjustment (Glira et al., 2015). A standard processing
pipeline in mobile mapping is thus (1) computing a trajectory
from GNSS/IMU data, (2) georeferencing of the laser data to a
global coordinate system and (3) strip adjustment.

Recently, holistic approaches for GNSS, IMU and LiDAR integ-
ration combining these 3 steps have become popular (cf. Pöppl
et al. 2023a). Such an integrated approach to sensor fusion is
common in robotics (e.g., Chang et al. 2019), but has also been
applied to bundle adjustment (Cucci et al., 2017) and airborne
laser scanning (Brun et al., 2022). In mobile laser scanning, it
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is common to use two GNSS receivers/antennas (Wang et al.,
2019). The use of two GNSS antennas mounted in a suitable
geometric configuration allows estimation of the vehicle head-
ing from the GNSS measurements. In a GNSS/IMU integration,
this helps to limit the IMU drift due to increased redundancy,
which is especially critical when using low-cost inertial sensors
and for data acquisitions with low vehicle dynamics.
In this work, a holistic approach to GNSS/IMU/LiDAR integ-
ration is presented, which is seamlessly adapted to a setup with
two GNSS antennas. Raw measurements from the IMU, pre-
processed position measurements from the GNSS, and LiDAR-
derived constraints are incorporated in a single model. This is
a tight coupling of IMU and LiDAR and a loose coupling of the
GNSS. By tightly coupling IMU and LiDAR, the comparatively
high accuracy of the laser scanner can be exploited to correct
IMU errors at the sensor level.

2. TRAJECTORY ESTIMATION METHODOLOGY

This sensor fusion approach is based on non-linear least-squares
(NLS) estimation, which jointly estimates all parameters: the
platform position and orientation, IMU biases and scale factors,
GNSS antenna lever-arms and LiDAR mounting parameters, as
well as object parameters which model the physical environ-
ment. The trajectory is modelled using Euclidean B-Splines for
position and quaternion B-Splines for orientation (Kim et al.,
1995). This continuous-time parametrization allows to evalu-
ate the trajectory and its derivatives at all measurement times.
Thus, model predictions for a given set of parameters can be
derived for all measurements: GNSS, IMU, LiDAR. The differ-
ences between model predictions and actual measurements are
minimized to obtain a set of best-fitting parameters. In contrast
to a Kalman filter, where inertial measurements are interpreted
as an input to the motion model (Farrell et al., 2022), this formu-
lation does not include (or rather: need) a motion model. This
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approach was recently applied to airborne laser scanning (Pöppl
et al., 2023b) and for kinematic usage of a terrestrial laser scan-
ner1, and thus the following description is based on this prior
work.

For a set of n noisy vector-valued measurements ỹi of true
values yi, the true values are modelled as a function of unknown
parameters x, so that

yi := fi(x), (2.1)

and the measurements ỹi are given as the true values plus noise

ỹi := yi + ϵi

= fi(x) + ϵi.
(2.2)

The error term ϵi is assumed to be Gaussian, with zero mean,
variance Σi, and uncorrelated between different measurements.
We treat the above as a maximum a-posteriori (MAP) problem,
and may additionally assume a Gaussian prior for some (or all)
parameters. Under the Gaussian assumption, the MAP estimator
for x is equivalent to the NLS estimator and given by

x∗ = argmin
x

∑
i

(fi(x) − ỹi)T Σ−1
i (fi(x) − ỹi). (2.3)

This minimization problem can be solved by standard non-
linear optimization techniques, in this case using the Levenberg-
Marquardt algorithm.

Based on this abstract problem description, we now present the
specific model parameters and measurement equations of the
MAP-based GNSS/IMU/LiDAR-integration.

2.1 Model parameters

All sensors considered here are mounted rigidly on a moving
platform. The estimable quantities x in this sensor fusion prob-
lem are then made up of three types: (1) the position p(t) and
orientation R(t) of the platform itself, (2) GNSS antenna po-
sitions la1, la2, scanner boresight misalignment Ms, scanner
origin ls and (3) object space parameters. To simplify present-
ation, the trajectory is referenced to the IMU, and the IMU
coordinate frame is assumed identical to the platform frame.
To capture higher frequency dynamics, trajectory spline nodes
are set at the frequency of the IMU measurements. The geor-
eferencing of the LiDAR measurements requires knowledge of
the laser scanner’s position and orientation relative to the ref-
erence frame of the trajectory, i.e., the IMU. Additionally, the
positions of the GNSS antennas on the platform are required to
relate the GNSS measurements to the trajectory. These quant-
ities are not always (accurately) known but are constant, as
all components are mounted rigidly with respect to each other.
In addition to the mounting parameters, inertial sensor error
calibration parameters are required to account for constant as
well as time-varying errors in the accelerometer and gyroscope
measurements. LiDAR correspondences may be incorporated
in two ways, either implicitly by forming constraints between
two measurements, or explicitly by forming constraints between
a measurement and a model of the object space. Here, we
take the latter approach, and explicitly model planar surfaces
which are extracted from the point clouds. Each planar object
is modelled by three parameters: an offset and two tilts, with

1 The paper “Trajectory estimation with GNSS, IMU, and LiDAR for
terrestrial/kinematic laser scanning” will be published in the proceed-
ings of the Laser Radar Technology and Applications XXVIII (2023)
conference.

respect to its initial position and orientation. These object space
model parameters are optimized jointly together with the other
parameters.
Non-linear least-squares estimation involves the non-linear op-
timization Eq. (2.3), solving which requires initial values for
the parameters. To obtain an initial trajectory, a Kalman filter
is employed, which in turn requires at least an initial orient-
ation. A suitable estimate of the roll and pitch angles may be
obtained by static alignment or simply by assuming the platform
is level. With dual-GNSS in an appropriate geometric configur-
ation, it is possible to determine the initial heading angle from
GNSS measurements. This requires that the GNSS antenna
positions are accurately known and the RTK-GNSS solution is
fixed, which is not always given at the start of data acquisition.
As the low-grade IMU is unable to perform gyrocompassing, the
initial heading is therefore considered unknown. A quaternion-
based unscented Kalman filter (QUKF) with forward-backward
smoothing is used, as it is robust against bad initial state values.
The Kalman filter solution is only needed to provide initial val-
ues for the NLS adjustment, therefore its accuracy is not critical
and no specific alignment procedure is required.
2.2 Measurement equations
The MLS system comprises two GNSS receivers. The respective
antennas are mounted roughly along the forward axis of the
vehicle, with a baseline of ∼ 3.5 m. Using RTK correction data,
a GNSS position solution is computed in real time on the device
for each of the antennas. The predicted position of each antenna
may be derived from the platform position p(t), the platform
orientation R(t) and the GNSS antenna positions la1, la2. The
GNSS position measurements of the different receivers may not
arrive simultaneously, depending on how the internal receiver
clock biases are applied to the output measurement timestamps.
Apart from possibly different timing and the respective antenna
positions, the measurement equation itself remains the same,
regardless of whether one, two, or even more antennas are used.
For GNSS position measurements p̃1, p̃2 at times t1, t2, the
measurement equations are given by

p̃1
p̃2︸ ︷︷ ︸

measurement

= p(t1) + R(t1) la1
p(t2) + R(t2) la2︸ ︷︷ ︸

model

+ ϵp1
ϵp2︸ ︷︷ ︸
noise

, (2.4)

where the measurement errors ϵp are assumed zero-mean and
normally distributed with covariance Σp. The on-board RTK
processing provides an estimate of Σp along with each posi-
tion measurement. The measurements of different epochs are
assumed uncorrelated. This latter assumption is not always ap-
propriate, and in such cases the error model may be adapted to
account for time-correlation (Pöppl et al., 2023b).
The IMU, made up of an accelerometer and a gyroscope,
provides measurements f̃ and ω̃ of specific force f and an-
gular velocity ω. The predicted values for specific force and
angular velocity depend on platform position and orientation,
and may be computed using the strap-down inertial navigation
equations (cf. Groves 2013 and Pöppl et al. 2023a). The meas-
ured values are tainted by additive white noise ϵ⋆, biases b⋆

and scale factors S⋆ = diag(sx⋆, sy⋆, sz⋆). The measurement
model for specific force and angular velocity at a time t is thus
given by

f̃
ω̃︸ ︷︷ ︸

measurement

=
=

(I + Sf ) f(t) + bf (t)
(I + Sω) ω(t) + bω(t)︸ ︷︷ ︸

model

+
+

ϵf

ϵω︸︷︷︸
noise

. (2.5)
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The biases and scale factors cause errors in the trajectory which
compound in time. Due to the redundant information provided
by GNSS and LiDAR data, these errors may be calibrated in-
run. Biases and scale factors are a sum of a time-constant com-
ponent, which changes only on power cycling the device, and
a time-varying component (Groves, 2013). The time-varying
components are generally modelled as stochastic processes with
certain characteristics. The process characteristics for the ac-
celerometer and gyroscope bias and white noise processes are
be obtained in a static calibration using Allan Variance ana-
lysis (see Farrell et al. 2022). While the scale factors may also
vary in time, we model them as constant parameters for each data
acquisition. This is partially motivated by the estimability of
these parameters: in situations with limited platform dynamics,
the time-varying biases and scale factors are hard to distinguish.
This difficulty is compounded by the fact that no well-founded
stochastic model for the time-varying component of the scale
factor is currently available for the IMU used here.

Errors in the trajectory propagate through the georeferencing and
cause discrepancies in the point clouds, which are visible in areas
where point clouds acquired at different times overlap. Based
on this observation, the redundant information in overlapping
point clouds may be used to constrain the trajectory, as long as
the observed objects remain stationary. Here, planar surfaces
are used as features, which are extracted from point clouds.

The measurement model is the same as in Pöppl et al. (2023b),
but the feature extraction used here is not based on voxelization.
Instead, an octree representation of the point cloud is traversed
from coarse to fine in order to extract both large features (e.g.,
facades) and small features (e.g., sidewalk curbs). At each
step, an attempt is made to fit a plane using a robust plane
fitting method based on Nurunnabi et al. (2015). The extracted
planar features are then matched to spatially nearby other planar
features in a greedy fashion. All corresponding planar features
are aggregated into a planar object, which serves as a model for
the physical surface. A planar feature is defined by a plane center
c̃ and plane normal ñ, and may be considered a measurement of
a planar object, which is in turn described by a plane center c and
plane normal n. Under the assumption that these planar features
describe the same object, they are constrained to coincide with
their object plane. Specifically, three constraints are formed,
regarding feature-to-object normal distance as well as feature
plane normal orthogonality w.r.t. the object plane axes

0
0
0

=
=
=

((c − c̃) · n)
(ñ · k1)
(ñ · k2)︸ ︷︷ ︸

constraint

+
+
+

ϵn

ϵk1

ϵk2︸︷︷︸
noise

. (2.6)

The plane axes k1, k2 (respectively k̃1, k̃2) are chosen so that
[k1 k2 n] (respectively [k̃1 k̃2 ñ]) are orthonormal, but are oth-
erwise arbitrary. A feature plane is internally stored as center
c̃s and normal ñs in the scanner coordinates. To form the con-
straints Eq. (2.6) in object space, it is transformed into physical
coordinates using the georeferencing equation

c̃ = R(t) Ms (c̃s + ls) + p(t),
ñ = R(t) Ms ñs.

(2.7)

The random errors occurring in Eq. (2.6) are assumed to be
uncorrelated and Gaussian. Their covariances are derived from
the PCA results, but scaled in order to account for angle of
incidence and laser footprint.

Feature plane A
Feature plane B
. . . }

}

Object
plane

Re-transformed to  scanner coordinates

Figure 1. Areas which are not occluded are scanned multiple
times during multiple passes. Feature planes are extracted

separately from points acquired during different passes, and the
corresponding feature planes are then matched to a single object

plane.

GNSS 1 
positions

GNSS 2
positions

IMU raw 
measurements

LiDAR point 
measurements

Trajectory & 
calibration

Georeferencing

Plane extraction 
& matching

LiDAR 
correspondences

Initial trajectory

Kalman filter

MLS 
point cloud

TLS 
point cloud

Least-squares
adjustment

Figure 2. Full processing workflow for the GNSS/IMU/LiDAR
integration. The steps marked in red may optionally be iterated.
If reference data is available, in this case from a TLS acquisition

campaign, it may be incorporated in the adjustment.

Point cloud data from other sources may be introduced into
the adjustment as control information. In this case, planes are
extracted from the control point cloud as described above, but
the planar object parameters are not optimized and stay fixed to
their initial value.
2.3 Processing workflow
The NLS adjustment is the core of the processing workflow,
with the full pipeline depicted in Fig. 2. First, the Kalman
smoother is used to obtain an initial trajectory, which is refined
in a first NLS adjustment. Then, an approximate point cloud
is computed, from which planar surfaces are extracted. Planar
surfaces observed at different times are matched and these cor-
respondences are used together with the raw IMU data and
GNSS positions in the NLS adjustment. Optionally, the plane
extraction may be re-run and the adjustment restarted. This is
useful in a calibration scenario, where the laser scanner calibra-
tion parameters are unknown and the initial point cloud is highly
inaccurate.
In the data acquisitions discussed below, the mounting position
of the second antenna changes depending on the exact system
set-up. The following approach ensures the system is adequately
calibrated for its final purpose:

1. Calibration of boresight angles and antenna positions using
a special calibration dataset.

2. Re-calibration of 2nd antenna position in the field if system
set-up changes.

3. During normal data acquisition, mounting parameters stay
fixed.

3. CASE STUDIES

The viability of the proposed method was demonstrated on two
different datasets acquired with a prototype MLS system setup.
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GNSS 1
LiDAR

GNSS 2

IMU

Figure 3. MLS system setup on car roof with LiDAR, IMU and 2
GNSS antennas. The distance between the GNSS antennas is

∼ 3.5 m.

A special calibration dataset (Fig. 4) is used to obtain initial
parameters for the antenna positions and the LiDAR boresight
angles. For this study area, reference data from terrestrial laser
scanning is available and used during boresight calibration and
as comparison for the kinematically acquired point cloud. The
second data set (Fig. 10) is a use case example of mobile laser
scanning in a mining environment. This is a 40 minute long
dataset where the impact of (1) single antenna vs. dual antenna
GNSS and (2) the use of LiDAR-derived observations on (a) the
consistency of the point cloud and (b) the estimated platform
trajectory is analyzed.
The MLS system used here is based on a RIEGL miniVUX laser
scanner, together with a ultra low-cost IMU and two low-cost
GNSS receivers. The LiDAR, IMU and one GNSS antenna are
fixed to the roof mount of a car or truck. The second antenna
is mounted either on the car’s engine hood using a magnetic
backplate (Fig. 3) or also on the car roof (Fig. 9). For the data
acquisitions discussed here, the GNSS receivers were operated
purely in RTK mode due to limitations related to the technical
implementation.
3.1 Calibration and preliminary evaluation
The first dataset (Fig. 4) was acquired in Horn, Lower Austria,
in a suburban area. This dataset will be used for calibrating
the IMU-LiDAR boresight angles. An accurate boresight calib-
ration is a requirement for accurate georeferencing. Boresight
calibration based on adjustment of the LiDAR data itself requires
a large enough overlap in the scan data and suitable object space
geometry. For an approach based on corresponding planar sur-
faces, the environment must of course contain sufficient planar
surfaces of different orientations. This dataset has high overlap,
features many planar surfaces (buildings), and the GNSS/RTK
base station is close by (less than 1 km). However, the scanning
geometry of the laser scanner together with the geometry of
such a suburban environment makes it difficult to estimate the
pitch component of the IMU-LiDAR boresight angles. This is
made worse by the fact that the IMU used here has high noise
as well as high drift. To improve the boresighting, we use a
reference point cloud from terrestrial laser scanning (TLS) for
the calibration procedure.
The TLS data (Fig. 5) consists of 1.8 billion points acquired
from 100 static scan positions. All data was co-registered to-
gether, without use of additional control points. The feature
extraction method described above is used to extract planar fea-
tures from this reference point cloud. An example is shown
in Fig. 6. The trajectory and system calibration (IMU-LiDAR
misalignment and antenna positions) are estimated together as
described above. The process of georeferencing, feature extrac-
tion, feature matching and NLS adjustment is repeated until the

boresight angles and antenna positions are stable (i.e., until they
change less than 5 mdeg and 0.5 mm, respectively).

Figure 4. Top-down reflectance view of the MLS calibration
dataset. The trajectory is shown in red. TLS data is available for

the area on the lower left.

Figure 5. Top-down reflectance view of the TLS dataset with
100 static scan positions shown as colored dots.

The resulting trajectory and point cloud are shown in Fig. 4. A
voxelization with voxel size 0.25 m is computed for each point
cloud, and a best-fit plane is estimated for all points within each
voxel. To evaluate the fit of the MLS point cloud with respect
to the TLS point cloud, the normal distances between the MLS
voxel centers and the TLS voxels best-fit plane are computed and
shown in Fig. 7. The discrepancies are below 1 cm, apart for
spurious points on e.g., vegetation. Note that this is not a meas-
ure of absolute accuracy, as the TLS data used for comparison
was also used for the adjustment itself. The residual differences,
which exist even after adjustment, show there is still some in-
consistency between the MLS and TLS data. This might be
partially due to inaccuracies in the TLS data. From repeat TLS
acquisitions in this area, we generally expect the TLS data to
be accurate to within 1 cm. Fig. 8 shows the standard deviation
of each voxels’ points’ normal distances w.r.t. to own best-fit
plane. These standard deviation are below 1.5 cm, with a larger
standard deviation in the same areas where a larger discrepancy
is visible in Fig. 7.
In order to obtain a more quantative measure, the normal dis-
tances of all MLS points to (a) the TLS best-fit planes and (b)
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Figure 6. Example of planes (green) extracted from the TLS
point cloud (reflectance, grayscale).

m

Figure 7. Normal distance of MLS voxel centers to the
corresponding TLS voxel best-fit plane, per voxel

the MLS best-fit planes are computed. Table 1 shows the min-
imum MIN, root mean square error RMSE and maximum MAX
distances. The minimum and maximum are limited by 0.25 m,
as this is the voxel size and maximum search radius used for
the comparison. As these statistics are tainted by points on
e.g., moving objects or vegetation, robust statistics of the 5-95
percentiles are also given. The robust values, specifically the
RMSE95

5 of 4 mm agree with Fig. 8. In a manual evaluation
of planar surfaces (e.g., facades and roads) in the dataset, the
precision is better than σ = 5 mm.

3.2 Application in a mining environment

The second dataset was acquired in Sishen mine, a large open-pit
iron ore mine located in central South Africa. The same RIEGL
miniVUX laser scanning system was used, this time mounted on
the roof rack of a jeep (Fig. 9). The data acquisition consists of
a ∼ 20 km stretch of road, depicted in Fig. 10. The point cloud
and trajectory are shown in Fig. 11 and examples of the acquired
point clouds are given in Fig. 12. The IMU-LiDAR boresight
misalignment is known from the previous calibration. However,
due to the system being set up on a different vehicle, the position
of the second GNSS antenna is different to the previous setup,
and is estimated on a separate dataset. Both GNSS antenna
positions and the IMU-LiDAR boresight are held constant for

m

Figure 8. Standard deviations of the normal distances of MLS
points to their voxels best-fit plane, per voxel.

MLS to MLS MLS to TLS
MIN0 -0.2485 -0.2495
RMSE100

0 0.0170 0.0335
MAX100 0.2477 0.2492
MIN5 -0.0103 -0.0408
RMSE95

5 0.0041 0.0106
MAX95 0.0100 0.0448

Table 1. Distances of MLS points w.r.t. the MLS or TLS data
best-fit planar surfaces using a 0.25 m voxelization. The
minimum, root mean square error, and maximum of the

distances are given for all data, as well as for a robust subset with
the bottom/top 5% cut off.

the processing of the dataset discussed below.
As no reference data is available, the following evaluation is
based on analyzing the consistency of the point cloud as well
as properties of the trajectory for different processing scenarios.
Namely, we will compare the GNSS/IMU-integration with the
GNSS/IMU/LiDAR-integration for both single antenna and dual
antenna configurations, resulting in four scenarios:

• G1I: GNSS/IMU integration, one antenna,

• G1IL: GNSS/IMU/LiDAR integration, one antenna,

• G2I: GNSS/IMU integration, two antennas,

• G2IL: GNSS/IMU/LiDAR integration, two antennas.
In the first two cases, only data from the main GNSS antenna
(located above the scanner) is used. The focus of this analysis

Figure 9. MLS system set-up mounted on a jeep. The laser
scanner is mounted in the back, together with the primary GNSS

antenna. The secondary GNSS antenna is mounted in front,
above the driver, with a distance of ∼ 3.8 m between the

antennas.
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Figure 10. The trajectory consists of forward and backward
passes along the same road, and starts/ends in the southeast.

Figure 11. Point cloud (grayscale, reflectance) shows mainly
road and berms due to limited visibility. The area marked in red

shown below for comparison of the height differences.

is on two aspects: the impact of (a) the second GNSS antenna,
and (b) the LiDAR measurements on the point cloud and the
trajectory.

The integration architecture discussed here makes use of loosely
coupled GNSS, with the GNSS operating in RTK mode. This
means for optimal performance, both good satellite reception as
well as good reception of the RTK correction signal is required.
Both of these requirements are at least partially given, and the
RTK processing reports a fix for the full duration, apart from a
short initialization phase in the beginning. As a quality check of
the GNSS measurements, we may look at the measured distance
between the two GNSS antennas (Fig. 13). For most of the
data acquisition, this differs less than ±1 cm from the distance
between the previously estimated antenna positions. To make
the integration more robust, GNSS measurements where the
difference exceeds ±2.5 cm are not used for in the trajectory
estimation.

As an evaluation of the consistency of the point cloud, Fig. 14
shows the height differences between the forward and the back-
ward passes. After adjustment of all data (GNSS, IMU and
LiDAR), the consistency is good with a maximum discrepancy
of 2.5 cm. Only some segments the road area is scanned both
in the forward and in the backward pass, as berms in the middle
of the road limit visibility of the road surface (Fig. 15). There
is little improvement in the height difference when comparing

Figure 12. Examples of the point cloud (grayscale, reflectance).
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Figure 13. Distance between the two GNSS antennas, as
measured by the RTK-GNSS.

the single-antenna and the dual-antenna GNSS/IMU integration,
and of the single-antenna and dual-antenna GNSS/IMU/LiDAR
integration, respectively. However, the addition of the LiDAR
measurements in the adjustment significantly reduces the height
differences for both scenarios. The height differences alone will
not show all trajectory errors. Especially errors in the heading
angle, which we seek to minimize with the addition of the second
antenna, are not very visible in the height component. The data-
set contains a small number of buildings and other man-made
structures, the facades of which are suitable at least for a qualit-
ative evaluation. Fig. 16 shows a vertical view of such a building
facade, with points from all four processing scenarios. For an
ideal plane and error-free measurements, all points would lie on
a horizontal line. The spread of the points from the G1IL (red),
G2I (green), G2IL (blue) are comparable, but the G1I (yellow)
points have a much higher spread. This suggests errors in the
latter trajectory, which are corrected either by inclusion of the
second GNSS antenna or by inclusion of the LiDAR constraints.

Further insight may be gained by analyzing the differences
between the trajectories from these four scenarios (Fig. 17).
Overall, the difference between the GI trajectory and the GIL
trajectory is larger for the single-antenna scenario than for the
dual-antenna scenario. Note that the inclusion of LiDAR meas-
urements in the dual-GNSS scenario leads to a correction of
the roll angle, but the pitch and yaw remain relatively stable.
This is due to the geometry of the GNSS antennas: with two
antennas mounted along the forward axis of the vehicle, the
pitch and yaw are estimable from the antenna positions while
the roll is not. The GIL trajectories of both scenarios agree
very well whenever laser data is available, implying that the
GIL trajectories are more correct. Conversely, the addition of
the second antenna seems to provide benefit mostly in the first
stage, i.e., GNSS/IMU integration. However, as the LiDAR cor-
respondences are established based on georeferencing with the
GNSS/IMU trajectory, a better initial trajectory results in bet-
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(a) G1I (b) G2I

(c) G1IL (d) G2IL

m

Figure 14. Height differences of the four scenarios.

Figure 15. Berms in the middle of the road limit the overlap
between point clouds from forward (red) and backward (blue)
pass. In some areas, the full street is visible from both sides of

the street.

ter correspondences. This is not as critical here, because most
of the suitable object space geometry is located near the road,
and due to the lower range, errors in orientation have a limited
impact.

4. DISCUSSION

In conclusion, the results suggest that by tightly coupling LiDAR
and IMU, even low-grade inertial sensors may be used for mobile
laser scanning. A precision of σ ≤ 5 mm is achieved, as meas-
ured by the spread of points on planar surfaces in the test area.
Furthermore, the use of the second GNSS antenna limits drift in
a GNSS/IMU integration as expected, but this has less impact on
the final point cloud in a LiDAR-integrated adjustment. While
the second GNSS antenna helps stabilize the initial GNSS/IMU
trajectory and therefore aids the plane extraction, it does not
significantly improve the result after GNSS/IMU/LiDAR integ-
ration, provided good LiDAR correspondences are available.
This is likely due to the strong constraints on the heading im-
posed by the LiDAR correspondences.

In future work, the GNSS processing will be done in post-
processing with precise ephemerides to avoid the problem of
missing RTK correction data and to improve positioning quality.
Also, further evaluations need to be done in order to quantify
the absolute accuracy of the methodology.

+10cm

0cm

-10cm

Figure 16. Vertical view of a facade with points from all four
point clouds: G1IL (red), G2I (green), G2IL (blue) and G1I

(yellow). All points lie within ±10 cm, but the spread of the G1I
points is higher compared to the other scenarios.
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(a) Position difference between GNSS/IMU and GNSS/IMU/LiDAR
integration, respectively for single-antenna and dual-antenna scenarios.
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(b) Position difference between single-antenna and dual-antenna scenarios,
respectively for GNSS/IMU and GNSS/IMU/LiDAR integration.
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(c) Orientation difference between GNSS/IMU and GNSS/IMU/LiDAR
integration, respectively for single-antenna and dual-antenna scenarios.
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(d) Orientation difference between single-antenna and dual-antenna
scenarios, respectively for GNSS/IMU and GNSS/IMU/LiDAR integration.

Figure 17. Differences in position (above) and orientation (below) between the GNSS/IMU and GNSS/IMU/LiDAR integration (left)
and between single-antenna and dual-antenna scenarios (right). Time intervals where LiDAR data is available are shaded gray.
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