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ABSTRACT 

 

Forests are vital for ecological, economic, and social reasons, and adopting sustainable forest management practices is necessary. 

While traditional forest monitoring techniques provide detailed data, they are time-consuming; conversely, geomatic techniques can 

provide more detailed data for forest resource management. This study aims to assess the suitability of Mobile Mapping Systems 

(MMS) with simultaneous localisation and mapping (SLAM) technology for precision forestry purposes in challenging environments. 

We compared the performance of MMS data with Terrestrial Laser Scanning (TLS) data and evaluated the Forest Structural 

Complexity Tool (FSCT), which was developed for TLS datasets, on MMS data. The case study area is a highly sloped coniferous 

forest in the Italian Alps affected by a severe fire in 2017. Data were processed using a fully automated open-source Python tool that 

detects each tree's position, Diameter at Breast Height (DBH), and height. The validation procedure was conducted with respect to the 

TLS point cloud manually segmented. The results show that using MMS with SLAM technology is suitable for precision forestry 

purposes in challenging environments and that FSCT performs well on MMS data.  

 

 

1. INTRODUCTION 

Forests are essential resources for ecological, economic, and so-

cial reasons, and their protection and management can benefit 

from a complete understanding of tree distribution and composi-

tion. Forests (i) play a crucial role in regulating the Earth's cli-

mate by absorbing carbon dioxide from the atmosphere through 

the photosynthesis of chlorophyll; (ii) regulate the Earth's water 

supply through transpiration; (iii) protect the soil by reducing 

erosion, preventing landslides, and offering natural protection 

against rockslides; (iv) provide diverse ecosystems and guaran-

teeing biodiversity; (v) provide economic benefits both directly 

(e.g. timber production) and indirectly (e.g. tourism). These rea-

sons lead to the primary need to adopt a sustainable forest man-

agement approach to improve risk prevention, production, pro-

tection, and preservation (Siry et al., 2005). For this purpose, 

deepening and innovating monitoring, data collection, and pro-

cessing techniques are necessary. 

 

Traditional forest monitoring techniques are considered reliable, 

provide detailed data on forest conditions, and can be performed 

by surveyors relatively quickly; however, such methods are often 

time-consuming and require extensive in-situ work. Traditional 

monitoring is mainly carried out through visual inspection and 

the manual collection of data on the field, such as tree density, 

canopy size, trunk diameter (Diameter at Breast Height, DBH), 

tree height, health status (through the identification of any pres-

ence of disease and insect infestation). 

 

Developing practical tools for forest resource management, such 

as adopting geomatic techniques and producing innovative carto-

graphic products, is necessary for achieving future sustainable 

development goals (Pirotti, 2012). The acquisition methodolo-

gies can be terrestrial or aerial. While the use of Uncrewed Aerial 

Systems (UASs) is efficient for rapid data acquisition and 3D 

modelling with Aerial Laser Scanning (ALS) or through photo-
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grammetric acquisitions, it is also costly and requires careful sur-

vey planning and operator expertise; moreover, the models ob-

tained from aerial surveys often do not guarantee a complete de-

scription of the lower part of the trunk of the trees and the under-

growth. This phenomenon is even more limiting in the case of 

aerial images. At the same time, as regards point clouds, the pen-

etrating power of laser scanning technology allows the acquisi-

tion of points of the lower part partially covered by the vegetation 

above. On the other hand, terrestrial acquisitions can be static, 

commonly referred to as Terrestrial Laser Scanning (TLS), or 

mobile, using Mobile Laser Scanning (MLS). Static terrestrial 

scans can reach an accuracy of less than one centimeter, but at 

the same time, it is a more expensive technique; moreover, sev-

eral acquisitions from different observation points are necessary 

to guarantee a wide distribution of points to describe the object 

under investigation fully. On the other hand, mobile laser scan-

ners facilitate survey activities. It can work without a Global 

Navigation Satellite System (GNSS), which enables the use of a 

mobile laser scanner in environments that do not have satellite 

coverage; at the same time, the acquired point cloud has a lower 

point density, a higher noise, and an accuracy at the centimeter 

level (Hyyppä et al., 2020). Mobile Mapping System (MMS) 

with a simultaneous localisation and mapping (SLAM) technol-

ogy has been employed in several forestry studies (Liang et al., 

2018; Mokroš et al., 2021; Pierzchała et al., 2018) conducted in 

different scenarios and a comparison and performance assessing 

of several acquisition techniques were also deepened (Hyyppä et 

al., 2020). However, to the best of our knowledge, no studies 

have yet been conducted on the accuracy of MMS in particularly 

challenging scenarios. Moreover, the forest environment can be 

challenging to detect using a Mobile Mapping System. In fact, in 

these scenarios, only a few features help the SLAM algorithm 

improve the alignment (Mokroš et al., 2021). 

 

Several approaches for an automatic Individual Tree Detection 

(ITD) have been proposed in the literature. These methods have 
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been developed starting from different types of data (aerial im-

ages from drones (Belcore et al., 2020; Ferreira et al., 2020; San-

tos et al., 2019), helicopters or satellites (Lassalle et al., 2022; 

Wagner et al., 2018); aerial or terrestrial point clouds (Hui et al., 

2021; B. Yang et al., 2016; J. Yang et al., 2020), for different 

scenarios and forest types (coniferous or deciduous forests) and 

based on different approaches (point cloud-based (Krisanski et 

al., 2021; Latella et al., 2021; Ma et al., 2020)) or raster-based 

(Yuchu Qin et al., 2014; Zörner et al., 2018)). Regarding the most 

common and recent open-source algorithms for ITD, Table 1 

summarises the most important ones. 

 

Tool Data type Approach Language 

Tree detec-

tion evo 

(Mäyrä et al., 

2021) 

Airborne hy-

perspectral 

images and 

LiDAR data 

Raster-based Python 

PyCrown 

(Zörner et al., 

2018) 

LiDAR point 

clouds 

Raster-based Python 

FSCT (Kri-

sanski et al., 

2021) 

LiDAR (sen-

sor-agnostic) 

Point-based Python 

Forest Me-

trics (Shen-

dryk et al., 

2016) 

LiDAR point 

clouds 

Point-based C++ 

Individual 

Tree Extrac-

tion (Luo et 

al., 2021) 

MLS point 

clouds 

Point-based Python 

Treeseg (Burt 

et al., 2018) 

LiDAR point 

clouds 

Point-based C++ 

Table 1. Open-source algorithms developed for Individual Tree 

Detection. 

 

In this study, we performed a forest parameter extraction using a 

TLS-borne fully automated open-source algorithm at a single-

tree level with SLAM-based MMS data and compared the results 

with TLS data. The case study is located in a highly sloped co-

niferous forest in the Italian Alps, whose extension is approxi-

mately 70 hectares. Moreover, the study area has different tree 

densities, as the upper portion was thinned out just before the for-

est fire. Data were processed with the innovative fully-automated 

open-source Python tool FSCT (Forest Structural Complexity 

Tool) (Krisanski et al., 2021) developed for high-resolution TLS 

point clouds. The goal of this contribution is (i) to define whether 

the use of MMS is suitable for precision forestry purposes in 

challenging environments; (ii) to evaluate the performance of the 

FSCT tool on MMS data. 

 

The MMS acquisition was conducted with a KAARTA Stencil 2, 

while the reference point cloud was acquired with a Riegl VZ 

400i terrestrial laser scanner. The output of the processing on the 

MMS point cloud was validated with respect to the TLS point 

cloud manually segmented and deepening the accuracy in the In-

dividual Tree Detection (ITD), in the assessment of the Diameter 

at Breast Height (DBH), and the tree height (H). 

 

2. MATERIALS AND METHODS 

The case study (Figure 1) is located in a highly sloped coniferous 

forest in the north-west Italian Alps in the municipality of 

Mompantero (Turin), 45.162344N, 7.037318E, which was 

affected by a severe fire in 2017 (De Petris et al., 2020; Vacha et 

al., 2023). The extension of the area is approximately 70 hectares. 

The tree vegetation consists almost solely of dense, even-aged P. 

sylvestris stands, which present different tree densities as the 

upper portion was thinned out just before the forest fire. 

 

 
Figure 1. Study area (EPSG: 32632). 

 

For the purposes of this study, an integrated sensor system based 

on SLAM (Simultaneous Localisation and Mapping) technology 

and capable of efficiently acquiring geospatial data was used. The 

KAARTA Stencil 2 survey system is an integrated mobile 

mapping platform; it combines a portable laser scanner with a 

video camera to automatically generate 3D point clouds. The 

merits of this platform consist in its low cost and light weight, 

which enhance its manageability. The technology is versatile and 

can be adapted for use in any environment, particularly in closed 

and complex spaces or forested areas with limited or absent 

satellite visibility. The survey system includes a laser scanner, 

data processor, and camera, allowing for accurate data 

acquisition while in motion. 

 

The integrated laser scanner has a maximum range of 100 meters, 

a horizontal and vertical field of view of 360° and 30°, 

respectively, and an accuracy of ± 30mm. The feature tracker 

acquires images at a resolution of 640x360 pixels and a frame 

rate of 50 Hz. Using LiDAR and IMU data through an odometry 

and mapping algorithm, the system can produce real-time 3D 

maps of the surveyed environment. Furthermore, the SLAM 

algorithm leverages the acquired images to solve the localisation 

problem, optimise the estimated trajectory, and produce a 3D 

point cloud of the examined area. The KAARTA Stencil 2 has a 

tool specifically designed for post-processing acquired data, 

which can be done at a slower speed than the original acquisition 

speed. This can help improve point clouds' registration in cases 

where real-time acquisition may have failed. The software also 

allows configuration parameter modifications to adapt to specific 

survey environments. The instrument also includes a Loop 

Closure tool which uses various functions to improve scan 

registration and trajectory estimation coherence, correcting 

global drift errors by matching trajectory paths and enforcing 

overlap between the initial and ending points. 

 

To evaluate the accuracy of the MMS outcome, five LiDAR 

scans were acquired with the high-performance terrestrial laser 

scanner RIEGL VZ-400i. This time-of-flight laser scanner can 

capture information up to 800 meters. Thanks to its ability to 

record multiple echoes, it is particularly suitable for use in forest 

environments, as it can penetrate through the vegetation. The 

scans were then registered and georeferenced using reflective 

markers whose position was previously measured through the 

support of a topographic network. 
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Figure 2. Workflow of the paper. 

 

The workflow of the paper is illustrated in Figure 2. Section 3.1 

describes the operations adopted during the data acquisition 

phase; Section 3.2 elaborates on the pre-processing procedures of 

the point clouds; in Section 3.3, the central data processing is 

explored; finally, the strategies adopted to validate the results are 

described in Section 3.4. 

 

2.1 Data collection and pre-processing 

The surveyor followed a closed acquisition path to ensure a 

comprehensive understanding of the area under investigation. 

The acquisition process began upstream of the area and followed 

a winding path downstream until reaching the lowest point. The 

operator then retraced his steps, intersecting the outward route 

multiple times until reaching the starting point. The acquisition 

took approximately 13 minutes, covering a trajectory of around 

550 meters. Specific configuration parameters were used for data 

acquisitions optimised for vegetated environments. These 

settings include values for voxel size (0.4), point cloud resolution 

in the map file, point cloud resolution for scan matching and 

display (cornerVoxelSize equal to 0.4m, surfVoxelSize equal to 

0.8m, surroundingVoxelSize equal to 0.6m), minimum point-to-

point distance for mapping (1 m), and no restrictions on the 

planarity of motion. 

 

 
Figure 3. Point cloud acquired with the KAARTA Stencil 2 (on 

the right) and trajectory covered (on the left). 

 

Data were then post-processed with the specific tool, simulating 

a lower acquisition speed according to an adaptive procedure 

considering the registration's reliability. The Loop Closure tool 

optimised the result and ensured that the initial and ending points 

overlapped. This process took approximately 40 minutes for the 

first phase and an additional 30 minutes to optimise the result, 

ultimately generating a point cloud of roughly 160 million points. 

The resulting point cloud and trajectory are shown in Figure 3. 

A preliminary registration was carried out using the Iterative 

Closest Point (ICP) algorithm (Li et al., 2020) available in the 

software 3D Reshaper, based on pairs of equivalent points 

identified in both the point cloud and reference model; this 

procedure allows to harmonise the models from mobile mapping 

tools with reference data 

 

The reference TLS point cloud was acquired with a resolution of 

one point every 6 millimetres at a distance of 10 meters, and it 

consists of approximately 750 million points. 

 

2.2 Data analysis 

The KAARTA point cloud thus obtained was subsequently 

processed through the open-access point cloud processing 

algorithm FSCT (Forest Structural Complexity Tool) (Krisanski 

et al., 2021). The algorithm was developed using a database 

based on terrestrial laser-scanned point clouds. Still, it is declared 

effective with any type of forest point cloud regardless of the data 

acquisition methodology, as long as a high point density 

characterises it. In this study, it was decided to use the FSCT tool 

(previously introduced in Table 1) as it is one of the most recent 

and increasingly popular algorithms; moreover, some studies 

have already used it to process forest data at single-tree level with 

encouraging results (Tupinambá-Simões et al., 2023).  

The FSCT processing algorithm performs a semantic segmenta-

tion of the point cloud with a deep learning technique based on 

the Pointnet++ architecture; subsequently, the points describing 

the terrain are used to create a digital terrain model (DTM) used 

to perform point cloud filtering after segmentation. Then, the 

point cloud is subdivided into slices clustered using a hierarchical 

density-based spatial clustering to detect stems and branches 

whose points are fitted inside cylinders. In the end, the sorting 

cylinder measurements procedure into individual trees is per-

formed. Please refer to the reference article (Krisanski et al., 

2021) and the Github repository 

(https://github.com/SKrisanski/FSCT) for a more detailed de-

scription of the method. This algorithm provides several outputs 

in addition to the Individual Tree Detection; specifically, we 

mainly focused on the position, the DBH, and the height of each 

tree. 

 

The high computational demand necessary for the execution of 

the algorithm made it necessary to divide the area into five sub-

areas, which were subsequently merged again. During the subdi-

vision phase, particular attention was paid to selecting the areas 

so that the trees on the edge were entirely considered in one of 

the two areas. 

 

2.3 Data validation 

In order to evaluate the performance and accuracy resulting from 

a forest survey using a mobile mapping system, the point cloud 

acquired with the KAARTA Stencil 2 system was compared with 

the reference point cloud. The two products were compared by 

calculating the Euclidean distance between the points using the 

3D data management software 3D Reshaper. The analysis was 

conducted both on the entire point cloud and a limited portion, 

filtered to eliminate the points related to the undergrowth and 

highlight the accuracies on individual trees. 

 

Data validation of the analysis procedure was performed with 

respect to the TLS point cloud, which has been manually 

processed according to this workflow: single trees were manually 

individuated and segmented by visual interpretation of the point 

cloud; the height of the tree (expressed in terms of the elevation 

of the ground) was obtained by normalising the point cloud with 

respect to the elevation of the terrain obtained from the DTM; the 

single trees were then imported into the commercial 3D Reshaper 

software and the DBHs were measured using a circular fitting of 

the cloud points between 1.10 m and 1.50 m. Although the DBH 
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is traditionally calculated at a height of 1.3 m from the ground, it 

was decided to consider the portion mentioned above of the trunk 

to include a greater quantity of points and perform a circle fitting 

with greater reliability. The reference trees were compared with 

those automatically identified using the FSCT tool. The 

validation of the point cloud segmentation at the single tree level 

was performed with respect to the treetop coordinates, carrying 

out a spatial search for each point and matching them with the 

closest reference point within a pre-set search radius. Each 

matched tree's DBH and height values were compared, and the 

RMSE values were calculated. 

 

3. RESULTS 

3.1 Data acquisition 

Figure 4 shows the comparison results between the KAARTA 

cloud and the reference TLS cloud. 70% of the points have an 

accuracy of less than 6.3 cm, and 85% have an accuracy of less 

than 12.5 cm. The figure also shows that the points with the least 

accuracy are mainly located in the area with the most significant 

forest density. 

 

 

 
Figure 4. Complete KAARTA Stencil 2-point cloud (on the 

top) and a portion of individual trees (on the bottom). 

 

3.2 ITD and forest parameters 

Figure 5 shows the segmented MLS point cloud. Following 

validation, 86% of the trees are correctly identified and 

segmented (166 trees out of 192). Trees that were not correctly 

identified automatically (26 specimens) were excluded from 

further validations on DBH and height. 

 

 
Figure 5. Segmented MLS point cloud at the single-tree level. 

 

The distribution of the DBH and the heights is illustrated in 

Figure 6. 

 

 
Figure 6. Distribution of the Diameter at Breast Height (on the 

top) and the height (on the bottom) 

 

Parameter Value 

% Matching 86.5 % 

RMSE (DBH) 6.5 cm 

RMSE (H) 3.66 m 

Table 2. Results of the comparison between MMS and TLS 

data. 
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Comparing the automatically estimated values with those 

obtained from the cloud of reference points, an RMSE relative to 

the height equal to 6.5 cm and an RMSE relative to the height 

equal to 3.66 m are obtained (Table 2). 

 

4. DISCUSSION 

The comparison between the KAARTA cloud and the reference 

cloud acquired with the terrestrial laser scanner highlights the 

strengths and weaknesses of a mobile mapping system applied in 

forest environments. The ease of acquisition in terms of time and 

effort used to carry out the survey, and the type of post-

processing required, means that acquisitions of this type can be 

widely used in any field, even more so in more complex scenarios 

in which more operator experience is required. The automation 

of the procedure for identifying forest parameters at the level of 

a single tree imposes itself as a necessary and fundamental 

procedure nowadays to be able to make the best use of the type 

of data obtained with the laser scanner in an effective and 

efficient manner.  

 

Although the advent of LiDAR technology has led to greater use 

of point clouds in various research areas such as the one carried 

out in this study, we must not forget that radiometric information, 

on the other hand, provide colour information of objects and can 

be used to detect trees based on their visual appearance. Machine 

learning algorithms, such as convolutional neural networks 

(CNNs), can be trained on RGB images to detect trees based on 

features such as colour, texture, and shape. KAARTA Stencil 2 

does not save images (they are only used to support the SLAM 

algorithm). Still, other commercial solutions can combine point 

clouds and image data to provide more robust and accurate results 

for individual tree detection. 

 

The SLAM algorithms integrated into the KAARTA mobile 

mapping system allow acquisitions to be made in environments 

where the GPS signal is poor or absent, still obtaining a good 

point cloud registration; this is subsequently further improved 

through post-processing based on the Loop Closure tool and on 

the ICP algorithm. On the contrary, the terrestrial laser scanner 

requires markers or recognisable points for the registration of the 

clouds. This makes this type of acquisition less immediate and 

more time-consuming in the in-situ survey phase. 

 

The FSCT algorithm is one of the most recent open-source 

methods developed to automatically process high-density forest 

point clouds. Even in a complex scenario like the one analysed in 

this study, the results are outstanding; out of 192 trees, only 26 

were not identified (23.5%). From a comparison and visual 

interpretation of the reference data with the position of the 

unidentified trees, it is observed that they are mainly located in 

the lower part of the study area, where no thinning was done, and 

the forest density is higher. Regardless of the data typology used 

to generate the cloud, it is widely known that trees of different 

ages and with different heights present more significant 

difficulties in the segmentation phase due to multilayering. To 

this is added the problem intensely discussed in the literature 

related to the intersection of the crowns of trees when they are 

located at short distances or in the presence of undergrowth or 

trees of lower heights and overhung by taller trees. On these 

aspects, it would be necessary to compare the methodology 

applied in this study with that of other algorithms to try to identify 

an approach that can be generic and valid in different forest 

conditions. 

 

About correctly identified trees, The FSCT algorithm achieves 

RMSE values in line with the reference measurements for height 

(about 3 meters) and diameter (6 centimetres), which represents 

37% of the mean height value and 26% of the mean DBH value, 

respectively. Concerning the height, 37% is high but expected 

value because the top of the tree is described in a limited way due 

to the acquisition range of the KAARTA. This problem is 

discussed in the literature and is mainly solved by integrating 

aerial data (drone survey). Moreover, even the TLS reference 

data must be interpreted with caution because, since it is a 

terrestrial acquisition, theoretically, we cannot be sure that the 

identified treetop is actually that of the tree without visual 

interpretation since we do not have aerial or traditionally 

collected data (i.e., hypsometer). It should be considered that the 

mapped specimens have a high canopy insert, which is also 

scattered due to the passage of fire. In general, the KAARTA data 

tends to underestimate the heights of the reference. About DBH, 

the average error is smaller, and 6 cm can be considered 

acceptable in the forestry field; in fact, most trees have DBH 

between 15 cm and 34 cm. Another aspect to consider is that 

working on layers and cylinder fittings, the point cloud must be 

uniformly dense in the vertical development. Consequently, there 

should be sufficient points on all sides of the trunk to represent 

an adequate arc of the circumference for fitting. Therefore, the 

acquisition was made with a crossed path to collect as much 

information as possible for each trunk, and the finning on the 

cylinder is realised on 0.4m portion of the trunk (1.1 m-1.5 m). 

Similarly to what discussed for the height, also in this case DBH 

in situ measured with traditional techniques is not available. 

 

The cost of KAARTA's ease of use is paid for point cloud 

accuracy. Despite the post-processing process, which 

significantly improves the final result, the accuracy of the final 

output is affected by an error which, as described in subsection 

3.1, is less than 6.3 cm for 70% of the points. From this point of 

view, it should be emphasised that this type of error is also linked 

to the fact that the two acquisitions are not precisely 

contemporary and that the thinnest branches and leaves are 

subject to the effect of the wind, which modifies their position. 

Another problem with SLAM systems is the incorrect 

registration of clouds, particularly in natural and highly vegetated 

areas, such as the study area. Even if the data is complete, it may 

not be correctly modelled by the algorithm. However, thanks to 

the loop closure and ICP algorithm, this application found no 

significant misalignments. 

 

Evaluated 

parameters 
MLS TLS 

Time of survey Reduced times 
More extended 

times 

Ease of survey Higher Lower 

Pre-processing 
Loop Closure and 

ICP 

Topographic 

survey and 

registration 

Accuracy of the 

point cloud 
Lower Higher 

Accuracy of the 

forest parameters 
Lower Higher 

Table 3. Comparison between MML and TLS point clouds. 

 

The forest typology (species density and morphology) influences 

the data quality, whether TLS or MMS. Specifically, it must be 

noticed that the density of trees in the upper part of the study area 

is low due to thinning in previous years, and the undergrowth is 

sparse due to the 2017 fire, making manual segmentation 

activities easier than in the lower part of the area. In the latter, the 

density is higher and composed of more layers, making manual 

operations uncertain. These values align with the results obtained 
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from the automatic procedures described in the literature and 

comply with the accuracies required in the forestry sector. Table 

3 summarises the pro and cons of MLS and TLS point clouds. 

 

From this first application of the FSCT algorithm for ITD and 

forest parameter estimation, it performs outstandingly despite 

being developed for denser and different types of data while 

applied on a sparser MMS point cloud. This analysis is a first step 

of a more extensive study. More rigorous and in-depth 

investigations are needed to compare different segmentation and 

parameter estimation methods in different scenarios based on 

various data. 

 

5. CONCLUSIONS 

Forest monitoring is a highly debated topic of fundamental 

importance worldwide. However, traditional techniques are time-

consuming and do not allow an efficient estimation of forest 

parameters on a large scale. This study addresses the use of 

mobile mapping systems in forestry environments for purposes 

related to precision forestry in an automatic way. In particular, 

the validity of MMS systems in a challenging environment, with 

a high slope, heterogeneous density was investigated. 

 

The point cloud resulting from the acquisition was processed 

through the FSCT open-source tool that performs Individual Tree 

Detection and the estimation of forest parameters at the single 

tree level, and the results were compared with a manually 

processed TLS point cloud. Results are promising; the IDT 

procedure is performed with a success rate of 86.5%. Moreover, 

the values of the root-mean-square deviation on the height and on 

the DBH confirm that the use of Mobile Mapping Systems 

assisted by automatic data processing can be considered as an 

efficient innovative time-saving approach for monitoring forests. 

 

Nevertheless. further tests are needed to investigate the accuracy 

of other forest parameters (e.g. biomass) and the quality of the 

processing algorithm. Moreover, additional considerations 

should be deepened regarding the detection of the tree in its 

complete elevation extension and particularly of the treetop using 

terrestrial instruments. 
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