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ABSTRACT 

 

Mobile mapping technology has transformed the way in which we capture and map our surroundings. The widespread use of mobile 

devices such as smart phones and drones has made data collection more efficient and accessible than ever before. However, the 

image quality of this data is often compromised due to the static or motion blurs resulting from the device being stationary or moving 

during the data collection process. This can lead to a loss of information, making the data less useful. 

To address this issue, an inverse filtering or deblurring method based on the theory of least squares is examined. This method 

implements a deconvolution process in the space domain and can restore the original image with a high degree of accuracy if the 

model of the function or filter that blurred the image is known or can be established. 

The accuracy and validity of the deblurring results are presented in terms of the root mean square error (RMSE) of the differences of 

pixel intensity values between the original and de-blurred images. In tests using grey-scale aerial images of varying entropies and 

different types of blurring, the RMSE value never exceeded +/- 5 pixel intensity values. This discrepancy is due to the rounding of 

pixel values resulting from image operations. 

The deblurring method presented in this work is an adaptation and extension of a previously described process, tailored specifically 

for filtering and restoring images - particularly aerial imagery - affected by static and motion blur. This process could also be applied 

in image compression processes and techniques of transmission over digital links, where blurring filters can suppress noise and 

increase the dependence between neighbouring pixel values, thereby improving the compression ratio (CR). 

 

 

 

1. INTRODUCTION 

 

In general, deblurring an image is carried out by deconvolution 

which is a mathematical technique that can be used to undo the 

effect of a known blurring function (i.e., a kernel). The main 

idea behind deconvolution is to estimate the original, 

unobserved image, from the observed, blurred image by 

removing the effect of the applied blurring filter (Prost, 2019).  

 

Hence, if the model of the blurring function or kernel that 

corrupted an image can be modelled, the original image can be 

restored with a high level of accuracy. Deblurring a digital 

image with knowledge of the kernel that blurred the original 

image is a well-posed problem that can be approached using 

several methods. For example: 

 

Inverse Filtering: Inverse filtering is a simple method for 

deblurring a digital image with knowledge of the blurring 

kernel. It involves applying an inverse filter to the blurred 

image to restore its original sharpness. The inverse filter is the 

inverse of the point spread function (PSF) that caused the blur.  

 

The idea behind this method is that if the image was blurred by 

a known PSF, then dividing the blurred image by the PSF 

should remove the blur. However, this method is sensitive to the 

estimation of the blurring function and can result in the 

amplification of noise in the image. Additionally, the inverse 

filter may not exist, or it may not be stable, which can result in  

over-sharpening or the introduction of unrealistic details into the 

image (Gonzalez and Woods, 2017). 

 

Wiener Filtering: Wiener filtering is an extension of inverse 

filtering that takes into account the presence of noise. It uses a 

statistical model of the noise and the PSF to restore the image.  

 

 

The Wiener filter minimizes the mean square error between the 

original image and the de-blurred image, subject to a constraint  

 

on the noise level. Wiener filtering is a powerful method for 

deblurring images and is often used in image processing 

applications. This method is more robust than inverse filtering 

and can produce a de-blurred image that is free of unrealistic 

details and noise amplification (Russ and Neal, 2016). 

 

Constrained Least Squares (CLS) Filtering: CLS filtering is a 

method for deblurring digital images that uses a regularization 

term to avoid over-sharpening the image. The regularization 

term is used to constrain the solution so that the de-blurred 

image is smooth and does not contain any unrealistic details. 

CLS filtering is a more robust method for deblurring images 

compared to inverse filtering and is less sensitive to the 

estimation of the blurring function. This method can produce a 

de-blurred image that is as close as possible to the original sharp 

image while avoiding over-sharpening and unrealistic details 

(Reddy et al. 2015). 

 

Richardson-Lucy Deconvolution: Richardson-Lucy (RL) 

deconvolution is a widely used method for deblurring images 

with known PSFs. This method is based on the principle of 

maximum likelihood estimation and iteratively updates the 

deblurred image until a solution that satisfies the constraints is 

found. RL deconvolution is a fast and effective method for 

deblurring images, but it may amplify the noise in the image 

and produce unrealistic details if the iteration process is not 

stopped at the appropriate time (Solomon and Breckon, 2010). 

 

In recent years, deep learning approaches have also been 

applied to the problem of deblurring digital images. These 

methods use convolutional neural networks (CNNs) trained on 
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large datasets of blurred and de-blurred images to learn the 

mapping from blurred images to de-blurred images.  

Deep learning approaches have shown promising results for 

deblurring digital images in a variety of different scenarios and 

are able to handle complex blurring functions. However, deep 

learning approaches require large amounts of training data and 

can be computationally expensive (Koh et al, 2021; Albluwi et 

al. 2018).  

 

2. KNOWLEDGE OF THE BLURRING KERNEL 

 

It is known that blurring can be manually achieved by applying 

operations to groups of pixels. At the core of this operation is a 

convolution mask or kernel. To calculate one pixel using a 

convolution mask of size m x n, m * n multiplications, m * n - 1 

additions, and one division are needed. For example, to perform 

a 3 x 3 convolution on a 1024 x 1024 colour image, 27 million 

multiplications, 24 million additions, and 3 million divisions are 

needed.  

 

Larger convolutions, such as using kernels of 5x5 or 8x8 on 

bigger images, require even more computation. For the case of 

blurring or smoothing images the following filters are 

frequently applied: (1) Mean or average filter (2) Weighted 

average filter and (3) Gaussian filter. The reader is referred to 

Russ et al. (2016) for comprehensive details of these 

conventional image filters. 

 

In the context of this work, during blurring, the centre of the 

convolution kernel passes over each pixel in the image. The 

process multiplies each number in the kernel by the pixel 

intensity value directly underneath it (Madhuri et al, 2014). This 

should result in as many products as there are numbers in the 

kernel (per pixel). This process is condensed in Equations (1) 

and (2) below for the simplistic case of a 3x3 image represented 

by 9 pixels (i.e., p1...p9). Equation 2 only defines the filtered 

pixel C5. 

 
p1 p2 p3  a b c  C1 C2 C3 

p4 p5 p6 * d e f = C4 C5 C6 

p7 p8 p9  g h i  C7 C8 C9 

 
[C5] = (p1*a)+(p2*b)+(p3*c)+(p4*d)+ 

                   + (p5*e)+(p6*f)+(p7*g)+(p8*h)+(p9*i)          (2) 

 

The above equations show that the element at C5, which is the 

central element of the resulting filtered image, is a weighted 

combination of all the entries in the image matrix. The weights 

are determined by the values in the kernel. Similarly, the other 

elements in the filtered image are calculated by positioning the 

centre of the kernel on each boundary point of the image and 

computing a weighted sum. The output values of a given pixel 

in the filtered image are calculated by multiplying each kernel 

value by the corresponding input image pixel values. 

 

It's worth noting that even though the kernel may overlap with 

several dissimilar pixels or in some cases, no pixels at all (i.e., 

edges), the only pixel that it ultimately affects is the source 

pixel underneath the centre element of the kernel. The numbers 

inside the kernel are what influence the overall result of the 

filtering.  In other words, the kernel (or more specifically, the 

values within the kernel) determines how to transform the pixels 

from the original image into the pixels of the processed image.  

As demonstrated in the next section the kernel used to blur an 

image is conveniently used to reverse the blurring effect. 

 

3. REVERSING THE BLURRING EFFECT 

 

The method considered here employs a linear algebraic 

technique and is illustrated by using a 3x3 kernel which is used 

for blurring a given image P (with pixel intensities of 256, 100, 

80, etc.). The outcome of this blurring process is displayed in 

Figure 1(c). That is, image C. 

 

 
(a)                          (b)                           (c) 

 

Figure 1. In line with equations 1 and 2, the original image P in 

(a) is multiplied (or convoluted) using the normalized kernel in 

(b). The result of the convolution is shown in (c) that is, image 

C.  The outside edges were processes as having 0 value. 

 

The pixels of image C (83, 84, 55...etc.) are calculated based on 

Equations 1 and 2. The complete set of reduced equations 

(observation equations) for this example is given below. 

 

83 = (4p1+2p2+2p4+p5)/16 

84 = (2p1+4p2+2p3+p4+2p5+p6)/16 

55 = (2p2+4p3+p5+2p6)/16 

58 = (2p1+p2+4p4+2p5+2p7+p8)/16 

92 = (p1+2p2+p3+2p4+4p5+2p6+p7+2p8+p9)/16 

92 = (p2+2p3+2p5+4p6+p8+2p9)/16 

66 = (p4+2p5+p6+2p7+4p8+2p9)/16 

84 = (p5+2p6+2p8+4p9)/16 

20 = (2p4+p5+4p7+2p8)/16 

 

The observation equations can also be utilized in reverse to 

restore the pixels of the original image in Figure 1(a) using a 

least squares method. Therefore, in matrix form 

 

 
 

The solution of the above system has [C] representing the grey-

scale pixels of the filtered image, [p] pertaining to the required 

grey levels of the original image, and [A] being the matrix of 

coefficients. As demonstrated below, the original image is fully 

and accurately recovered. That is, 

 

 

 

                                                        

      

             

 

 

 

 

255 100 79 

29 40 161 

11 90 200 

(1) 

[p] = [ATA] -1* [ATC] * 16 
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The deblurring process outlined in this simplistic example was 

carried out using MATLAB (Gonzalez et al., 2020) and then 

applied to grey-scale images of any dimension. The following 

section includes an example of the various tests undertaken with 

images of different levels of high/low frequency details and 

inherent entropies. In summary the following steps illustrate the 

basic flow of this process: 

 

1) Input a grey scale image. 

2) Input a kernel (filter function). 

3) Convolute the input image using the kernel. 

4) Generate a system of equations for each convolved pixel   

    expression based on equation 2. 

5) Solve the system of equations in reverse to recreate a  

    reconstructed version of the original image. 

6) Output/display the reconstructed grey scale image. 

7) Compare the original image with its reconstructed    

    counterpart by subtracting said original image from the   

    reconstructed. 

8) Calculate the RMSE (Root Mean Square Error) of the  

    differences of pixel intensity values between the two images. 

9) Output the RMSE value and evaluate the level of accuracy  

    achieved. 

 

4. TESTS 

 

Following the concepts described in the previous sections, the 

image "urban.BMP" shown in Figure 2a (10002, 1 MB) was 

compressed and saved by way of the lossless .PNG (Portable 

Networks Graphics) protocol (McAndrew, 2016; Scarmana, 

2014), resulting in a storage capacity of 0.5 MB. This 

compressed image "urban.PNG" was then divided into 40 

blocks of 502 pixels each. This method of block division was 

chosen to make the computations faster (i.e., solving the system 

of observation equations). 

 

 
 

Figure 2a. The original image referred to as urban.bmp. Below 

is the kernel used to obtain the blur image in Figure 2b.  

 

 

 

 

Each block of 502 pixels was filtered using Kernel 2 given in 

Figure 2a, resulting in the image shown in Figure 2b (only a 

section is displayed to demonstrate the effect of blurring). It's 

worth mentioning that the entire blurred image only required 

0.22 MB for storage, which represents a CR of 4.5 units when 

compared to the original "urban.BMP".  

 

 
 

Figure 2b. Image 2a was filtered via an approximate and 

normalised Gaussian filter (Kernel 1). Only a section is shown 

for visual purposes 

 

The RMSE of the difference in pixel intensity values between 

"urban.PNG" and the reconstructed image in Figure 2c was +/- 

4, with a minimum and maximum difference of -6 and +8 

respectively.  

 

 
 

Figure 2c. A section of the reconstructed image by reversing 

the effect of Kernel 1. 

 

The system of equations used to solve for these 2500 pixels can 

be replicated exactly in the same way for each of the remaining 

40 blocks, with the only variation being the Cn coefficients 

which of course would have different values for each block. 

 1 4 7 4 1 

 4 16 26 16 4 

1/273 7 26 41 26 7 

 4 16 26 16 4 

 1 4 7 4 1 

Kernel 1 
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In another test, image 2a was filtered using a different kernel. In 

this case the 5x5 kernel (i.e., Kernel 2) simulated a horizontal 

motion blurring effect as shown in Figure 2d. The restoration is 

illustrated in Figure 2e. In this instance, The RMSE of the 

difference in pixel intensity values between "urban.PNG" and 

the reconstructed image was +/- 5, with a minimum and 

maximum difference of -5 and +9 respectively. 

 

 
 

Figure 2d. The original image 2a blurred using Kernel 2, which 

simulates a horizontal motion blurring effect. 

 

 

 

 

 

 

 

 

 
 

Figure 2e. The reconstructed image by reversing the motion 

blurring effect of Kernel 2.  

 

 

 

5. HOW MUCH BLUR? 

 

The amount of blur that can be applied to an image before it 

becomes irrecoverable depends on several factors, including the 

resolution of the original image, the level of detail present in the 

image, and the amount of blur applied. In general, the more 

significant the level of detail in an image, the less blur it can 

tolerate before the loss of information becomes apparent. 

Images with high levels of detail, such as landscapes or 

portraits, are more sensitive to blur than images with fewer 

details, such as solid colour backgrounds or abstract art. 

 

The resolution of the image is also an essential factor in 

determining the amount of blur that can be applied. Images with 

high resolutions contain more pixels, allowing for more detail to 

be captured. Such images can withstand higher levels of blur 

before becoming irrecoverable. On the other hand, images with 

lower resolutions are already prone to losing detail and can be 

irrecoverable even with minimal blurring (Toshiyuki et al., 

2022). 

 

The amount of blur applied is also crucial in determining the 

recoverability of an image. Small amounts of blur may not 

significantly affect the image's recoverability, while excessive 

blurring can lead to complete loss of detail. Therefore, it's 

essential to establish a balance between the amount of blur 

applied and the amount of detail lost. 

 

For the cases studied in this contribution and using the same 

kernel given in Figure 2a, it was found that applying more than 

twice the same kernel in succession would result in 

unsatisfactory restoration results (i.e., added unwanted noise 

artefacts). 

 

6. APPLICATIONS 

 

This section gives some examples of how and where image 

deblurring can and has been used in mobile mapping technology 

tasks: 

 

Mobile mapping services utilise street view images captured by 

vehicles to provide users with a complete view of a location. 

However, these images can often be blurry due to motion blur 

caused by the vehicle's movement. By applying image 

deblurring algorithms, the clarity of these images can be 

improved. 

 

Mobile-based augmented reality (AR) apps overlay digital 

information onto the real world using the camera of a smart 

phone or tablet. However, motion blur or shaking can 

compromise the quality of the camera's image, reducing the 

accuracy of the AR overlay. Image deblurring can remove 

motion blur, enhancing the accuracy of the AR overlay 

 

Mobile-based 3D mapping apps use the camera of a mobile 

device to capture images of a location from different angles, 

creating a 3D model of the environment. But if the camera is 

moving or shaking, the resulting images can be blurry and 

distorted, leading to inaccurate 3D models. Image deblurring 

can improve the quality of these images, ensuring the resulting 

3D model is accurate. 

 

To investigate the impact of motion blur on images captured 

during a mobile mapping task from an entry-level drone, a 

controlled experiment was conducted on a coastal area. The 

drone (DJI Min 3, 700p and 30 fps) was flown at an average 

altitude of 80 metres above the land, and the video camera 

 0 0 0 0 0 

 0 0 0 0 0 

1/5 1 1 1 1 1 

 0 0 0 0 0 

 0 0 0 0 0 

Kernel 2 
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mounted on it captured images accordingly at a constant speed 

(i.e., 22 Kph).  

 

Despite the drone being set on a horizontal path, sudden 

changes of perspective views along the selected path caused 

motion blur, resulting in a mostly horizontal motion blur in 

many of the captured images. To mitigate the impact of motion 

blur on the images, the least square deblurring algorithm was 

used in this experiment, and it was iteratively applied using 

Kernel 2 as shown in Figure 2a. The results of this controlled 

experiment are summarized as follows: 

 

Number of blurry images extracted from the video: 500. 

Percentage of images requiring deblurring: 80% 

Deblurring algorithm used: Least squares deblurring algorithm. 

Average processing time per image: 10 seconds. 

Success rate of deblurring algorithm: 80%. 

No. of images requiring manual touch-up after deblurring: 53. 

 

The percentage of images requiring deblurring highlights the 

impact of motion blur on images captured during a mobile 

mapping task from a drone. The least squares deblurring process 

was able to restore the sharp image from the observed blurry 

image in most cases, resulting in a success rate of 80%. Visual 

results from this test were like those indicated in Figure 2e.  

 

The average processing time of 10 seconds per image is 

reasonable. However, the relatively high number of images 

requiring manual touch-up after deblurring suggests that the 

algorithm may need to be refined or combined with other 

approaches to improve its accuracy and/or the selection of a 

more compatible kernel. A set of the de-blurred images obtained 

in this controlled test are available from the author as required 

 

7. CONCLUSIONS AND DISCUSSION 

 

In this study, the data representing original grey-scale images 

were first acquired. The pixel data was then processed using a 

blurring function that emulated a Gaussian filter with the 

objective of blurring said images. The original images were then 

restored by way of a least squares mathematical model.  

 

This reconstruction was possible because the lost details were 

still implicitly present in the filtered image. The "hidden" 

information could be restored by knowing the details of the 

original filtering function or kernel. The original image could 

not be recovered exactly because of the various logical errors 

associated rounding pixel values to the nearest integer.  

 

Tests are still required to determine the effect of other types of 

scaled filters (i.e., symmetric and/or non-symmetric filters) 

using the principles described in this work. By the same token, 

more research may determine whether small kernels could be 

applied perhaps more than once to produce a similar but not 

identical reversal effect as compared to a single pass with a 

large filtering kernel. Also, tests may be required to ascertain 

the use of a separable convolution process which would in 

principle speed the whole blurring/deblurring process. 

 

The proposed method for deblurring an image involves using 

prior information to achieve more accurate results. Reversing a 

low-pass filter by applying sharpening or high-pass kernels to a 

blurred image does not yield satisfactory outcomes. Sharpening  

operations only highlight features of an image, but do not add 

any new or original information. Additionally, blurring and 

sharpening are not true inverses, meaning that applying a blur 

filter and then trying to restore it with a high-pass filter will not 

reconstruct the original image.   

 

As a final note, the proposed technique offers a prospect for 

encoding image data into a filtered form, with the ability to 

modify the filtering effect according to different blurring 

kernels. The image can be restored and accurately recovered 

with knowledge of the initial filtering function or kernel, which 

can be readily changed and re-scaled to suit different 

requirements. A suggestion regarding the possibility of using 

this contribution as an application related to image compression 

was also presented. 
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