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ABSTRACT: 

Recently, the rapid development of new laser technologies has led to the continuous evolution of mobile laser systems, resulting in 

even greater capabilities for transport infrastructure. However, the market offers numerous MLS systems with varying specifications 

for global navigation satellite systems (GNSS), inertial measurement units (IMU), and laser scanners, which can result in different 

accuracies, resolutions, and densities. In this regard, this paper aims to compare two different MLS system, integrated with different 

GNSS and IMU for mapping in road and urban environments. The study evaluates the performance of these sensors using different 

classifiers and neighborhood sizes to determine which sensor produces better results. Random forest was found to be the most 

suitable classifier with an overall accuracy of (91.81% for Optech and 94.38% for Riegl) in road environment and (86.39% for 

Optech and 84.21% for Riegl) in urban environment. In terms of MLS, Optech achieved the highest accuracy in the road 

environment, while Riegl obtained the highest accuracy in the urban environment. This study provides valuable insights into the 

most effective MLS systems and approaches for accurate mapping in road and urban infrastructure. 

* Corresponding author 

1. INTRODUCTION

Rapid advancement in mobile laser scanners (MLS) have 

attracted considerable interest in transport infrastructure, as they 

allow for establishing a 3D digital representation of complex 

environment, making it efficient to capture data with high 

accuracy and point density. The MLS system comprises a laser 

scanning sensor, global navigation satellite system (GNSS), 

inertial measurement unit (IMU), and other additional 

components such as cameras and distance measurement 

instruments (DMIs). Although there is growing research into 

the use of the MLS point clouds to classify road features, there 

are still many challenges. MLS generates large amount of data 

with high densities. The density and intensity of MLS point 

clouds often fluctuate in space from the distance between laser 

scanner mounted on a moving platform and the target (Wen et 

al., 2019). Thus, making it difficult to extract useful information 

because of noise, variation in densities and occlusions. 

Therefore, applying the 3D MLS point cloud data in urban 

environment is challenging in terms of processing and 

automatic classification (Xiang et al., 2018) . 

Supervised machine learning has shown great promise in the 

field of road object classification. This approach involves 

training a machine learning model on labeled data, allowing it 

to learn to recognize different road objects based on their 

features. The model can then be used to classify objects in new 

data, providing quick and accurate analysis of the road 

environment. 

Recent studies have demonstrated the effectiveness of this 

approach in accurately classifying road objects, highlighting its 

importance for improving road safety and maintenance. For 

example, in a study (Yadav et al., 2022) proposed a machine 

learning-based approach using random forest to identify pole-

like objects (PLOs) in mobile laser scanning (MLS) data of 

roadway scenes. The approach was tested on two MLS datasets 

with simple and complex PLOs, achieving an average 

correctness and completeness of 97.67% and 97.79%, 

respectively, indicating its potential for use in roadway 

inventory-related studies. 

Moreover, (Mohamed et al., 2021) employed machine learning 

algorithms for mobile LiDAR data classification. The method 

involved using a cylindrical neighbourhood selection approach 

to determine the contextual surroundings of each point, 

followed by deriving a set of geometric point features that 

included geometric, moment, and height features. Three 

different machine learning algorithms, namely Random Forest, 

Gaussian Naïve Bayes, and Quadratic Discriminant Analysis, 

were utilized for classification purposes. Additionally, another 

study (Mohamed et al., 2022) by same authors  extended this 

approach by introducing a novel point feature, which along with 

other features, was utilized as input for a Random Forest 

classifier. The method achieved an accuracy of 95.23% and 

demonstrated the effectiveness of the new point feature. A 

recent study in (Balado et al., 2023)  test ML classification in 

point cloud data by modifying search criteria. They used the 

Klemperer Rosette to extract 14 features from 3D shapes and 

tested with a Random Forest classifier in MLS data. The results 

suggest that the feature extraction based on a fixed radius of 25 

cm performs better than the Rosette with a 25% better f-score 

and a shorter processing time. 

The state-of-the-art in machine learning for point clouds focuses 

to extract meaningful features and patterns from raw point cloud 

data. One important aspect of this approach is determining the 

appropriate neighborhood size for processing points in a point 

cloud. Some studies (Demantké et al., 2012; M Weinmann et 

al., 2015)  have explored the impact of neighborhood size on 
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the performance of machine learning algorithms for point 

clouds. For instance, a study (M. Weinmann et al., 2015) 

proposed effective method to collect multiple neighborhoods of 

optimal size at varying scales to allow for multi-scale feature 

representations. Another study (Atik et al., 2021) assessed 

various machine learning techniques to classify data at different 

scales. They utilized a spherical neighborhood approach to 

create areas with different radi at each point. 

 

Upon review of the literature, it has been found that there has 

been a lack of studies that specifically compare commonly used 

mobile laser scanners on different environments. Despite the 

increasing popularity and widespread use of these devices in 

various applications, such as mapping, surveying, and 

environmental monitoring, there has not been enough research 

that directly compares their performance and capabilities. 

Overall, Mobile laser scanners depend on sensor orientation, 

which is obtained through a combination of GNSS, IMU, and 

occasionally odometry information (Jende et al., 2018) . These 

variations in these sensors can lead to differences in accuracy, 

resolution, and point cloud density. Thus, understanding how 

these different sensor characteristics affect the final accuracy of 

the point clouds is crucial. 

 

Secondly, the selection of a study area is an important factor to 

consider when conducting a mobile laser scanning (MLS) 

study. It is widely acknowledged that MLS systems can perform 

differently depending on the environment in which they are 

used. Specifically, MLS systems may exhibit varying 

performance in urban and road environments due to differences 

in the surrounding structures and traffic patterns. Thus, it is 

important to carefully consider the study area when designing 

an MLS study. This gap in the literature is significant as it limits 

the ability of researchers and practitioners to make informed 

decisions when selecting a mobile laser scanner for their 

specific application or project. As such, there is a need for 

further studies that focus on comparing the commonly used 

mobile laser scanners to provide a comprehensive evaluation of 

their strengths, weaknesses, and suitability for different types of 

applications. 

 

In this regard, the main objective of this paper is to conduct 

comparative analysis of the effectiveness of two commonly used 

MLS sensors in road and urban environments. Specifically, the 

study aims to evaluate the performance of these sensors based 

on different classifiers and varying sizes of neighborhood, with 

the ultimate goal of determining which sensor can produce 

superior results for mapping in such environments. By 

rigorously assessing the performance of these sensors, the study 

aims to provide valuable insights into the most effective sensor 

and approach to employ for accurate mapping in road and urban 

infrastructure. 

 

2.  MATERIALS 

This research study involved collecting data from two different 

environments, namely the road and urban environments, using 

two mobile laser scanning (MLS) systems, Optech Lynx (Home 

| Teledyne Geospatial, n.d.) and Riegl VUX-1HA (RIEGL -

 RIEGL Laser Measurement Systems, n.d.). The study was 

conducted in Vigo, Spain, with the data being collected at 

normal speeds of 50 km/h for the road environment and 30 

km/h for the urban environment. The road environment 

comprised guardrails, marking lines, and surrounding 

vegetation, while the urban environment encompassed roads 

and predominantly built-up areas. The Riegl VUX-1HA and 

Optech Lynx are two commonly used MLS systems in the road 

infrastructure industry. These scanners differ in their 

specifications and performance, which can impact the density 

accuracy of the collected data. The Riegl VUX-1HA is a 

lightweight scanner with high accuracy and a maximum range 

of up to 420 meters, capable of acquiring data at a maximum 

rate of 1,000,000 points per second with range precision of up 

to 3 mm. In this experiment, Riegl VUX-1HA is incorporated 

with Trimble Zephyr 3 Rover GNSS. On the other hand, the 

Optech Lynx is a medium-range scanner with a maximum range 

of up to 200 meters, range precision of up to 8 mm, and a 

maximum data acquisition rate of 500,0000 points per second. 

It is also integrated with Applanix POS LV 520, which consists 

of an IMU with a 2-antenna heading measurement system 

(GAMS). The details of the sensors used are tabulated in Table 

1. 

 

 

Table 1. Technical specifications of sensors used. 

 

3. METHODS 

The methodology as shown in Figure 1 is divided into three 

stages. Firstly, to comprehend how the local neighborhood's 

size affects the classification results, eight distinct K-nearest 

neighborhood parameters are calculated. Secondly, different 

features are estimated according to the study (Martin Weinmann 

et al., 2013), including linearity, planarity, scattering, omni 

variance, anisotropy, eigentropy, and change of curvature. 

Additionally, local point density is also calculated from 

different neighborhood. Lastly, three supervised machine 

learning classifiers are analyzed in this paper, namely: Support 

vector machine (SVM), Random Forest (RF), and Neural 

Network (NN). 

 

 Riegl VUX-1HA Lynx Optech 

Range (m) 420 200 

Field of view 360° 360° 

Range precision (mm) 3 8 

PRF (pulse repetition 

frequency) (kHz) 
300–1000 75-500 

Scan frequency (Hz) 10–250 80-200 

Wavelength (nm) Near infrared NA 

Maximum pts/s 1,000,000 500,000 
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Figure 1: Proposed methodology of the study 

  

3.1   Neighborhood determination 

Neighborhood search method is defined as the predetermined 

scale around each point. The neighborhood size refers to the 

radius or distance around each point that is used to gather 

information about its surroundings. Different neighborhood 

sizes can be used depending on the specific task or application. 

KNN method is defined as the nearest k number of points to the 

point of interest x according to the Euclidean distance.  To 

comprehend how the local neighborhood's size affects the 

classification results, eight distinct K-nearest neighborhood 

parameters (25, 50, 75, 100, 125, 150, 175, and 200) are 

calculated. 

 

3.2 Feature extraction 

In order to distinguish the different classes in road and urban 

environment, eight different features were estimated according 

to the study (Martin Weinmann et al., 2013), including linearity, 

planarity, scattering, omni variance, anisotropy, eigentropy, and 

change of curvature. Also, local point density was calculated 

from different neighborhood.  

 

 

(1) 

 

(2) 

 

(3) 

 
(4) 

 

(5) 

 

(6) 

 

(7) 

 

(8) 

 

3.3 Classifiers 

Three supervised machine learning classifiers are analyzed in 

this paper, namely: Support vector machine (SVM), Random 

Forest (RF), and Neural Network (NN). 

 

3.3.1 Support vector machine: Support vector machine (SVM) 

(Yang & Dong, 2013) is based on finding a hyperplane that 

separates the data points into different classes. The hyperplane 

is chosen such that it maximizes the margin, which is the 

distance between the hyperplane and the closest points from 

each class. These closest points are called support vectors. 

 

3.3.2 Random Forest: Random Forest (Breiman, 2001) is an 

algorithm that can learn from data and is useful for both 

classification and regression problems . The algorithm works by 

creating multiple decision trees, each trained on a different 

subset of the data, and then combining the predictions from all 

of these trees to generate a final prediction. Each tree is trained 

using a random selection of the available features, which helps 

to prevent overfitting and improve the accuracy of the final 

predictions. 

 

3.3.3 Neural Network: In this study we applied the two-layer 

Bilayered Neural Network. A bilayered neural network is a type 

of neural network that consists of two fully connected layers. In 

this architecture, the first layer has a size of 10 neurons, and the 

second layer also has a size of 10 neurons. The activation 

function used in this network is the Rectified Linear Unit 

(ReLU), which is a popular activation function used in neural 

networks. The network is trained using an iterative process, 

where the weights of the neurons are adjusted through 

backpropagation based on the error between the predicted 

output and the actual output. The iteration limit for training this 

bilayered neural network is set to 1000 iterations. 

 

4. EXPERIMENTAL EVALUATION 

The use of supervised classification methods necessitates the 

presence of labeled data, which was accomplished by manually 

labeling the point clouds through Cloud Compare. The labeling 

was carried out by choosing relevant classes based on the 

usefulness and number of points present in the road or urban 

environment. For the road environment, five classes were 

selected: road, traffic marks, guardrails, vegetation, and others 

(which encompassed cars, bus stops, and traffic signs). Six 

classes were chosen for the urban environment, including road, 

traffic marks, roadside features (such as curbs, sidewalks, and 

median strips), buildings, cars, and others (which comprised 

waste containers, pedestrians, pole-like objects, and vegetation). 

Following this, 1000 samples per category were randomly 

selected for training, while the remaining points were reserved 

for testing. The experiments were conducted utilizing a five-set 

cross-validation. 

 

Two accuracy metrics, namely Global accuracy and IoU, were 

employed to assess the effectiveness of the suggested approach. 

Equations 9-10 depict the computation of these metrics, which 

involve information on true positives (TP), true negatives (TN), 

false positives (FP), and false negatives (FN). Global accuracy 

provides overall accuracy of the model whereas IoU gives an 

indication of the model's performance for each class. 

 

 
 

(9) 
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4.1 Effect of neighborhood on global classification 

Table 2 shows the global accuracy results for three different 

classifiers - Support Vector Machines, Random Forest, and 

Neural Networks - using two MLS sensors - Optech and Riegl - 

at varying neighborhood sizes (25, 50, 75, 100, 125, 150, 175, 

and 200). The results demonstrate the accuracy achieved by 

each classifier for a specific neighborhood size and MLS 

sensor. 

When comparing the accuracy of the different models, it is 

important to consider the performance of each algorithm for 

each LiDAR sensor. Riegl outperforms Optech for all three 

classifiers, with Random Forest achieving the highest global 

accuracy for both sensors (91.81% for Optech and 94.38% for 

Riegl).  

 

In terms of the classifier's performance, Random Forest 

consistently outperforms SVM and Neural Network for both 

sensors, achieving the highest global accuracy in most cases. 

However, Neural networks also show competitive performance. 

This suggests that the complex relationships within the data 

could also be captured by the Neural Networks approach in 

road environment. 

 

The results for urban environment in Table 3 indicate that the 

Random Forest outperformed the other classifiers, consistently 

achieving the highest global accuracy for both MLS sensors at 

neighborhood size 200 (86.39% for Optech and 84.21% for 

Riegl). Neural Networks showed the second-best performance, 

followed by SVM, which consistently had the lowest accuracy 

scores. In terms of the MLS sensors, the Optech sensor 

generally outperformed the Riegl sensor, particularly in the 

larger neighborhood sizes.  

 

Global Accuracy (%) 

 SVM RF NN 

 Optech Riegl Optech Riegl Optech Riegl 

25 87.73 92.42 88.48 93.28 90.04 93.06 

50 88.52 92.61 90.12 93.74 90.18 94.01 

75 90.95 93.06 90.61 93.46 89.18 92.59 

100 89.71 93.09 90.10 93.26 88.11 92.95 

125 90.16 93.54 90.64 93.19 90.59 92.93 

150 89.00 93.32 91.81 94.11 90.80 93.57 

175 89.65 93.31 91.52 94.38 89.77 93.49 

200 91.11 93.03 91.08 94.27 89.99 93.55 

 

Table 2. Global accuracy of each neighborhood with different 

classifiers of Riegl and Optech in road environment.  

 

Global Accuracy (%) 

 SVM RF NN 

 Optech Riegl Optech Riegl Optech Riegl 

25 79.28 78.13 81.45 80.13 78.64 76.86 

50 81.01 80.73 83.92 82.17 80.17 79.30 

75 81.59 80.66 84.08 83.16 79.94 79.67 

100 82.23 81.47 85.31 83.13 82.08 80.65 

125 82.61 79.73 85.19 83.14 82.20 80.35 

150 82.30 81.36 85.99 83.61 81.36 80.25 

175 82.56 78.86 86.34 83.55 82.47 80.96 

200 82.87 80.35 86.39 84.21 81.34 79.30 

Table 3. Global accuracy of each neighborhood with different 

classifiers of Riegl and Optech in urban environment. 

 

4.2 Effect on each class and MLS 

Figure 2 and Figure 3 illustrate IoU results of each class using 

three different classifiers and neighbourhood sizes. The 

predicted results for each environment are shown in Figure 4 

and 5, respectively. The IoU results in road environment 

(Figure 2) show that the Support Vector Machine (SVM) 

achieved the highest accuracy for the classification of traffic 

marks. This suggests that SVM is effective in identifying and 

distinguishing different types of traffic marks, such as road 

signs and lane markings, from other features in the 

environment. On the other hand, for the classification of 

vegetation, Random Forest (RF) and Neural Network (NN) 

demonstrated relatively similar accuracy scores, with RF 

slightly outperforming NN. This finding suggests that RF and 

NN are both viable options for the classification of vegetation. 

RF is a powerful ensemble learning method that can handle 

complex datasets with high-dimensional feature spaces, making 

it well-suited for classifying vegetation with multiple features. 

NN, on the other hand, is a powerful machine learning model 

that can learn complex relationships between features, making 
it effective for handling non-linear and highly correlated 

datasets. 

The slight difference in accuracy between RF and NN could be 

due to several factors. One possible explanation is that RF is 

better able to handle noise in the data, which is common in 

vegetation classification tasks. Additionally, RF can identify 

important features and minimize the effects of irrelevant or 

redundant ones, which can improve classification accuracy. 

Another possible explanation is that the structure of the data 

may favor RF over NN. RF is known to perform well on 

structured datasets, while NN is more suitable for unstructured 

data. 

 

In terms of MLS comparison in road environment, Riegl 

outperformed Optech across various classes such as road, traffic 

marks, roadsides, buildings, and cars primarily due to Riegl's 

capability to capture higher density point clouds than Optech. 

Furthermore, as illustrated in Figure 4, certain sections of the 

road were misclassified as "others" due to sparse point clouds in 

those areas, resulting in lower accuracy for Optech.  

 

 

As seen from Figure 3, Random Forest (RF) attained the highest 

scores for all classes in urban environment. This finding 

highlights the effectiveness of the RF classifier in accurately 

predicting the classes. Optech demonstrates superior 

performance across all classes in urban environment, with the 

exception of the "others" class, where Riegl outperforms 

Optech. The main factor affecting the quality of Riegl data in 

urban areas is occlusions caused by vehicles and buildings, due 

to unreliable GNSS positioning. In contrast, Optech is 

integrated with high-precision orientation information 

facilitating the device's prompt responsiveness to environmental 

changes. 
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Figure 2.  IoU results of road environment with different 

classes and classifiers. 

 

 

 

 
 

Figure 3. IoU results of urban environment with different 

classes and classifiers. 

 

 
 

Figure 4. Predicted results of each classifier from Optech and 

Riegl in road environment. 

 

 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W1-2023 
12th International Symposium on Mobile Mapping Technology (MMT 2023), 24–26 May 2023, Padua, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-423-2023 | © Author(s) 2023. CC BY 4.0 License.

 
427



 

 
 

Figure 5. Predicted results of each classifier from Optech and 

Riegl in urban environment. 

 

5. CONCLUSION 

This research compared different size of neighborhood based on 

KNN method for Riegl and Optech dataset, in two 

environments, and three machine learning classifiers: Support 

Vector Machine, Random Forest and Neural Network. RF was 

found to be the most suitable classifier with an overall accuracy 

of (91.81% for Optech and 94.38% for Riegl) in road 

environment and (86.39% for Optech and 84.21% for Riegl) in 

urban environment. RF achieved high scores for each class, 

including classes with low number of samples that were 

considered non-existent for the other two classifiers in road 

environment. Regarding MLS, Optech demonstrated the highest 

level of accuracy in the road environment, whereas Riegl 

achieved the highest accuracy in the urban environment. This 

suggests that the performance of MLS systems may vary 

depending on the type of environment they are used in and the 

GNSS/IMU integrated with each MLS system. 

 

By focusing on these aspects, this paper provides valuable 

information about different MLS systems, and help readers 

make informed decisions when selecting a system for their 

specific needs. Therefore, careful attention to these aspects is 

essential for producing a comprehensive and informative study 

on the impact of different sensor characteristics on the final 

accuracy of MLS point clouds. 

 

In conclusion, the results demonstrate that the choice of LiDAR 

sensor, GNSS, IMU and classifier is critical in achieving 

accurate classification results. The appropriate classifier and 

neighborhood must be selected based on the case study and 

dataset type. The findings of this study provide important 

insights into the selection of LiDAR sensors and classification 

methods for accurate mapping in road and urban infrastructure. 
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