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ABSTRACT: 

 

The use of satellite/UAS technologies in Precision Agriculture (PA) is increasing significantly and the continuous need of such kind 

of technologies is generating a great economic impact. This study carried out results by using Unmanned Aircraft Systems (UAS) 

and Very Hight Resolution (VHR) satellite imagery for the estimation of topsoil variability. The purpose of this contribution 

concerns the data analysis over two Production Units by evaluating radiometric response along the surface (e.g., spectral index). Our 

results concern the integration of UAS and satellite, improving the estimation accuracy of soil homogeneous areas variability, over 

which to manage agricultural practices. The remote sensing data covered by bare soil were isolated from the vegetative matrix along 

the study area. Thus, by using a statistical approach through the correlation between remote imagery and specific indices, it could be 

possible to determine variability in each pedological context, determining the zoning over land plots. According to this, in absence of 

high-resolution proximal soil sensing instrumentation, remote sensing data analysis can provide preliminary information suitable to 

establish a weighted topsoil/subsoil sampling campaign. 

 

1. INTRODUCTION 

Food production chain has undergone considerable growth over 

the last few years, reflecting in a technological upgrading for 

agronomical practices such as irrigation, fertilization, pesticides, 

and seeds use (World Resources Institute, 1998). Nowadays, 

Precision Agriculture (PA) techniques are able to achieve the 

following goals: (a) understanding the spatial distribution of 

homogeneous areas within the Production Units; (b) suppling 

innovative techniques on agriculture, focusing the attention on 

resources and practises management (Mamo et al., 2003; 

Crookston, 2006). According to this, the use of satellite and 

Unmanned Aircraft System (UAS) in PA has gone through a 

significant improvement, especially for the retrieval of 

vegetation and soil characteristics (Aslan et al., 2022; Ubina et 

al., 2022; Singh et al., 2022). This study is focused on soil 

spectral indices spatial variability, being those the result of 

complex relations between biological, geological, pedological, 

agronomic, geographic, and anthropogenic factors. Research 

dataset retrieved from remote sensing is used to map, for 

example, soil characteristics, in order to point out parameters 

such as yields, drainage, fertility, salinity, and irrigation design 

(Radoglou-Grammatikis et al., 2020). According to this, such 

kind of observations are mainly derived by five principal 

requirements: (a) characteristics of camera and sensor 

equipment; (b) easy application and employment of sensors and 

camera; (c) non-destructive measurements; (d) efficiency to 

retrieve the soil properties; (e) utilization of Structure from 

Motion (SfM) technique by computer vision approaches. 

According to this, user-friendly software are able to extract 

different kind of parameters such as canopies elevation and 

terrain modelling (Williams, 2012). 

The aim of this contribution is to detect soil variability in order 

to pilot on-site pedological sampling. Indeed, site-specific soil 

characterization can be helpful for crop management on pre-

planting and post-planting, thanks to the consideration and 

definition of physicochemical local variabilities (Larson et al., 

1991; Costantini, 2007). Then, in terms of preliminary/not-

invasive techniques, the utilization of satellite/UAS imageries 

can allow to obtain different information about the 

characterization of homogeneous areas in relation to the 

physicochemical topsoil variability (Douaoui et al., 2006; 

Castaldi et al., 2014; 2016; Colombo et al., 2015; Mei et al., 

2020; Benedetti et al., 2021). Furthermore, homogeneous areas 

identification can occur by an integrated optical/radiometric 

sensor with visible and near-infrared spectral range (Viscarra 

Rossel et al., 2010). Hence, to highlight the homogeneous areas 

on bare soil, reflectance values will be associated with 

considerable presence of soil salinity and, consequently, with 

high values for spectral indices, such as Brightness Index (BI) 

or Salinity Index (SI) (Douaoui et al., 2006). Finally, the 

advancement of efficient and sustainable agricultural Site-

Specific Crop Management (SSCM) policies is achievable by an 

high-speed and detailed spatial understanding of soil properties, 

which is essential to schedule local based Decision Support 

System (DSS) and develop Agriculture 4.0 advances. 

 

2. MATERIAL AND METHODS 

2.1 Study area 

The area of interest is in Gerace (RC), within the region 

Calabria (Italy), at the Barone G.R. Macrì Agriculture 

Company. The study area is placed at an altitude about of 200 

m.a.s.l., on the south-eastern side of the Calabrian Apennine. 

According to the sheet CARG 590 (Sheet CARG 590 

“Taurianova” of the Geological Map of Italy at 1:50.000 scale), 

the geological formations that characterize the area are 

represented exclusively by sedimentary lithotypes. These are 

represented by the Apennine-Maghrebid orogen unit (Argille 

Variegate group-AV), the Terrigenous Miocene succession 

(Pier Niceto formation-PCT) and Clastic-Evaporitic Messinian 

succession (Vinco’s Calcarenite-VNI). Then, the outcrops are 

represented by the following lithotype Units: pelite, matrix 

enclosing quartzarenite, arkose and limestone–Unit(1); marine-

transitional pre-evaporitic pelite, limestone–gypsum unit, and 

coarse-grained alluvial-fan conglomerates–Unit(2), and sandy 

shallow-marine to continental progradational–Unit(3) (Sheet 
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CARG 590 “Taurianova” of the Geological Map of Italy at 

1:50.000 scale; Cavazza et al., 1997; 2005). Regarding to the 

study area, the Production Units (PUs) are located in a north-

south exposed area sheltered from sea winds by east ridges and 

characterized by several varieties of grape-vines implantation 

such as the Greco Bianco and the Greco Nero. According to the 

Calabrian Soil Chart, in the area of interest occur soil such as 

Cambisol, Calcisol, Luvisol, Regosol and Vertisol (Carta Dei 

Suoli Della Calabria - Scala 1:250.000). About the climate 

conditions, the Csa class (Hot Summer Mediterranean Climate) 

occurred, where summers tend to be hot and dry while winters 

relatively mild (Köppen, 1936). The annual averages of 

temperature, precipitation, and evapotranspiration measure 18.4 

°C, 61.2 mm, and 87.3 mm respectively (ARPAC, 2022) 

According to the Soil Map of Calabria (1:250000 scale), the 

study area concerns to the Soil Region 62.3, which includes 

alluvial and coastal plains. In details, the study area lies in the 

Soil Subregion 8, which is related to the Hilly environment of 

the Tyrrhenian slope, characterized, at elevations below 300 

m.a.s.l., by moderately steep to steep slopes (6-35%). On turn, 

the previous Soil Subregion is subdivided by three soil units 

such as (1) slopes with different acclivity, (2) old terraces and 

(3) alluvial/colluvial deposits. Thus, in the study area occur the 

Soil Sub-System units 6.3 and 6.6, those correspond to 

landscapes with hummocky hills morphology with pelitic/silty 

deposits of Pliocene (Figure 1) and miocenic chaotic pelites.  

 

 
Figure 1. This image represents the Soil Typological Units (STUs) 

that characterize the Gerace study area (6.3 and 6.6). 

 

Soil parent materials appertain to Pliocene and Quaternary 

sediments, exhibiting the absence or presence of carbonates, 

sub-acid to alkaline pH, and fine to coarse textures. 

According to this, cartographic unit 6.3 is constituted by the 

following soil typological units (STUs): 

• VIA_1: Ap-BCg-Cg, thin to moderately deep profile, no 

coarse fragments, fine texture, strongly alkaline, strongly 

calcareous, medium to high-water capacity, and slow drainage 

[Haplic-Gleyic Regosols]. 

• SAL_1: Ap-Bw-BCg-Cg, moderately deep profile, no coarse 

fragments, fine texture, alkaline, strongly calcareous, high-water  

capacity, and medium drainage [Haplic Calcaric Cambisols]. 

• GUA_1: Ap-Bk-Ckg, deep profile, no coarse fragments, fine 

texture, alkaline, strongly calcareous, high-water capacity, 

medium drainage, and medium tendency to crack during the dry 

season [Haplic Calcisols]. 

The cartographic unit 6.6 is constituted by the following STUs: 

• CAO_1: A-BC-Cg, thin profile, from common to frequent 

coarse fragments, fine textures, alkaline to strong alkaline, 

slightly saline, low water capacity, and slow drainage [Calcaric-

Hyposodic Regosols]. 

 

2.2 Instrumentation 

2.2.1 Satellite 

A programmed acquisition of WorldView3 satellite 

multispectral image is used for the study area investigation, 

concerning a spatial resolution of 1,24 m. The radiance data 

have been converted into reflectance during the operations in 

the atmospheric correction, applied through the ENVI® 

FLAASH module. However, spectral characteristics present a 

complex mixture of radiometric contributions among which can 

deriving, for example, from vegetation, shadows, environmental 

factors, colour and soil moisture. The data was processed in 

QGIS ambient, an open-source program that allows calculations 

and thematic maps elaboration. By using satellite images, 

Salinity Index 2 (SI2) and Brightness Index 2 (BI2) were 

computed in order to take into account the characteristics of soil 

and to obtain thematic maps. 

 

2.2.2 UAS 

Simultaneously with satellite acquisition, flights were carried 

out using Unmanned Aircraft System (UAS), in order to obtain 

different categories of information. So, overflights were carried 

out using a DJI Phantom 4 drone equipped with a Parrot 

Sequoia+ sensor that provide reflectance measurements. De 

facto, the Parrot Sequoia+ system concerns four multispectral 

sensors (Green, Red, Red-Edge, NIR) and a RGB camera, with 

a spatial resolution of 4 cm and 1 cm respectively. The use of a 

high resolution RGB camera made it possible to process the 

data in order to create a reference orthophoto, 3D models, and 

Digital Elevation Models (DEMs). About the multispectral 

sensor, green, red, red-edge, and near-infrared bands are 

characterized by the central wavelength corresponding to 550, 

660, 735, 790 nm, respectively. Spectral resolution corresponds 

to 40 nm for Green, Red and Near-Infrared Bands, instead 10 

nm for the Red-edge band. The focal length is 3.98 mm, the 

image size 1280 x 960 pixels, and the sensor size corresponds to 

4.8 x 3.6 mm. Primarily, spectral calibration occurs with high 

reflective ground panels, secondly, through a sunshine sensor 

within the camera that can directly records and corrects the 

illumination information of each image. The flight mission was 

conducted with the following flight parameters: (a) flight 

altitudes (30 m.a.s.l.); (b) 80% front/side image overlap ratio; 

(c) flying speed 5 m/s. 

 

2.3 Data processing 

Photogrammetric data were processed in Agisoft Metashape 

version 2.0.1 (Agisoft LLC., St. Petersburg, Russia). So, from a 

set of overlapping images with the corresponding referenced 

information, a georeferenced dense point cloud was obtained. A 

dataframe was processed and analysed through algorithms 

integrated on Geographic Information System such as the 

Quantum GIS (QGIS) version 3.18.3 and ENVI version 5.3.1. 

Furthermore, statistical data were elaborated with R software 

(open-source), from which is used the following shared package 

in the CRAN (Comprehensive R Archive Network) platform: 

“PerformanceAnalytics".  
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Table 1. List of spectral indices used in this paper for soil 

monitoring (B1 = Blue band; B2 = Green band; B3 = Red band, B4 

= NIR). 

 

In this study, the spectral indices were extracted from UAS 

derived orthophoto and UAS/satellite derived multispectral 

images. Spectral indices, listed in table 1, are based on remote 

sensing RGB/multispectral images, that are characterized by 

different spatial resolutions. The ExG spectral index is useful to 

create, firstly, a classification layer that can be suitable to 

separate soil from vegetation. Regarding the UAS data 

processing, by using ExG it was possible to isolate soil from 

vegetation by using the combination with a threshold layer, 

according to the studies related on the Otsu threshold value 

(Otsu, 1979). Hence, a threshold layer of soil was obtained 

through the raster calculation function, imposing values lower 

than 0.025 as characteristic of soil matrix. Finally, the Salinity 

Index (SI), Brightness Index (BI), Salinity Index 2 (SI2), and 

Brightness Index 2 (BI2) were used to highlight the 

homogeneous areas distribution along PUs (Figure 4). 

Instead, radiometric data have been elaborated through 

stationary stochastic non-deterministic processes assuming 

normally distributed data (Matheron, 1963). According to this, 

the Ordinary CoKriging (OCK) method is chosen for the 

elaboration and spatialization of data, calculating automatically 

parameters through simulations. Then, OCK is a variation of the 

ordinary Kriging method, useful when there are close 

relationships between the spatial distributions of various known 

parameters (Aumond et al., 2018). This method concerns the 

determination of an empirical semivariogram, related to the 

spatial relationship dependences among primary data 

(autocorrelation) and primary to secondary variable (cross-

correlation) (Myers, 1982). Semivariograms occur to measure 

unknown points, to fit models and to represent predicted data 

values. OCK model includes cross-validation of data, involving 

in the removal of each single sample point from the dataset and 

the consequent re-estimation of their values (Li et al., 2011). 

 

2.3.1 Equations 

To manage UAS and satellite data about topsoil, radiometric 

data extraction takes place. De facto, according to the equation 

(1), interpolation of points data and the nearest pixels through 

1.5- and 3-meter circle buffer occurred (UAS and satellite 

respectively) , with the aim to remain consistent in relation to 

the field location accuracy. 

 

zμ*(x0)=μij(xn)                                                              (1) 

where  zμ*(x0) is the matrix derived from the buffering 

operation for the point (x0), containing the mean (μ) 

values related to each j-indexed parameter for each 

point (xn) and each i statistical unit. 

 

Consequently, according to Douaoui et al. (2006), correlation 

and calibration between UAS and satellite parameters related to 

the topsoil permit us to obtain a new salinity soil retrieval index. 

Indeed, through a statistical approach (regression and 

significance of the model), the correlation analysis between 

radiometric data (SI, BI, SI2, BI2) are employed in this study, in 

order to refine and raise the accuracy and trustworthiness of data 

acquired by satellite (Figure 2). Then, by means of simple 

regression method (SR) and calibration method (CL), in the 

following equations (2 and 3) are represented the retrieved 

spectral indices (RSIndex) as independent variable and ground 

data as dependent variable. 
 

z*SR(s0) = f [RSIndex(s0)]                                                         (2) 

where  z*SR(s0) correspond to the value of the simple 

regression for the point (s0), f is the regression 

function and RSIndex is the value of the spectral 

index for the point (s0). 

 

Finally, through the equation 3, a new spectral index will be 

obtained thanks to calibration operations between UAS and 

RSIndex data. 

 

z*CL(s0)=0.61x+0.10                                                                 (3) 

where  z*CL(s0) is the calibrated RSIndex radiometric data 

obtained through the correction with UAS radiometric 

measurements by using linear correlation operations. 

 

3. RESULTS AND DISCUSSION 

 

BI 

rgb 

SI 

rgb 

BI2 

mlt 

SI2 

mlt 

BI2 

wv 

    SI2 

    wv 

0,53891 0,17437 0,23058 0,07705 0,15258 0,15620 

0,52820 0,17345 0,24732 0,26466 0,23611 0,24341 

0,75405 0,29154 0,29834 0,32216 0,28895 0,30633 

0,47337 0,12840 0,27742 0,28895 0,27051 0,27554 

0,63322 0,23740 0,26283 0,27477 0,24388 0,25256 

0,88689 0,44919 0,27317 0,30150 0,31258 0,33378 

0,69895 0,30443 0,31135 0,34148 0,26949 0,28368 

0,53791 0,17139 0,30013 0,31343 0,2748 0,28409 

0,67144 0,24291 0,26413 0,27579 0,24411 0,25154 

0,69954 0,24953 0,23050 0,24866 0,2418 0,25224 

0,64793 0,20934 0,27533 0,30251 0,26591 0,28201 

0,83704 0,38521 0,27132 0,29239 0,28851 0,30251 

0,57685 0,19661 0,26285 0,27856 0,25427 0,26324 

0,82444 0,39211 0,33165 0,35853 0,31793 0,33952 

0,78739 0,33382 0,27085 0,28718 0,27450 0,28530 

0,82734 0,37577 0,26976 0,29054 0,26778 0,27974  

 

ANOVA regression statistics 
Observations 16 

Multiple R 0,90 

R square 0,80 

Adjusted R square 0,80 

Standard Error 0,02 

p-value 0,3E-05 
 

Table 2. Summary output of regression statistics. rgb=UAS-RGB 

data (1cm spatial resolution); mlt=UAS multispectral data (4cm 

spatial resolution); wv= WorldView multispectral data (1.2m 

spatial resolution). 

 

Observations between UAS (RGB and multispectral) and 

satellite data have been established, firstly, through a statistical 

method and, consequently, through a geostatistical approach. 

The best fitting between radiometric data occur between the 

SI2_mlt and SI2_wv indices. By using the R-Studio software a 

correlation matrix of the dataset in Table 2 is obtained. The 

plots in figure 2 are the results of a correlation between each 

statistical index (SI, BI, SI2, BI2). Furthermore, thanks to the 

assessment of descriptive and inferential statistical indices, such 

Indices Equation Ref. 

Excess Green (ExG)  [Rouse et al., 1974] 

Salinity Index (SI)  [Douaoui et al., 2006] 

Brightness Index (BI)  [Escadafal, 1989] 

Salinity Index 2 (SI2) 
 

[Douaoui et al., 2006] 

Brightness Index 2 (BI2)  
[Khan et al., 2001] 
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as the linear correlation degree (r), the determination coefficient 

(R2) and the significance degree (p-value), it was possible to 

establish that SI and SI2 spectral indices are the more relatable 

parameters regarding the highest values of r, R2, and p-value 

(Figure 2). Indeed, as shown in table 1, the following values 

occur: 0.90, 0.81 and 0,3E-05 respectively (Table 2). 

 
Figure 2. This image represent the results of correlation operation 

between the spectral indices by using the R package 

PerformanceAnalytics. 

 

 

Figure 3. Visualization of the linear correlation line between SI rgb, 

SI2 mlt, and SI2 wv spectral indices. 

 

Salinity map, obtained by the application of equations (2-3) and 

statistical approaches (Figure 2 and 3), serves to identify 

homogeneous areas along the topsoil surface. This kind of 

approach can permit to manage agronomical practices through 

the knowledge of homogeneous areas distribution. In figure 4 is 

shown a simple categorization of the area derived by the 

relation of radiometric data from UAS (RGB and multispectral) 

and satellite survey. According to this, the obtained spectral 

index z*CL (Table 3 and Figure 4) shows patches with high 

values in the west-southern part of the PUs of our interest, 

following a N-S oriented pattern, where lowest values 

characterize the north-eastern part of the parcel in exam. 

Finally, a OCK prediction map along PUs represents the 

spatialization of the radiometric spectral index z*CL, obtained 

from rectification with RGB/multispectral UAS acquisitions 

and WorldView3 satellite imagery. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 3. Dataframe related to the new correlate spectral index 

obtained by statistic operations. 

 

The prediction map has been obtained from a statistical and 

geostatistical approach as the Ordinary Cokriging method. As is 

shown in the figure 4, two main soil homogeneous areas are 

noticeable, concerning variability on salinity content from low-

medium to high-medium quality. In the end, the results can be 

useful for manage agricultural practices in PA, using further 

correlation between the obtained soil thematic map and eventual 

thematic maps related to the main vegetation parameters’ 

characteristics. 

 

Figure 4. Visualization of OCK prediction map representing the 

study area. The spatialization of the obtained spectral index z*CL 

occurred from UAS and satellite data (SI rgb, SI2 mlt, and SI2 wv 

spectral indices).  

 

4. CONCLUSION 

This study deals with soil salinity mapping and monitoring, 

based on RGB/multispectral UAS and satellite images. The 

findings of this study prove that different technologies, such as 

UAS and satellite, have a good degree of correlation. According 

to this, it has been possible to calibrate the pixel matrix (1.2 

meter of spatial resolution) from the satellite with the high 

resolution pixel matrix acquired from UAS (1 to 4 cm of spatial 

resolution). Consequently, by data correlation/calibration 

operations, a more accurate satellite image was obtained. 

Indeed, a good data processing of remote sensing data can be 

fundamental to pilot in-situ soil sampling campaign as 

preliminary analysis for the detection of topsoil variability along 

land parcels. This study highlighted that SI and SI2 spectral 

indices may be used to enhance the saline patches along PUs, 

since best coefficient of correlation (R2 = 0.81) between 

different resolution images from UAS and satellite occurred. 

Thus, a calibration model and spatial map of salinity has been 

ID  z*CL  

14 22 0,148632 0,270459 

15 23 0,263637 0,253829 

16 24 0,298884 0,286839 

17 27 0,278526 0,280635 

18 29 0,269834 0,272157 

19 30 0,28622 0,321179 

20 31 0,310727 0,277441 

21 32 0,293533 0,279501 
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obtained with the aim to divided PUs into two homogenous 

areas on which an agricultural practises management can be 

applied. In the end, from this study is concluded that UAS data 

can support an extend spatial soil detection along land parcels 

by satellite imagery, with the aim to constitute a dataset of soil 

salinity useful for soil scientists, agronomists and farmers. 
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