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ABSTRACT: 

 
With the development of different sensors, such as global navigation satellite system (GNSS), inertial measurement unit (IMU), LiDAR, 
radar and camera, more localization information is available for autonomous vehicular applications. However, each sensor has its 
limitations in different circumstances. For example, visual Simultaneous Localization and Mapping (SLAM) easily loses tracking in 

an open sky area where accurate GNSS measurements can be obtained. Sensors can complement each other by integrated their 
information in a multi-sensor fusion scheme. In this study, we proposed a visual-SLAM enhanced INS/GNSS localization fusion 
scheme for a high dynamic environment. Oriented FAST and rotated BRIEF (ORB) SLAM are used to pre-process image sequences 
from monocular camera, rescaled and refreshed after applying GNSS measurements, and convert to position and velocity information, 
which can provide updates to the system. The performance of the fusion system was verified through two field tests at different speed 
ranges (about 30~60 km/s), using a reliable reference system as ground-truth to assess the accuracy of the proposed localization fusion 
scheme. The results indicated that the proposed system could improve the navigation accuracy compared to INS/GNSS integration 
scheme and achieve which-lane level or even where-in-lane level. 

 
 

1. INTRODUCTION 

Navigation plays a crucial role for autonomous vehicular 

applications. To ensure the safety of self-driving, high accuracy 
of navigation states estimation should be promised. inertial 
navigation system (INS) and global navigation satellite system 
(GNSS) integration scheme is a typical example for accurate 
navigation. Nevertheless, the error of INS will accumulate over 
time; meanwhile, GNSS can’t provide accurate position in 
challenging environment, such as urban area. Hence, many 
researchers have utilized the optical sensors which can collect the 

information from the surrounding environment, such as camera 
(Mourikis & Roumeliotis, 2007; Leutenegger et al., 2015; Cao et 
al., 2020) and LiDAR (Surachet & Chiu, 2022), to improve 
system accuracy and robustness. 
 
Based on navigation accuracy requirements for intelligent 
transportation systems (ITSs), accuracy levels can be divided into 
the which-road, which-lane, and where-in-lane levels 
(Stephenson et al., 2011), as shown in Figure 1. At the which-

road level, navigation must be accurate to within 5 m. To increase 
the level of navigation accuracy to the which-lane level, 
navigation must be accurate to within 1.5 m or less. At this level, 
the lane that a vehicle is on must be identified. To achieve fully 
autonomous driving, the exact position of a vehicle on a lane 
must be determined; therefore, navigation must be accurate to 
within <1 or even 0.5 m. Considering a normal speed range 
(about 30~60 km/s), it’s difficult to achieve the accuracy of 

which lane level or where in lane level for a low-cost micro-
electro-mechanical system (MEMS) inertial measurement unit 
(IMU) and GNSS chipset module. Hence, this paper proposed a 
visually enhanced INS/GNSS fusion scheme with GNSS-based 
refreshed Simultaneous Localization and Mapping (SLAM). The 
proposed method not only increased the navigation accuracy but 

 
*  Corresponding author 

 

also enhanced the relationship between the system and the real 
world. 
 

 
Figure 1 Navigation accuracy classification (Stephenson et 

al., 2011) 
 
A conventional vehicle positioning algorithm integrates an INS 
and a GNSS system through Extended Kalman Filter (EKF) with 

loosely coupled (LC) or tightly coupled (TC) schemes (Noureldin 
et al., 2013). Compared to LC scheme, TC scheme is more 
reliable and robust for a navigation system. However, LC scheme 
not only incurs a lower computation expense than TC scheme but 
also applicable for transforming feature points into reference 
frame when perception sensor like camera or LiDAR is applied 
(Surachet & Chiu, 2022). 
 
The techniques of applying monocular camera to a navigation 

system like visual odometry (VO) and visual Simultaneous 
Localization and Mapping (V-SLAM) have been developed for 
many years. The main issue of monocular camera is that 
monocular camera can’t estimate the depth of images, which 
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causes a wrong scale estimation for the trajectory. Many 

researchers utilized a stereo or RGB-D camera to resolve the 
scale issue. However, the baseline of stereo camera must be long 
enough for outdoor applications and RGB-D camera is not 
suitable for outdoor environments. Moreover, pure visual 
methods have drift problem with an accumulated errors over 
distance and lost tracking issue. Other researchers employed 
inertial measurement unit (IMU) to estimate the scale and 
enhance the system, such as VIO and the state-of-the-art VINS. 

Though VIO and VINS is robust enough to avoid lost tracking, 
they still have drift problems since IMU has an accumulated 
errors over time. Hence, the GNSS is employed to resolve the 
drift problem. In the study of INS/GNSS/V-SLAM, the authors 
in (Cao et al., 2020) employed a GNSS measurement as an 
anchor point and integrate inertial factors, visual factors, and 
Doppler factors with factor graph optimization. They employed 
RTKLIB as the ground-truth, but the solution is not reliable in a 
GNSS-challenging environment. The authors in (Chiang et al, 

2020) analyzed the performance of INS/GNSS/V-SLAM fusion 
scheme using smartphone sensors and (Chiang et al, 2023) 
proposed refreshed-SLAM and an INS/GNSS/GCPs/V-SLAM 
fusion scheme using smartphone sensors for land vehicular 
navigation applications. They both evaluated their results with a 
highly precise reference system. However, the smartphone 
sensors hardly achieve the which-lane level in outdoor 
environments. 

 
The present paper proposes a visually enhanced fusion scheme 
with a multi-sensor framework. Based on the advantages and 
disadvantages of multi-sensors, an integrated algorithm was 
developed and designed to solve the problem of changing 
environmental conditions. The core of the system is an EKF 
estimation algorithm using INS mechanism, and GNSS and V-
SLAM measurements are used to update the system. GNSS can 

provide precise position measurements in an open-sky area. For 
GNSS-challenged environment, V-SLAM can augment position 
measurements and provide additional velocity measurements. To 
verify the performance of the fusion system, various field test 
data were collected in the outdoor environment and a trustable 
reference system for ground-truth is used to verify the accuracy 
of proposed localization fusion scheme for improving the 
navigation performance. We highlight the contributions of this 

paper as follows: First, stable states estimation provided by a 
loosely coupled visually enhanced INS/GNSS fusion scheme 
which has low computational cost. Second, a highly precise 
reference system is employed to evaluate our system in a 
dynamic environment. Third, our system achieves which-lane 
level or where-in-lane level at normal driving speed range. 
 
Structure of this research is arranged in following sequence. 
Section 2 presents the navigation structure and the methodologies 

applied to fulfill multi-sensors integration scheme. Section 3 
introduces the experiment setup and test fields selection. The 
experiment results and discussions will be shown in Section 4. 
Finally, the conclusion is made in Section 5.  
 

2. METHODOLOGY 

2.1 Multi-Sensor Fusion Scheme 

The block diagram of proposed loosely coupled scheme of the 

INS/GNSS/V-SLAM integrated system is illustrated in Figure 2. 
The IMU measurements were processed using INS 
mechanization to provide a navigation solution that accounts for 
position, velocity, and attitude with an unbounded error in the 
navigation frame. The GNSS of the proposed system provides the 
absolute position as the predominant measurement update to limit 

the accumulated drift error of the system. For the camera of the 

system, oriented FAST and rotated BRIEF (ORB) SLAM were 
selected as the visual SLAM (V-SLAM) method for processing 
data and providing measurement updates. Furthermore, various 
vehicular constraints were considered, including the zero-
velocity update (ZUPT) and zero-integrated heading rate (ZIHR) 
which are observed in stationary vehicles and velocity and 
heading rate are set to zero, as well as the non-holonomic 
constraint (NHC) which restricts lateral and vertical velocities of 

moving vehicles. All sensor data and constraints were then 
integrated using an EKF estimation algorithm. 
 

 
Figure 2 The Proposed Loosely Coupled V-SLAM enhanced 

INS/GNSS Integration Scheme 
 
Regarding the INS/GNSS integration (Shin, 2005), the 
navigation state applied in the present study can be described 
using the following equation: 
 

𝑥𝑘 =  [𝑟  𝑣  𝜓  𝑏𝑎   𝑏𝑔  𝑠𝑎   𝑠𝑔]
21×1

𝑇
  (1) 

 

where  𝑟 = position 

 𝑣 = velocity 

 𝜓 = attitude 

 𝑏𝑎, 𝑠𝑎 = bias and scale factor for the accelerometer 
 𝑏𝑔, 𝑠𝑔 = bias and scale factor for the gyroscope 

 
The initial values for biases and scale factors can be estimated 
during the initial alignment. 

 
The EKF system model can be simply expressed by dividing into 
two parts, prediction and update. The prediction part (also called 
error propagation part) estimates the state and noise of epoch k 
from the observations at epoch k-1, it can be simplified to the 
following equations: 
 

𝛿𝑥𝑘
− = 𝚽𝑘−1𝛿𝑥𝑘−1 + 𝑤𝑘−1  (2) 

𝐏𝑘
− = 𝚽𝑘−1𝐏𝑘−1𝚽𝑘−1

𝑇 + 𝐐𝑘−1  (3) 

 

where  𝛿𝑥 = error vector of the system state 

 𝚽𝑘−1 = state transition model from epoch k-1 to k 

 𝐏 = covariance of the error state vector 

 𝐐 = covariance of the process noise 
 

(−)  denotes the estimated state after prediction but before 

update process. When a new measurement 𝑧𝑘 observed at epoch 

𝑘, the measurement updates the system in the update process. The 
state estimate equations incorporate the new measurement are 
expressed as: 
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𝐊𝑘 = 𝐏𝑘
−𝐇𝑘

𝑇(𝐇𝑘𝐏𝑘
−𝐇𝑘

𝑇 + 𝐑𝑘)
−1

  (4) 

𝛿𝑥𝑘
+ = 𝛿𝑥𝑘

− + 𝐊𝑘(𝛿𝑧𝑘 − 𝐇𝑘𝛿𝑥𝑘
−) (5) 

𝐏𝑘
+ = (𝐈 − 𝐊𝑘𝐇𝑘) 𝐏𝑘

−(𝐈 − 𝐊𝑘 𝐇𝑘)𝑇 + 𝐇𝑘𝐑𝑘𝐇𝑘
𝑇 (6) 

 

where  𝐊 = Kalman gain 

 𝐇 = measurement model 

 𝐑 = covariance of the measurement noise 

 𝐈 = identity matrix 
 

(+) denotes the estimated state after update. For the position 
update as obtained using GNSS and V-SLAM measurements, the 
EKF measurement model is described by the following equation: 
 

𝑧𝐺𝑁𝑆𝑆,𝑆𝐿𝐴𝑀 = (𝑟𝐼𝑁𝑆 − 𝑟𝐺𝑁𝑆𝑆,𝑆𝐿𝐴𝑀) 

                       = 𝐻𝐺𝑁𝑆𝑆,𝑆𝐿𝐴𝑀𝛿𝑥𝑘 + 𝑣𝑘 
(7) 

 

where  𝑧𝐺𝑁𝑆𝑆,𝑆𝐿𝐴𝑀 = GNSS or V-SLAM measurement 

 𝑟𝐼𝑁𝑆 = INS position vectors 

 𝑟𝐺𝑁𝑆𝑆,𝑆𝐿𝐴𝑀 = GNSS or V-SLAM position vectors 

 𝐻𝐺𝑁𝑆𝑆,𝑆𝐿𝐴𝑀 = [03×3 𝐼3×3 03×15] 
 𝑣𝑘 = noise in the measurements 
 
2.2 Direct Geo-referencing of Visual Measurements 

While each sensor is mounted at different places on the 
experiment platform and located under different frames (e.g., the 

GNSS measurements collected by antenna is located under global 
frame; measurements from IMU and camera are located under 
their own local frame), the transformation between sensors must 
be fulfilled by translation and rotation in three axes (i.e., lever 
arms and boresight angles), the process is called direct geo-
referencing (DG) (Yoshimura & Hasegawa, 2004; Surachet & 
Chiu, 2022). Figure 3 shows the geometric relationship between 
the component from each sensor. Our aim is to transform the 

coordinates of V-SLAM solution from the local camera frame (c-
frame) to the global mapping frame (m-frame) through the DG 
process. The equation of DG is given as: 
 

(𝑟𝑐
𝑚)𝑘 =  (𝑟𝑏

𝑚)𝑘 + (𝑅𝑏
𝑚)𝑘(𝑟𝑐

𝑏) (8) 

 

where  (𝑟𝑐
𝑚)𝑘 = position vector of the camera relative to m-

frame at time epoch k 

 (𝑟𝑏
𝑚)𝑘 , (𝑅𝑏

𝑚)𝑘  = translation vector and rotation 

matrix for the b-frame relative to m-frame at time epoch k 

 𝑟𝑐
𝑏 , 𝑅𝑐

𝑏  = translation vector and rotation matrix 
measured in c-frame with respect to b-frame 
 
The translation vector and rotation matrix from camera to IMU 
are also called lever arm and boresight, respectively. These 
translation vectors and rotation matrices can be determined by the 
calibration procedures beforehand. 
 

 
Figure 3 Geometric relationship between each component 

 

2.3 GNSS-based Refreshed SLAM 

To rescale and align the V-SLAM trajectory using monocular 
camera to the global coordinate system, we adopted the concept 
of GNSS-based refreshed SLAM proposed in (Chiang, 2023) but 
implemented the process continuously. The V-SLAM solution 

integrated with GNSS measurements first in this process and then 
the drift problem over distance of V-SLAM could be greatly 
reduced. Then the refreshed SLAM solution could provide 
updates to the system. 
 
2.3.1 Visual SLAM 

SLAM is a method for performing mapping in an unknown 
environment through sensors and for estimating the sensors’ 
locations simultaneously. In the field of robotics and computer 

vision, SLAM has been extensively researched and applied to 
vehicle navigation (Mur-Artal & Tardos, 2017; Chiang et al, 
2020; Chiang et al, 2023). SLAM can be implemented through 
various types of sensors, such as visual sensors (cameras), laser 
sensors (LiDARs), and sonar sensors (radars). Relative to the 
other types of sensors, cameras are inexpensive, provide 
abundant environmental details, and utilize passive sensing (i.e., 
they are unaffected by interference). A SLAM system that uses 

cameras as its primary sensors is a V-SLAM (V-SLAM) system. 
Given the advantages of a camera, numerous researchers have 
focused on camera-based SLAM applications and have proposed 
various V-SLAM methods (Afia, 2017). Figure 4 presents the 
strategic framework for implementing V-SLAM. 
 

 
Figure 4 Classic V-SLAM framework (Chiang et al, 2020; 

Chiang et al, 2023) 

 
ORB-SLAM is a keyframe-based V-SLAM system that uses 
ORB features (Rublee et al., 2011) to perform all SLAM tasks. 
This method facilitates robust vision-based navigation. ORB-
SLAM performs three main tasks and uses three threads in its 
algorithms, namely the tracking, mapping, and loop closure 
threads (Mur-Artal et al., 2015; Mur-Artal & Tardos, 2017). The 
advanced version of ORB-SLAM provides three modes for 

processing SLAM using monocular, stereo, and RGB-D cameras 
(Mur-Artal & Tardos, 2017). In the present study, a monocular 
camera was used as the visual sensor; therefore, the monocular 
mode of ORB-SLAM was selected. 
 
2.3.2 Refreshed SLAM 

Since monocular cameras cannot estimate the depth of an image, 
the scale of a monocular V-SLAM translation is undefined. To 
integrate the visual solution of this system with other sensors, the 

following transformation processes are implemented. Figure 5 
presents the V-SLAM transformation process. First, the scale of 
V-SLAM translation is recovered with the assistance of GNSS 
solutions. One short distance from the GNSS solutions in the 
world frame and one short distance from the V-SLAM solution 
in the camera frame are used to obtain the scale coefficient, which 
is calculated by applying the following equation (Chiang et al, 
2020; Chiang et al, 2023): 

 

𝜆 =
‖𝑡𝐺𝑁𝑆𝑆

𝑤 ‖

‖𝑡𝑆𝐿𝐴𝑀
𝑐 ‖

 (9) 

𝑡𝑆𝐿𝐴𝑀
𝑤 = 𝜆 ∙ 𝑡𝑆𝐿𝐴𝑀

𝑐  (10) 
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where  𝜆 = scale coefficient of the translation 
 ‖𝑡𝐺𝑁𝑆𝑆

𝑤 ‖   = distance derived from GNSS solutions 

located in the world frame 
 ‖𝑡𝑆𝐿𝐴𝑀

𝑐 ‖  = corresponding V-SLAM distance in the 

camera frame 
 𝑡𝑆𝐿𝐴𝑀

𝑤  = translation vectors of the continuous images 

with scale recovery 
 𝑡𝑆𝐿𝐴𝑀

𝑐  = translation vectors with original scale 

 
This method of scale recovery is highly dependent on the quality 
of GNSS measurements. Typically, a section in an open sky area 
is selected to ensure the reliability and accuracy of the GNSS. 
However, this approach is unsuitable for real-time applications 
because the section for scale recovery cannot be manually 
selected. In this situation, continuous scale recovery was 
employed using optimal GNSS measurements. A threshold of the 

standard deviation (STD) of the GNSS position (𝜃𝑝 ) is set in 

accordance with requirements. During the scale recovery process, 

the STD of the GNSS measurements, (𝑃𝑆𝑇𝐷), is continuously 
compared with 𝜃𝑝 . If the measurements satisfy the condition 

𝑃𝑆𝑇𝐷 ≤  𝜃𝑝, the section between the previous satisfied position 

and the current position is used to calculate the scale coefficient 
for scale recovery. 
 
The V-SLAM solution has a higher sampling rate relative to the 
GNSS solution; however, it accumulates drift over distance (i.e., 

travel distance). Therefore, refreshed-SLAM, which takes 
advantage of GNSS solutions to reset the V-SLAM position, was 
employed to ensure that the accumulated errors of drift were 
removed. The GNSS measurements were also filtered by the 
standard deviation threshold and used to refresh the V-SLAM 
position. Furthermore, we derived the velocity in the body frame 
from the V-SLAM translation vector by applying the following 
equation (Chiang et al, 2020; Chiang et al, 2023): 

 

𝑣𝑆𝐿𝐴𝑀
𝑏 = 𝐶𝑐

𝑏
𝑡𝑆𝐿𝐴𝑀

𝑐

∆𝑡
 (11) 

 

where  𝑣𝑆𝐿𝐴𝑀
𝑏  = V-SLAM velocity in the body frame 

 ∆𝑡 = time period 

 𝐶𝑐
𝑏 = rotation matrix from the camera frame to the 

body frame 
 

The V-SLAM velocity update for the EKF system is formed in 
the measurement model together with the NHC through the 
equation as follows (Chiang et al, 2020; Chiang et al, 2023): 
 

𝑧𝑆𝐿𝐴𝑀 = (

𝑣𝑥−𝐼𝑁𝑆
𝑏 − 𝑣𝑥−𝑆𝐿𝐴𝑀

𝑏

𝑣𝑦−𝐼𝑁𝑆
𝑏 − 0

𝑣𝑧−𝐼𝑁𝑆
𝑏 − 0

) = 𝐻𝑆𝐿𝐴𝑀𝑥𝑘 + 𝑢𝑘 (12) 

 

where  𝑧𝑆𝐿𝐴𝑀 = V-SLAM velocity measurement 

 𝑣𝑥−𝐼𝑁𝑆
𝑏 , 𝑣𝑦−𝐼𝑁𝑆

𝑏 , 𝑣𝑧−𝐼𝑁𝑆
𝑏  = velocities derived from the 

INS mechanization 

 𝑣𝑥−𝑆𝐿𝐴𝑀
𝑏  = V-SLAM velocity in the body frame 

 𝐻𝑆𝐿𝐴𝑀 = [03×3 𝐼3×3 03×15] 
 𝑢𝑘 = noise in the V-SLAM velocity measurements 
 

 
Figure 5 V-SLAM transformation for monocular camera 

 
3. EXPERIMENT 

3.1 Configuration and Environmental Description 

Field tests were conducted using a land vehicle equipped with a 
reference system and an experimental system. Notably, the 
experimental system incorporated a self-assembling platform, a 
MEMS tactical-grade IMU (ADIS 16495-1), a GNSS receiver 
(ZED-F9P), and a monocular camera (Basler ACE acA1300-
75gc). The reference system was used to provide the reference 
trajectory as the ground truth for field tests. The reference system 

comprised a navigation-grade IMU (iNAV-RQH) and a GNSS 
receiver (PwrPak7D-E2). Accurate reference trajectories were 
obtained using the commercial INS/GNSS processing software 
package Inertial Explorer (IE) 8.90 by applying a tightly coupled 
strategy. Figure 6 shows the configuration of our test platform. 
The IMU technical characteristics is presented in Table 1. 
 

 
Figure 6 Configuration of test platform 

 

 

 Accelerometer Gyroscope 

Gyroscope < 15 𝜇g < 0.002°/hr 

Random Walk Noise 8 𝜇g/√Hz 0.0018°/√hr 

TABLE 1 Technical characteristics of the iNAV-RQH IMU 
 
To evaluate the proposed algorithm, we designed two tests that 
were conducted in Tainan City and Changhua City, Taiwan. Both 
experimental sites presented various types of scenes, including 
open sky areas and GNSS-challenging environments, as shown 

in Figure 7. Test 1 was conducted in Tainan City and involved an 
approximately 12-km-long route. The speed of the vehicle 
traveling this route was controlled at a maximum speed of 40 
km/h. Test 2 was conducted in Changhua City and involved an 
approximately 23-km-long route. The speed of the vehicle 
traveling this route was controlled at a maximum speed of 60 
km/h. Some trajectories were repeated in both tests to provide the 
V-SLAM system with the opportunities to perform loop closures. 
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Figure 7 Scenes in experiment field 

 
3.2 Sensor Availability 

On our experiment platform, the IMU collected the acceleration 
and angular velocity at the sampling rate of 125 Hz; the GNSS 
receiver provided positioning solutions at the sampling rate of 1 
Hz; the camera collected the image sequence at the sampling rate 

of 20 Hz; and the reference system provided reference navigation 
solutions at the sampling rate of 200 Hz. Since ORB-SLAM 
trajectory only considers keyframe poses at the monocular mode 
(Mur-Artal & Tardos, 2017) due to the ambiguity of the image 
depth, the V-SLAM solutions cannot reach the sampling rate as 
camera’s frame rate. Moreover, the solution of V-SLAM is not 
continuous and affected by the environment. Table 2 shows the 
sampling rate of each sensor for test 1 and test 2, the availability 
of V-SLAM is expressed by the average value. The navigation 

solutions of fusion scheme were aligned with the sampling rate 
of IMU (i.e., 125 Hz) and the reference solutions was also aligned 
with the same sampling rate of each comparison for statical 
analysis. 
 

 Test 1 Test 2 

IMU (Hz) 125 125 

Camera (Hz) 20 20 

GNSS (Hz) 1 1 

V-SLAM (Hz) 1.32 1.65 

Refreshed-SLAM (Hz) 20 20 

Proposed fusion scheme 125 125 

Reference (Hz) 200 200 

TABLE 2 Sampling rate of each sensor 

 
3.3 Results of test 1 

The experiment implemented at lower speed range in test 1. 
Figure 8 shows the velocity distribution of our experimental 

vehicle in test 1, the maximum velocity is 12.2098 m/s, which 
approximately equals to 44.3 km/h. Figure 9 (a) displays the V-
SLAM trajectories before (red) and after (blue) rescaled with 
GNSS and Figure 9 (b) presents the trajectories of the reference 
(red), V-SLAM after rescaled (green), refreshed-SLAM (blue), 
INS/GNSS (orange), and INS/GNSS/refreshed-SLAM (purple) 
solutions tested in test 1. The solutions of refreshed-SLAM, 
INS/GNSS, and INS/GNSS/refreshed-SLAM appeared to 

overlap with the reference solution. Nevertheless, the trajectory 
of V-SLAM had an obvious drift compared to the reference 
solution. As shown in the diagram of height, the V-SLAM 
solutions in Up-direction couldn’t be rescaled accurately. 
 

 
Figure 8 The velocity distribution of vehicle in test 1 

 
The position errors and error statistics of the solutions in test 1 
are shown in Figure 10 and Table 3, respectively. The V-SLAM 
solution exhibits significant position error compared to other 
solutions, especially in North-direction. The 3D error of the 
rescaled V-SLAM is approximately 30 m. Even though we 
performed loop closing in this test, the drift over distance is still 
significant. Table 3 indicates that refreshed SLAM can 

significantly improve the performance of system. The errors of 
INS/GNSS and INS/GNSS/Refreshed-SLAM are greater than 
refreshed-SLAM, which means our noise processing for IMU 
may be incomplete. However, the results in test 1 also shows that 
integrated with refreshed-SLAM can improve the accuracy of 
INS/GNSS fusion scheme to which-lane level (error < 1.5 m) to 
where-in-lane level (error < 0.5 m). Figure 10 also indicates that 
the INS/GNSS/Refreshed-SLAM solution provided by the 

proposed scheme has a similar trend with the INS/GNSS scheme 
but with smaller errors. 
 

 
(a) 

 
(b) 

Figure 9 Comparison of (a) V-SLAM trajectories before and 
after rescaled and (b) 2D trajectories and heights in test 1. 

 

 
Figure 10 Comparison of position errors with respect to 

reference solution in test 1 
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RMSE 
(m) 

V-SLAM 
(1.32 Hz) 

Refreshed-
SLAM 
(20 Hz) 

INS 
/GNSS 
(125 Hz) 

INS 
/GNSS 
/Refreshed-
SLAM 
(125 Hz) 

North 20.324 0.120 0.322 0.268 

East 6.952 0.190 0.438 0.366 

Up 17.412 0.115 0.036 0.075 

2D 21.481 0.225 0.543 0.453 

3D 27.651 0.253 0.545 0.459 

Table 3. Statistical analysis of position errors of field test 1. 
 

3.4 Results of test 2 

Figure 11 shows our driving velocity distribution in test 2. The 
maximum velocity is 18.1037 m/s, which approximately equals 
to 65.2 km/h. In test 2, we implemented a more difficult 

experiment with a longer route, and larger velocity change, which 
lead to a highly dynamic environment for the system. Figure 12 
(a) displays the V-SLAM trajectories before (red) and after (blue) 
rescaled with GNSS and Figure 12 (b) presents the trajectories of 
the reference (red), V-SLAM after rescaled (green), refreshed-
SLAM (blue), INS/GNSS (orange), and INS/GNSS/refreshed-
SLAM (purple) solutions tested in test 2. Figure 10 shows a 
similar result to test 1: the solutions of refreshed-SLAM, 

INS/GNSS, and INS/GNSS/refreshed-SLAM appeared to 
overlap with the reference solution but V-SLAM had an obvious 
drift, as well as the V-SLAM solutions in Up-direction couldn’t 
be rescaled accurately. The rescaled V-SLAM estimated the 
elevation change of approximate 100 m, as shown in Figure 12 
(a), while the real elevation change was less than 3 m. 
 

 
Figure 11 The velocity distribution of vehicle in test 2 

 
The position errors and error statistics of the solutions in test 2 
are shown in Figure 13 and Table 4, respectively. As presented 
in Figure 13, the error trends of INS/GNSS and proposed fusion 

scheme is relatively stable and have some larger errors at specific 
places unlike V-SLAM. Contrasted to the trajectory in Figure 12 
(b), there errors usually occurred at the turning point. Even with 
the enhance of GNSS, V-SLAM still has a chance to lose tracking 
during a sharp turn or U-turn. As a result, we slowed down in 
order to keep the V-SLAM system not to lost tracking while we 
meet a sharp turn. The error increased due to the accumulate error 
of IMU in this period, especially our noise processing is 

incomplete as mentioned before. However, the proposed visually 
enhanced scheme is still helpful to the INS/GNSS navigation. We 
improve the system accuracy to which-lane level this time. It’s 
worth mentioning that the IMU is still necessary for increasing 
the navigation sampling rate even though it has a drift issue. 
Higher sampling rate not only can lead to better resolution and 
robustness of the system’s state, but also improve the ability of 
the navigation system to handle fast motions, such as sudden 

changes in velocity or rapid changes in direction. 
 

 
(a) 

 
(b) 

Figure 12 Comparison of (a) V-SLAM trajectories before and 
after rescaled and (b) 2D trajectories and heights in test 2. 

 

 
Figure 13 Comparison of position errors with respect to 

reference solution in test 2 

 
 

RMSE 
(m) 

V-SLAM 
(1.65 Hz) 

Refreshed-
SLAM 
(20 Hz) 

INS 
/GNSS 
(125 Hz) 

INS 
/GNSS 
/Refreshed-
SLAM 
(125 Hz) 

North 120.523 0.093 1.076 0.769 

East 77.0270 0.130 1.248 0.863 

Up 78.685 0.238 0.031 0.156 

2D 143.168 0.238 1.648 1.155 

3D 163.366 0.286 1.648 1.166 

Table 4. Statistical analysis of position errors of field test 2. 
 

4. CONCLUSION  

The present paper proposed a visually enhanced INS/GNSS 

fusion scheme for lane-level navigation applications. Based on 
the advantages and disadvantages of multi-sensors, a fusion 
algorithm was developed and designed to solve the problems 
associated with various environmental conditions. The image 
sequence collected by a monocular camera is firstly proceed 
through ORB-SLAM; rescaled and refreshed using reliable 
GNSS measurements, then the reliable refreshed-SLAM solution 
is used to update the system. Due to the characteristics of 

keyframe-based SLAM, the monocular V-SLAM solution is not 
continuous, and the sampling rate cannot reach the frame rate of 
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camera. Hence, IMU is necessary for its stability and high 

frequency. The results indicate that the proposed fusion scheme 
is advantageous in a highly dynamic environment. Test 1 is 
implemented at a lower speed range for a 12-km-long route. The 
proposed method can improve the navigation accuracy from 
which-lane level to where-in-lane level. In test 2, the experiment 
implemented at a higher speed range and dramatically speed 
change for a 23-km-long route. Though the turning point issue 
and IMU noise increase the position error, the proposed fusion 

scheme can still achieve which-lane level. For the future work of 
this research, the IMU noise should be proceed completely and 
the turning point issue also needs to be resolved. Although we 
designed our system for real-time applications, it was tested in 
postprocessing. Future studies should integrate our framework 
into an embedded system and test it in real-time. 
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