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ABSTRACT: 

 

Forest areas or green infrastructure have become a fundamental economic and social factor which has made it possible to generate new 

sources of employment and to maximize the use of basic resources. Nevertheless, good conservation of this type of infrastructure is a 

challenge. This is due to the problems deriving from, on the one hand, the increase of its physical scope and, on the other, poor 

management or no management at all. The Spanish region of Galicia is a historic place of natural wealth, especially concerning forest 

resources, wherein 2/3 of its territory is forest area from where more than half of the Spanish wood supply comes.  

 

This paper seeks to create a mapping of major forest fire disturbances on the Galician territory over extended periods of time. To 

achieve this, an automated multitemporal detection process based on vegetation indices and unsupervised learning is developed. The 

objective is to obtain data heterogeneity in terms of vegetation state, land use, and image properties, allowing a better understanding 

of forest land disturbances and improving their management. 

 

1. INTRODUCTION 

Green infrastructure or forest areas have been a fundamental 

economic and social factor. The New Strategy of the European 

Union recognizes the multifunctional role of this type of 

infrastructure to achieve a fully green and carbon-neutral 

economy by 2050 (European Commission, 2021).  

 

However, there is a risk associated with green infrastructure. Risk 

can be understood as (1) the hazard of a latent damaging event to 

the infrastructure, (2) the susceptibility of the elements and the 

environment, and (3) the values of the elements susceptible to 

loss (Jactel et al., 2012). The wildfires are a main risk related to 

forest, affecting both ecological preservation and the safety and 

proper development of people and countries (Haynes et al., 

2020). As a result, it is necessary to characterize, classify and 

locate the decisive aspects that boost this type of pathologies. 

 

The lack of an accurate inventory of forest fires with a broad time 

frame is one of the main problems to better understand these 

disturbances. Currently, there are platforms that make use of 

several sources of information to detect active fires and to 

determine their extent(European Forest Fire Information System 

(EFFIS); NASA EarthData Worldview). Nevertheless, the 

implementation of this type of platforms is recent. 

 

Remote Sensing Technologies are used as a method to assess 

vegetation health (Yang et al., 2022), detect changes in land use 

(Das & Angadi, 2022), classify fuel types (Labenski et al., 2022), 

and detect perimeters and severity of forest fires (Ban et al., 2020; 

Jiao & Bo, 2022). The availability of satellite images is a valuable 

tool that enables mapping and identification of forest fire areas 

with different spatial, temporal, and spectral resolutions 

(Chuvieco et al., 2019). The medium spatial resolution satellite 

imagery has shown promise for detecting burned 

areas(Hawbaker et al., 2020; Loboda et al., 2013), allowing the 
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identification of smaller objects. In addition, the use of spectral 

indices based on certain electromagnetic spectrum bands has 

been widely used by different authors to determine the severity 

of wildfires (Cocke et al., 2005; Escuin et al., 2008; Mallinis et 

al., 2018). 

 

The large availability of free multispectral images, mainly from 

the Landsat mission, which has a broad time frame, makes it 

possible to obtain multispectral images (RGB and Infrared 

spectrum) with medium spatial resolution for approximately the 

last 35 years. This wide range of data provides valuable 

information about the condition of the natural environment and 

disturbances occurring over various periods of time. 

 

In this way, Spain is among the top five European countries with 

the highest number of forest fires and burned area (European 

Commision, 2022). These fires occurred mostly in the northern 

region (López Santalla & López García, 2019). One of these 

regions is Galicia. About 2/3 of the total surface area of this 

territory is classified as forest area and where more than half of 

the Spanish wood supply comes (Ministerio para la Transición 

Ecológica, 2021). 

 

In this context, we propose a study to create a comprehensive and 

accurate dataset of forest fires, spanning a wide time frame, using 

an automatic, fast, and cost-effective procedure in terms of both 

monetary and technological aspects. Thus, allowing a rapid 

identification of forest fires (larger than 15 ha) for approximately 

the last 35 years, using multispectral satellite images from the 

free and public domain Landsat collection. The extensive 

temporal coverage of the Landsat mission makes it possible to 

cover periods of time not digitized in fire-related issues. 
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2. STUDY AREA 

The study area is located in Northwest Spain, specifically in the 

community of Galicia (Figure 1) and covers all its provinces. It 

has a total of 313 municipalities, which 194 are classified as high-

risk areas (ZAR) (Consellería do Medio Rural & Dirección Xeral 

de Defensa do Monte, 2022) in terms of forest fires.  

 

The surface layers of the provinces, as well as the layers of the 

rivers and coast, are obtained from the Spanish Center for 

Geographical Information (CNIG) (Gobierno de España: 

Ministerio de Transportes, 2020). 

 

 

 

 

 

Figure 1. Location of the study area. a) Distribution of the municipalities and Landsat footprints in the Galician community 

(coordinate system EPSG: 25829). b) Location of Galicia in the Spanish territory. c) Location of provinces in Galician community. 

 

3. METHODOLOGY  

The overall methodology developed is illustrated in Figure 2 

and consists of three phases: First, the acquisition and pre-

processing of satellite images. Second, the processing of these 

satellite images. Finally, verification and visualization of the 

resulting layers. 

 

The acquisition and pre-processing phase involves the 

generation of new images based on vegetation indices, using 

the "Normalized Difference Vegetation Index" (NDVI) or the 

"Normalized Burn Index" (NBR). 

 

In the processing phase, layers or vector formats are created 

using the files obtained in the previous step. In this phase, a 

series of masks are obtained by reclassifying the vegetation 

index values or by performing unsupervised learning based on 

K-means clustering. The objective of this stage is to obtain the 

areas of disturbance from the NBR difference between two 

consecutive images and to apply the appropriate filters to 

ensure that these differences correspond to a fire disturbance 

in the forest land. 

 

The final stage involves the verification and visualization of 

the resulting layers and their incorporation into a spatial 

database for future use. 

 

3.1 Image Pre-processing and Download 

3.1.1 Obtaining Images: Landsat satellite data are 

obtained and pre-processed using the Google Earth Engine 

(GEE) platform. The images used are those relating to the 

Footprint 204030, Footprint 204031, and Footprint 205030 of 

the Landsat-5 missions for the period 1985-2011 and Landsat-

8 for the years 2013-2021. These satellite images belong to 

Collection 2 Level-2 Tier 1. 

 

Therefore, the layers of the study area are uploaded to the GEE 

platform, which are used to upload the satellite image 

collection. A predefined GEE function is run to obtain the 

specific names of satellite images within this platform. In 

addition, a cloudiness filter is added to the collection. 

 

After the names have been obtained for the respective dates, 

the corresponding satellite images are loaded into the GEE 

platform. Subsequently, they are scaled according to the 

United States Geological Survey (USGS). 
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Figure 2. Workflow of the methodology 

 

3.1.2 Obtaining Indices: After acquiring and scaling each 

Landsat image, the respective vegetation indices are calculated 

using GEE. A vegetation index is defined as the set of 

algebraic operations performed on the reflectance values at 

different wavelengths of the image pixels, which are sensitive 

to the vegetation cover (Gilabert et al., 1997), allowing the 

identification of certain characteristics. 

 

Two vegetation indices are used. The first is the Normalized 

Difference Vegetation Index (NDVI) and the second is the 

Normalized Burn Ratio (NBR). 

 

The NDVI provides an indication of the condition and health 

of vegetation by comparing the amount of visible red light 

absorbed and the amount of near infrared light reflected. The 

NDVI is calculated using Equation (1). Its results vary from -

1 to 1, where negative values correspond to areas of high-water 

presence or artificial structures, bare natural soil usually ranges 

from 0.1 - 0.2, while plants are found in positive values 

ranging from 0.2 to 1. 

 

𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷)
 (1) 

 

The NBR makes it possible to highlight burned areas and their 

severity after a fire. It corresponds to Equation (2). A high 

value usually corresponds to healthy vegetation, while low 

values usually indicate bare ground or burned surfaces. 

 

𝑁𝐵𝑅 =  
(𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅)

(𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅)
 (2) 

 

3.1.3 Image Download: Both the previously calculated 

indices and a "stack" image consisting of the RGB bands (Red, 

Green and Blue) and the infrared bands (NIR, SWIR1 and 

SWIR2) are downloaded. In addition, another image is 

obtained with the "QA_PIXEL" band. 

 

3.2 Image Processing  

After the images have been downloaded, local processing in 

RStudio/2022.12.0 is developed to obtain perimeters through 

several masks. Three masks are obtained to filter out false 

positives. They are based on the NDVI index, unsupervised K-

means clustering of reflectance values for the red band, and the 

band named "QA_PIXEL", which provides pixel quality 

attributes. 

 

3.2.1 NDVI mask: The classification of vegetation 

presence or absence is based on NDVI values greater than 0.2. 

Pixel values are reclassified using this threshold, with values 

greater than 0.2 assigned a value of 1 and values less than or 

equal to 0.2 assigned a null value, resulting in a first binarized 

mask. 

 

3.2.2 Grouping of The Red Band by K-Means: The 

following mask is based on the use of Machine Learning. The 

K-means algorithm is a type of unsupervised machine learning 

based on the clustering of object features into "k" groups. This 

clustering is done by optimizing the sum of the distances 

between each object and the centroid of its group. 

 

The K-means algorithm is applied to the reflectance values of 

the red band (Landsat 5 = band 3 and Landsat 8 = band 4) to 

identify the location of forest structures from the satellite 

images. The red band allows the identification of different 

classes of vegetation because chlorophyll strongly absorbs 

light corresponding to the red part of the spectrum. It allows 

both greater contrast between areas with and without 
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vegetation and the identification of vegetation gradients  

(Delegido et al., 2011; Tucker, 1979). It makes it possible to 

separate the forest structures from agricultural areas. 

 

To reduce the heterogeneity of reflectance values in the red 

band, the images are first masked using the previously 

obtained NDVI mask to only include only land with 

vegetation, before executing the clustering algorithm. A 

maximum of 500 iterations are used to generate 5 classes. An 

additional class is added. It contains null values as "-9999" to 

avoid affecting the grouping of other categories. The null 

values are subsequently removed. 

 

The two clusters with the lowest reflectance value are 

identified as the possible groups to be forest and/or shrubland. 

In addition, the number of classes chosen is verified using the 

total within-cluster sum of squares or Elbow method. 

 

3.2.3 “QA_PIXEL” Band Mask: The "QA_PIXEL" band 

is a quality control band used for Landsat images. It contains a 

decimal value for each pixel representing the combinations of 

fill bits for the surface, atmosphere, and sensor state 

conditions. The bits are assigned for distinguishable objects on 

the land surface with a wide range of confidence levels. 

 

In order to use the pixel values in the quality control file, they 

must be transformed from decimal to 16-bit binary format. 

Single bits use 0 to indicate absence and 1 to indicate 

fulfilment. Double bits, such as 15-14, 13-12, 11-10, and 9-8, 

represent confidence level: 0 (none), 1 (low), 2 (medium), and 

3 (high). All possible combinations of cloudiness and its 

derivatives are obtained, and at least one double bit must have 

a medium confidence level, except for 15-14. In addition, bits 

0 and 2 are always set to 0. 

 

After a smoothing filter is run to refine the images through the 

QGIS interface. 

 

3.2.4 NBR Index Difference: The difference in NBR 

values (dNBR) between two images can be used to detect 

changes in the land surface. To calculate dNBR, the pre-fire 

NBR values are subtracted from the post-fire NBR values 

using Equation (3). The resulting set of pixel values indicates 

fire severity, with higher values indicating greater severity and 

lower values indicating regrowth after disturbance. The dNBR 

is reclassified according to severity levels, following Table 1. 

 

𝑑𝑁𝐵𝑅 = 𝑁𝐵𝑅𝑝𝑟𝑒𝑓𝑖𝑟𝑒 − 𝑁𝐵𝑅𝑝𝑜𝑠𝑡𝑓𝑖𝑟𝑒 (3) 

 

Severity Level  

 dNBR Range Normalized  

Regrowth, very high.  < -0.500 1  

Regrowth, high -0.500 to -0.251 2  

Regrowth, low  -0.250 to -0.101 3  

Unburned 

Low Severity 

Moderate-low Severity 

 

Moderate-high severity 

-0.100 to +0.99 

+0.100 to 0.269 

+0.270 to 0.399 

+0.400 to 0.439 

+0.440 to 0.479 

4 

5 

6 

6.5 

7 

 

 

 

 

 

 +0.480 to 0.659 7.5  

High Severity ≥ 0.660 8  

Table 1. Normalization used for dNBR Range. Adapted from 

USGS.  

3.2.5 Obtaining Perimeters: A combination of all 

previously obtained files is carried out to identify forest 

disturbance perimeters. 

 

The normalized dNBR images are masked using the 

previously calculated files (as described in section 3.2.2 and 

section 3.2.3). A total of three layers of masks are applied, with 

two corresponding to the pre-fire image and one corresponding 

to the post-fire image. After three types of perimeters are 

obtained. 

 

The first is the most restrictive perimeter. This perimeter 

makes it possible to obtain the starting point. It is extended to 

the rest of the pixels as long as the conditions for the area and 

the dNBR value are met. The starting condition is set for all 

values with an area greater than 0.5 ha with high severity 

(dNBR = 8) or values with an area greater than 12 ha but with 

moderate-high severity (dNBR = 7.5). The first case should be 

under the mask layer with the lowest reflectance, and the 

second case is under the two lower reflectance groups. 

 

Therefore, the previous procedure of the first case is repeated 

(initial condition of dNBR = 8) but using the results of the K-

means masking corresponding to the two lower reflectance 

groups. The two results of the first case are then intersected to 

increase the areas likely to be affected by wildfires. In both 

cases, an additional area of influence equivalent to 2 Landsat 

pixels is also used to identify the scattered pixels. 

 

In addition, the overall area of each disturbance is obtained by 

setting a minimum value of 6.5 for dNBR and a minimum area 

of 15ha. The areas that meet both conditions are extracted. 

Lastly, the final disturbance perimeters are determined by 

intersecting the restrictive perimeters calculated above with 

the last results obtained for the overall area. 

 

3.2.6 Final Classification of the Disturbance: 

 

On the identified perimeters, a clustering based on K-means is 

again performed in order to obtain those areas that belong to 

forest fires. 

 

The clustering is carried out using the NIR and SWIR1 bands. 

The K-means clustering algorithm is applied separately to each 

of these bands. Six classes are defined, one of which 

corresponds to null values (with a value of "-9999"). The 

modal value of the clustered pixels is then assigned to each 

polygon.   

 

Burned areas typically have maximum reflectance values of up 

to 0.25 for the SWIR1 and up to 0.21-0.22 for the NIR (Ling 

et al., 2015). As a result, mean pixel clusters with reflectance 

values greater than 0.25 for the SWIR and 0.21 for the NIR are 

generally not indicative of burned areas. This range limitation 

is extended to the polygons, where any group inherited from 

the K-means process that exceeds the limit for NIR or SWIR 

is classified as a non-burned disturbance. 

 

Finally, overlapping areas belonging to the same disturbance 

were identified and fixed. This overlap is due to individual 

identification of burned areas for each of the footprints in the 

common area between them. 

 

4. RESULTS 

This section shows some of the results of both the masks 

obtained and the perimeters of burned areas. As a general 
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result, a total of 12,687 perimeters of burned area greater than 

15 ha were obtained for the 3 footprints studied, as shown in 

Table 2. 

 

The following images (Figure 3, Figure 4, and Figure 5) show 

some of the results obtained for the time period from 

2017/10/05 (as a pre-fires image) to 2017/11/06 (as a post-fires 

image). This is for the 204031 footprint. 

 

The Figure 3 shows the set of masks obtained for the previous 

dNBR image. It shows the obtaining of the first mask (NDVI 

mask) as well as the two resulting masks belonging to K-

means grouping. Figure 4 corresponds to the after image and 

shows the mask extracted for the purpose of filtering clouds 

and cloud shadows. Finally, Figure 5 is the result of the dNBR 

index, such as the extraction of the two limiting perimeters and 

the total area.  

 

Footprint Name Total Number of 

Burned Areas 

 (a) (b) 

204030 4,772 4,019 

204031 5,324 5,127 

205030 2,591 2,153 

Table 2. Total perimeters identified. (a) with overlap. (b) 

with corrected overlap 

Finally, as a general result of all the processed images and the 

elimination of the overlapping layers, the total perimeters 

obtained result in 11,299 affected areas (Table2), in which the 

areas with a recurrence of burned area were identified as 

shown in Figure 6, being establishing up to a maximum value 

of greater than or equal to 3. 

 

In addition, the results obtained were overlapped with 

historical data from the Spanish Ministry of Environment, 

which provides that information upon request. This data offers 

information on wildfires over long periods of time. However, 

the geographical location of forest fires is only given as a point 

on the land and covers the period from 1999 to 2015. To 

address this limitation, a buffer was created, and overlapping 

was carried out. 

 

The results show that 73.68% of the burned areas obtained 

coincided with the Ministry data, while 40.83% of the total 

Ministry records could not be identified (as shown in Table 3). 

Moreover, if time periods without temporal continuity 

between images are excluded, such as the change from 

Landsat-5 to Landsat-8 in 2012 or the year 2002 when no 

image was available, the percentage of unidentified Ministry 

data decreases to 31.91%. 

 

Table 3. Overlap between the burned areas obtained and the 

Ministry of the Environment's forest fire records. 

 

 

 

Figure 3. Pre-fires Image Layers. (a) Landsat Image in Infrared Composition. (b) NDVI Mask. (c) Lowest Reflectance Cluster Mask. 

(d) Mask of the Two Lowest Reflectance Clusters. 

Footprint  Areas Obtained Ministry Location 

 Total Matches % Unidentified % 

204030 831 626 75.33 527 46.35 

204031 1,578 1,146 72.62 727 39.48 

205030 593 440 74.19 230 35.06 

Total 3,002 2,212 73.68 1,484 40.83 
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Figure 4. Post-fires Image Layer. (a) Landsat Image in Infrared Composition. (b) “QA_PIXEL” Band Mask. 

 

 

Figure 5. Resulting Layers. (a) dNBR Reclassified according to Severity Levels (Table 1). (b) dNBR Values meeting the Conditions 

(Section 3.2.5) (c) Limiting Perimeters. (d) Total Area of Perimeters. 
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Figure 6. Location of burned area with its recurrence. 

 

5. DISCUSSION  

The use of satellite imagery for detecting burned areas by 

forest fires has become increasingly popular in recent years. 

This is due to its advantages of wide spatial coverage and the 

ability to obtain data frequently. In this paper, we proposed a 

novel method to obtain a real forest fire dataset during broad 

periods of time in an automated way. This approach, in 

contrast to other studies, without prior knowledge of the 

existence or location of disturbances on the ground. 

 

All results were visually verified, identifying that in certain 

cases there were forest disturbances not identified in the 

records or forest fire points registered in lands not suitable for 

fire, such as urban areas or bodies of water. This may possibly 

be due to an error in the geolocation of official records, or the 

existence of prescribed burns not registered in official data as 

a fire but identified with this methodology. 

 

Moreover, the possibility that not all fires that occurred during 

the analyzed period were identified is due to the limited 

availability of images in certain years. The unavailability of 

images due to several reasons, such as the change from 

Landsat-5 to Landsat-8 platform or certain sensor failures 

during image acquisition, results in long periods of time 

without image availability. This limitation reduces the ability 

to observe and delimit burned areas, as over time after the fire, 

the burned signal weakens due to vegetation recovery or ash 

removal (Melchiorre & Boschetti, 2018). This situation may 

cause some fires to go unnoticed. 

 

Similarly, another important error is occlusion error, which is 

mainly caused by cloud cover that prevents the land surface 

from being seen in satellite images. Cloud cover can hinder the 

detection of burned areas and reduce the accuracy of their 

delineation, leading to errors in the dataset. 

 

However, this methodology made it possible to obtain a 

dataset covering a broad time period, which allowed the 

heterogeneity of the data in terms of vegetation condition, land 

use, and image properties.  

6. CONCLUSIONS  

A methodology based on the automated processing of satellite 

images was developed to map forest fires larger than 15 

hectares in Northwest Spain over the past 35 years. According 

to the results, 11,299 affected areas were identified.  

 

The code was developed in R for image processing, which 

allowed to reduce mapping times and extra technological cost 

is practically null and typical of any digital user. Through the 

use of a personal computer (HP Intel Core - i7, 16Gb RAM, 

1Tb SSD), we were able to process a large amount of satellite 

images of the last 35 years in order to delimit the burned areas. 

 

Furthermore, the application of unsupervised learning based 

on K-Means clustering allowed us to quickly mask those areas 

not belonging to forest vegetation itself. The optimal number 

of classes for each image was obtained using Elbow method. 

 

Obtaining and creating large datasets of forest fires is a 

suitable tool to build algorithms based on deep learning 

techniques for the automatic detection of these burned areas. 

To achieve this goal, data heterogeneity is essential. Future 

trends consist of the use of deep learning techniques that allow 

the automatic detection of historical burned areas. 
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