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ABSTRACT:

Indoor Unmanned Aerial Vehicles have often been tasked with performing SLAM, and the sensors most used in literature and
industry have been cameras. Spanning from stereo to event cameras, visual algorithms have often been the de facto choice for
localization. While visual SLAM has reached a high level of accuracy in localization, accurate map reconstruction still proves to
be challenging. Meanwhile, LiDAR sensors have been used for years to obtain accurate maps. First in surveying applications and
in the past ten years in the automotive sector. The weight, power, and size constraints of most traditional LiDARs have prevented
their installation on UAVs for indoor use. MEMS-based LiDARs have already been used in UAVs but had to rely on algorithms
designed to deal with their small FOV. Recently, a MEMS-based LiDAR with a wide field of view (360°*59°) and weighing 265 g
has sparked interest in its potential for indoor UAV SLAM. We performed an extensive battery of tests in simulation environments
to provide a first look into its effect on state-of-the-art SLAM algorithms, highlight which ones can provide the best results, and
what improvements may be most beneficial. This paper aims to provide assistance in further research in the field by releasing the
tool used for this work.

1. INTRODUCTION

In environments where Global Navigation Satellite System
(GNSS) signals are not available or reliable, Simultaneous Loc-
alization And Mapping (SLAM) is a crucial technology for Un-
manned Aerial Vehicles (UAVs) to navigate and map the en-
vironment. SLAM algorithms use sensors to estimate the pose
and create a map of the environment in real time. RGB cam-
eras are often used as the primary sensor due to their low Size,
Weight, And Power (SWAP) requirements, making them ideal
for indoor UAVs applications. LiDAR systems offer an attract-
ive alternative due to their greater accuracy, resilience to chal-
lenging lighting conditions, and textureless environments. Thus
far, however, LiDARs have been primarily limited to automot-
ive and Unmanned Ground Vehicles (UGVs) applications due
to their high SWAP.

Recently commercialized low-weight MEMS-based LiDAR
systems, such as the Livox Mid-3601, which are lighter and
more power efficient, have opened new opportunities for in-
tegration in indoor UAVs. The Livox Mid-360, by leveraging
a helicoidal non-repeating scanning pattern, achieves wide cov-
erage in the horizontal and vertical field of view (360*59 de-
grees). The point cloud is sufficiently dense for real-time
SLAM operation. Moreover, if left stationary, the scanning pat-
tern fully saturates the environment making the sensor viable
for dense map generation.

An essential tool for the continued development of LiDAR cent-
ric SLAM systems is the availability of simulation tools. To this
end, we leveraged the recently released pattern of the Livox
Mid-3602 to implement a custom plugin for the simulation of
the Livox Mid-360 and performed an extensive campaign of
tests. We are releasing this plugin to the benefit of the SLAM
∗ Corresponding author
1 https://www.livoxtech.com/mid-360
2 https://github.com/Livox-SDK/livox_laser_simulation

Figure 1. Example of point cloud where each point in red
represents a point distant more than 20 cm from the ground
truth. Final map of the Cave generated by Fast-LIO 2 using data
from the Livox Mid-360

community3. n contrast to other works simulating the Livox
Mid-360 (Kong et al., 2023), our plugin integrates with simula-
tion environments that do not rely on highly detailed, and manu-
ally refined, point cloud maps. Using meshes to build the maps
allows for the testing of SLAM systems that use both cameras

3 https://github.com/fratopa/Mid360_simulation_plugin
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and LiDAR systems. The goal of this work is to provide in-
sights into the potential benefits and challenges of using the
Livox Mid-360 sensor in SLAM systems, particularly for in-
door UAV applications.

Traditional SLAM benchmarking efforts, while extensive, have
focused on odometry performances, e.g. (Delmerico and Scara-
muzza, 2018), (Xu et al., 2022b). To provide an understanding
of the SLAM system in terms of mapping quality, this contri-
bution will offer an analysis of both the odometry and mapping
performances. The former will be used to quantify the local
accuracy and the latter to measure the global consistency. This
comparison effort will be simplified by the fact that the meshes
used for the virtual environment generation will act as ground
truth for the map evaluation step.

To evaluate the differences between this novel MEMS sensor
and regular optomechanical ones, simulated data coming from
both kinds of sensors will be collected and used to run multiple
LiDAR-centric SLAM pipelines. To generate the data com-
ing from a regular optomechanical LiDAR we simulated the
Ouster Os0-128. Table 1 shows that while its SWAP makes
it a poor candidate for integration in an indoor UAV, its per-
formance makes it an ideal candidate to act as a baseline in our
benchmark.

2. METHOD

2.1 Data collection

LiDAR SLAM algorithms are often tested on datasets collec-
ted from optomechanical LiDARs mounted on cars: (Geiger
et al., 2012) and (Jeong et al., 2019), or other ground vehicles
(Carlevaris-Bianco et al., 2015). More recent datasets, like the
ones proposed by (Giubilato et al., 2022) or (Qingqing et al.,
2022), have incorporated hand-held sequences and MEMS LiD-
ARs in their suite of sensors. While an improvement over the
more traditional datasets, these lack data coming from the Livox
Mid-360 and were not collected from flying platforms. In gen-
eral, the motion profiles of these datasets are not representative
of the challenges that UAVs would face while exploring indoor
environments. To address this limitation, we attached the sim-
ulated sensor to a virtual quadcopter and piloted it along two
custom maps we created.

One map is a cave-like maze, which presents a particular chal-
lenge for most algorithms due to its larger size and feature-poor
environment. The second map is a house with multiple rooms
of varying levels of detail, which presents a mapping challenge
if improper scan-to-map registration occurs. The 3D models of
the Cave and House maps are in Figure 2.

To isolate the impact of the Livox Mid-360’s unique scanning
pattern on each algorithm, the quadcopter mounted a traditional
LiDAR sensor as well. Specifically, we aimed to mimic an
Ouster Os0-128 sensor, a comparison between the two can be
seen in Table 1.

With their wide vertical field of view, high density, and long
range, the point clouds coming from the Os0-128-like sensor
represent an ideal data source for indoor LiDAR-SLAM applic-
ations and can thus act as an effective baseline to compare the
performances of the Mid-360.

The simulation of these sensors has been integrated within
the open-source simulation environment Gazebo (Koenig and

Figure 2. On top is the cave-like maze and on the bottom is the
multi-room map.

Os0-128 Mid-360
H-FOV (°) 360 360
V-FOV (°) 90 60
Points (hz) 2.4M 0.2M
Range (m) 100 40
Weight (g) 447 265
Power (W) 14-20 6.5 -14
Price (C) > 10k < 1k

Table 1. Comparison between the Livox Mid-360 and the Ouster
Os0-128

Howard, 2004). Compared to alternative simulation frame-
works such as AirSim (Shah et al., 2017), Carla (Dosovitskiy
et al., 2017), or Nvidia Omniverse4, Gazebo offers increased
performances under limited computational resources while still
offering the possibility to integrate high-fidelity meshes in the
scene. Alternative simulation environments support more ad-
vanced visual rendering pipelines, making them better suited
for advanced visual SLAM applications. However, their lim-
ited modularity and poorer integration with the Robotic Oper-
ating System (ROS) may hinder the integration with ROS-based
SLAM frameworks.

While we used the official pattern released by the manufacturer,
we did not use their plugin since, as can be seen in Figure 3, we
found it to introduce distortions in the point clouds which unac-
ceptably degraded the SLAM performances and are not present
in the real sensor.

2.2 Algorithms

All tests have been performed on a workstation mounting an
Intel Xeon E5-1650, 32GB of RAM, and an NVIDIA Quadro
M4000.
4 https://www.nvidia.com/en-us/omniverse

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W1-2023 
12th International Symposium on Mobile Mapping Technology (MMT 2023), 24–26 May 2023, Padua, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-539-2023 | © Author(s) 2023. CC BY 4.0 License.

 
540

https://www.nvidia.com/en-us/omniverse


Figure 3. Point cloud of the virtual sensor in a cylindrical
enclosure. On the left, the point cloud coming from the Livox
official plugin while on the right the point cloud coming from
our plugin

Each algorithm chosen for evaluation was required to operate
in real-time and process data coming from the Os0-128 and
the new Mid-360. Well-known frameworks such as F-LOAM
(Wang et al., 2021) and LeGo-LOAM (Shan and Englot, 2018)
were excluded from the testing campaign due to their incom-
patibility with the point clouds generated by the Livox Mid360.
Conversely, other frameworks, like Livox-LOAM (Pan et al.,
2021), could not use the point clouds generated by the Os0-
128. Others, like MULLS (Pan et al., 2021), , which can pro-
cess point clouds from both sensors, have not been able to do
so in real-time and have been excluded too.

The algorithms tested still constitute a representative sample of
established and modern techniques used in the LiDAR com-
munity. Now follows a brief introduction to each of them:

2.2.1 CT-ICP The core of the CT-ICP (Dellenbach et al.,
2022) algorithm is its novel approach to the scan-to-map regis-
tration step. One of the main limitations associated with em-
ploying the naive ICP algorithm for matching successive scans
stems from the distortion experienced by each new scan as the
sensor undergoes movement during the acquisition process, see
Figure 4. This work is not the first to implement a de-skewing

Figure 4. Scan skewing process. The ego motion of the sensors
causes a non-rigid deformation of the endpoint cloud.

strategy prior to the scan matching step. However, the approach
taken here is novel in that it does not rely on a constant velo-
city model for the sensor motion or IMU (Inertial Measurement
Unit) data. This system proposes an elastic formulation of the
trajectory with continuity of start and end pose in the scan ac-
quisition step while preserving discontinuity between adjacent
scans. In particular, during the de-skewing step no assumption
is made about the fact that the pose of the sensor at the begin-
ning of scan Tb(n) is equal to that of at the end of the previous
one Te(n−1). This approach preserves high-frequency motion
while still correcting for the scan skew. In the same paper, the
authors also introduce a back end pose graph optimizer based
on g2o (Kümmerle et al., 2011) used to implement Loop Clos-
ure (lc), however, at the time of writing, it has not been integ-
rated with the ROS framework and can only be used to process
datasets off-line.

2.2.2 Fast-LIO2 Fast-LIO2 (Xu et al., 2022a) is a SLAM
system relying on LiDAR and IMU data. Like in its previ-
ous formulation (Xu and Zhang, 2021), it still uses an iterated
Extended Kalman Filter (iEKF) to deskew the incoming point
clouds and to initialize the scan matching process. However, it
no longer requires the feature extraction step to perform scan
matching. The core strength of this new formulation is its ca-
pacity to sustain dense maps, which in turn enables efficient
scan-to-map matching. While most LiDAR SLAMs rely on
either sub-sampling or feature extraction to render the problem
of scan matching tractable in real time, FAST-LIO2 instead in-
troduces a tailor-made implementation of a k-d tree to store and
manage the map data. K-d trees are data structures that allow
for fast point matching using kNN-search. However, inserting
new points in this map representation requires re-balancing the
whole tree resulting in non-real-time operation, especially if in-
cremental map generation is required. To mitigate this problem
the authors implemented a self-balancing k-d tree based on the
Scapegoat Tree idea proposed by (Galperin and Rivest, 1993).
The final algorithm is able to manage extremely dense maps
while still maintaining real-time operation.

2.2.3 KISS-ICP The KISS-ICP framework (Vizzo et al.,
2023) aims to be a general approach applicable to any LiDAR
sensor with minimal to no tuning of its parameters. It does so
by having no assumption on the kind of sensor being used and
avoiding hand-crafted descriptors to aid in the scan matching
step. To this end KISS-ICP forgoes most of the sophisticated
optimization techniques and reduces the odometry estimation
loop to four steps, namely; de-skewing the incoming scan us-
ing the constant velocity model, sub-sampling of the deskewed
point cloud to bound complexity, scan-to-map matching to re-
cover the incremental odometry, and lastly updating of the local
map stored using a voxel grid using the previously subsampled
point cloud. During the scan-to-map matching step, the regu-
lar ICP algorithm is utilized. However, instead of establishing
a maximum limit for iterations, an adaptive threshold is em-
ployed, using the point-to-point distance between the local map
and the incoming scans as metric.

2.2.4 LIO-SAM LIO-SAM (Shan et al., 2021) is a tightly
integrated inertial-LiDAR odometry and mapping pipeline. The
IMU is used both in the de-skewing step and to provide an ini-
tial guess to the scan registration step. The integrated IMU data
and the LiDAR odometry data, together with optionally loop
closure and GNSS signals, are merged into a factor graph which
is optimized using GTSAM (Dellaert and Kaess, 2017). The
scan registration step generates the LiDAR odometry factor,
i.e., each scan is registered to a local map by first extracting
edge and planar features based on the local roughness (Zhang
and Singh, 2014). The factor graph formulation allows for the
integration of loop closure in the LIO-SAM framework. Loop
detection is initialized based on the Euclidean distance between
the current pose and the previous trajectory. Upon triggering,
the current features are matched against the local marginalized
ones, and both the path and the map are subsequently adjusted.

3. EXPERIMENTS

We used both map and odometry data to measure the impact of
the Mid-360 sensor on the SLAM performances. The most pop-
ular metrics used to determine the accuracy of SLAM systems
have been the Absolute Trajectory Error (ATE) and the Relat-
ive Pose Error (RPE) (Prokhorov et al., 2019). These metrics
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rely on odometry data to quantify the global consistency and
the local accuracy, respectively.

To compute the RPE, the reference trajectory is divided into
uniformly spaced intervals of 1 m. The relative transforma-
tion ∆i,j between the pose at the beginning Pi and at the end
Pj of each segment is then computed for both trajectories. Fi-
nally, using the inverse compositional operator (Lu and Milios,
1997), denoted as ⊖, we can compute the RPE between each
transformation in the reference and relative trajectory. Using
the RPE is possible to quantify the drift per meter in each run
and in doing so have a metric to represent the local accuracy of
each SLAM pipeline.

RPEi,j = ∆esti,j ⊖∆refi,j =

= (P−1
ref,iPref,j)

−1(P−1
est,iPest,j)

(1)

Having access to the ground truth mesh underlying each envir-
onment, we decided to use the map generated by each SLAM
system to measure the global consistency instead of the traject-
ory.

In analogy to the ATE we

• Aligned the point cloud of each global map to the ground
truth mesh

• Computed the distance between each point and the closest
vertex in the mesh

• Computed the Root Mean Square Error (RMSE) over all
the point-to-mesh distances

Moreover, we identified as outliers all the points whose distance
from the mesh was greater than 20 cm. These points severely
degrade the quality of the final map manifesting themselves as
ghosting artifacts (Chamseddine et al., 2021), an example of
which can be seen in Figure 1. We then computed the percent-
age of outliers in each final map.

3.1 Local accuracy

Table 2 shows the local accuracy of each algorithm across the
two maps, it is evident that the House map proved to be more
challenging for most algorithms compared with the Cave. This
may be explained by the fact that the Cave, being more con-
strained, limits the space of possible motions that the UAV can
undergo during its flight. In contrast, the open spaces afforded
by the House allowed for sudden and drastic changes in both
heading and speed. LiDAR-based odometry is particularly vul-
nerable to high-speed motion due to the low scan acquisition
rate which characterizes this family of sensors. High-speed
motion paired with a low scan acquisition rate yields poorly
overlapping scans, even if perfectly de-skewed. In the end,
the poorly overlapping scans degrade the quality of the scan-
matching step inherent in any SLAM algorithm and in turn, this
manifests as a degradation of the mapping performance. The
interaction between a low data acquisition rate and odometry
estimation has been studied in depth by the visual SLAM com-
munity (Gallego et al., 2020).

CT-ICP generates impressive results, especially considering
that it is not relying on IMU data. We attribute the high local ac-
curacy to its scan registration method which is able to preserve

Cave
CT
ICP

KISS
ICP

LIO
SAM lc

LIO
SAM

Fast
LIO2

Mid-360 1.78 3.34 2.50 2.61 1.08
Os0-128 1.53 8.17 1.26 1.24 0.49

House
CT
ICP

KISS
ICP

LIO
SAM lc

LIO
SAM

Fast
LIO2

Mid-360 2.72 6.88 3.54 2.7 1.61
Os0-128 2.79 7.1 1.65 1.51 1.11

Table 2. RMSE of the drift in cm per 1 m interval.
In bold the best-performing sensor for each algorithm,
underlined the best-performing algorithm for each sensor

the high-frequency motion components of the sensor. This is
especially notable looking at the performances in the House
which display a comparable level of accuracy to LIO-SAM.

Examining KISS-ICP we can see the only instance where the
local accuracy decreased going from the Cave to the House
map. Nonetheless, it performed worse than other algorithms.
It can be observed that also the other purely LiDAR-based al-
gorithm outperforms KISS-ICP, as the constant velocity model,
employed to provide the initial guess for scan-to-map regis-
tration, frequently experiences significant violations during our
tests where the sensor was mounted on a UAV subjected to high
speed motion.

LIO-SAM, both with and without loop closure, has been able to
preserve high local accuracy in both maps. We attribute this to
its use of the IMU pre-integration used to provide a first guess
to the scan alignment step. The local accuracy doesn’t show a
significant improvement by activating the loop closure since it
is only able to improve the global consistency and not the local
accuracy, we will discuss its impact on global consistency in the
next section.

LIO-SAM Fast-LIO2
Mid-360 +3.3% +32.5 %
Os0-128 +17.9% +55.8%

Table 3. Percentage of drift increase from Cave to House map

The performances of Fast-LIO2 are a testament to the impact
that dense matching can have on LiDAR-SLAM. Fast-LIO2
shows the lowest drift of all the algorithms in either map and
using either sensor. While both Fast-LIO2 and LIO-SAM rely
on IMU data to remain accurate at high-speed, the use of dense
matching improves the accuracy of each registration yielding
more accurate odometry. However, computing the drift increase
going from the Cave to the House map, see Table 3, suggests
the pose graph strategy implemented by LIO-SAM may be a
comparatively more robust method than the iEKF implemented
by Fast-LIO 2, albeit less precise in absolute terms.

Looking at the impact of the sensor itself, it is evident that the
CT-ICP algorithm’s ability to perform odometry estimation in
an indoor environment is largely unaffected by which sensor is
being used. By storing the local map in a sparsified voxel struc-
ture the algorithm, CT-ICP, is able to reduce its computational
footprint while at the same time having the side effect of uni-
formly processing point clouds with different densities. Con-
versely, LIO-SAM shows a clear preference for higher-density
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point clouds, this is due to the fact that in order to extract the
features it needs to perform scan matching, and higher-density
point clouds are greatly beneficial in detecting the features in
the first place.

Figure 5. Scan from the Os0-128 captured in the House map

3.2 Global consistency

Looking at the histograms in Figures 6 and 7 we can see that the
Cave map has been the most difficult to maintain global con-
sistency in. All algorithms succeeded in generating an accurate
final map of the House with both sensors. This is likely due to
the fact that the many openings present in the map, combined
with its smaller size, effectively turned any local map into an
equivalent global one, this can be seen in Figure 5. Registering
points to a global map rather than to a local one improves the
overall consistency of the final map.

While CT-ICP did not show a strong preference for either of
the two sensors when looking at the local accuracy, the global
consistency decreases significantly using the data provided by
the Mid-360, Table 4 shows a tenfold increase in the number
of outliers. As the authors themselves have highlighted, local
maps maintained on the distance d to the last registered scan,
and not on a sliding window of the n most recent frames, are
particularly susceptible to degradation of the global consistency
following bad scan insertion. CT-ICP mitigates these events
by using a more conservative approach to scan-to-map regis-
tration when the estimated pose changes suddenly. Sudden but
small changes in motion have a greater impact on point clouds
collected by sensors with longer-range capabilities, which sub-
sequently facilitates the detection of such changes in the first
place. The smaller range of the Mid-360 point cloud makes
it harder to activate this procedure and thus produces ghosting
artifacts.

The data collected from KISS-ICP highlight the effectiveness
of the optimizations implemented in CT-ICP we just described.
KISS-ICP uses a voxel structure too in order to maintain the
local map, however, it does not seem to implement any strategy
to mitigate possible bad scan registration. In such scenarios,
the point clouds provided by the Os0-128 generate even more
ghosting artifacts in the final map.

Cave
CT
ICP

KISS
ICP

LIO
SAM lc

LIO
SAM

Fast
LIO2

Mid-360 14.95 31.91 3.68 10.68 15.59
Os0-128 1.40 58.25 0.17 21.78 0.18

House
CT
ICP

KISS
ICP

LIO
SAM lc

LIO
SAM

Fast
LIO2

Mid-360 0.13 3.17 4.24 2.28 5.92e-3
Os0-128 0.02 0.45 9.54e-4 9.34e-4 0.02

Table 4. Percentages of outliers in each final point cloud.
In bold the best-performing sensor for each algorithm,
underlined the best-performing algorithm for each sensor

Cave
CT
ICP

KISS
ICP

LIO
SAM lc

LIO
SAM

Fast
LIO2

Mid-360 20.06 22.58 9.99 14.27 19.98
Os0-128 7.68 51.47 6.26 17.19 5.52

House
CT
ICP

KISS
ICP

LIO
SAM lc

LIO
SAM

FAST
LIO2

Mid-360 6.45 6.86 6.95 5.90 5.27
Os0-128 4.33 4.88 3.65 4.19 5.52

Table 5. RMSE in cm compued from the point-to-mesh distance.
In bold the best-performing sensor for each algorithm,
underlined the best-performing algorithm for each sensor

The maps generated by LIO-SAM demonstrate the reliance that
this pipeline has on loop closure to maintain global consistency.
From Figure 6 it is possible to see a pronounced bulge in the
point-to-mesh distance histogram of the final map generated by
LIO-SAM without the loop closure module active. These are
due to entirely misaligned portions of the final map. Activat-
ing the loop closure realigns both the trajectory and the map.
These misalignments occur infrequently but are difficult to pre-
dict, loop closure is the best tool to counteract this phenomenon.
However, finding the right set of parameters for loop detection
in LIO-SAM is a trade-off between real-time operation and the
global consistency of the map. As the authors themselves wrote,
the loop detection module, being based on the Euclidean dis-
tance between the current pose and the trajectory, is naive but
effective and more advanced methods are present in the literat-
ure (Kim and Kim, 2018).

Fast-LIO 2 produces impressive results in both the House and
the Cave environments alike. The inconsistent proportion of
outliers across each of the four tests is indicative of how the
dense scan-to-map registration approach is susceptible to drift
accumulation which is never able to correct. Fig 1. is indicative
of the results that can be expected in a worst-case scenario.

However, preserving global consistency using a dense global
map comes with the caveat of considerable memory consump-
tion. The i-k-d tree implemented in Fast-LIO 2 allows for real-
time interaction with a dense global map, as far as CPU utiliza-
tion is concerned. However, it does not reduce its size. Figure 8
shows the memory utilization of the algorithm over time and it
is evident that the memory utilization grows linearly with time
by a factor proportional to the size of the point cloud being used.
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Figure 6. Histogram of the point-to-mesh distances in the Cave map.
In blue the distribution of the Livox Mid-360, in red the distribution of the Ouster Os0-128, in yellow the threshold set at 0.2m
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Figure 7. Histogram of the point-to-mesh distances in the House map.
In blue the distribution of the Livox Mid-360, in red the distribution of the Ouster Os0-128, in yellow the threshold set at 0.2m
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Figure 8. Memory usage of Fast-LIO2.

In our tests, after a few hundred seconds the map has grown to
occupy a few gigabytes. The algorithm starts to truncate the
global map only when the sensor is detected as being outside a
predetermined distance from the first scan which by default is
set to 1 km. This approach is inherently memory unsafe, not
because of the size of the default distance, but because it is pos-
sible for a sensor to remain static and saturate the system RAM.

4. CONCLUSION

In this paper, we explore how MEMS LiDAR systems, such
as the Livox Mid-360, affect the performance of popular open-
source LiDAR SLAM frameworks. The data have been gen-
erated in a simulation environment using our custom plugin
which is able to generate distortion-free point clouds having an
arbitrarily complex pattern. Each sensor has been mounted on
a UAV to test the ability of each system to handle high-speed
motion. We used the odometry data to measure the local accur-
acy of the SLAM systems and the final maps to measure their
global consistency.

Our experiments demonstrated that MEMS LiDARs show
promise as sensors for indoor UAV operations. However, due

to their lower density compared to traditional LiDARs, they do
not work optimally with SLAM systems that rely on feature
extraction. Additionally, maintaining high levels of local ac-
curacy requires more advanced motion models than those typ-
ically used for ground vehicles. Our results suggest that in-
tegrating IMU data or employing more complex motion mod-
els are both effective strategies for improving performance.
Moreover, achieving global consistency remains a challenge for
most SLAM systems. Although in our tests loop correction has
been shown to be highly effective, it requires more robust meth-
ods to detect the accumulated drift in the first place.

To help the research community develop SLAM systems
tailored for these new setups our custom plugin will be made
publicly available.
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