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ABSTRACT:

Global warming and changes in Earth’s weather patterns are the main consequences of climate change, and bioclimate discomfort
has significant public health problems, especially for the elderly. Normally, the thermal characteristics of urban areas are poor due to
a phenomenon known as urban heat island. Mobile and fixed temperature measurements were performed on 19 March 2021 in the
city of Bologna, Italy. Mobile measurements took place with a car, along a 75-km transect, starting at 22:16 with a duration of 2
hours and 41 minutes, while fixed measurements were done using 15 present weather stations and also placing five thermometers in
the city center. Various interpolation models (i.e., Traditional, Voronoi Tessellation, Global Trends, Triangulated Irregular
Networks, Inverse Distance Weighting and Kriging) were applied to correct the mobile measurements using fixed data. Kriging
fulfilled the best result with a correlation coefficient of 0.99 compared to the raw temperatures.

1. INTRODUCTION

Climate change is predicted to increase the average temperature
of the Earth, and according to the Intergovernmental Panel on
Climate Change (IPCC: 2013) the near-surface global
temperature will increase by 0.4-2.6 °C (Georgiadis, 2017).
Furthermore, the population of the cities is increasing, and it is
forecasted that two-thirds of the world population will live in
cities by 2050 (Nardino et al., 2021). By considering this, it is
essential to properly estimate the risks associated with it and to
designate appropriate strategies to reduce people’s vulnerability.
It is well known that the rise of air temperature has a higher
impact on the elderly and children. Italy has the highest
proportion of elderly in Europe. 29.4% of its population was
over 60 years old in 2017, and it is projected to reach 40.3% by
2050 (Nardino et al., 2021). Therefore, it makes thermal and
microclimate studies even more crucial for the country. Another
issue is that different parts of a city have different thermal
regimes and consequently different impacts on citizens (Declet-
Barreto et al., 2016). Hence, there is a strong need of knowing
the microclimate of the city to define and apply strategies and
actions.

The city’s local climate is affected by its own structure and
composition as well as large-scale meteorological phenomena.
The term of urban heat island (UHI) comes from the fact that
the local temperature of an urban area is considerably higher
than its neighboring rural area (Oke, 1982). It is reported a
yearly average of approximately 1 to 2°C higher temperature in
a large city compared to its surrounding rural area. Furthermore,
it is proved that this difference will reach up to 12°C on calm
and clear nights (Georgiadis, 2017). The variance of UHI is
variable and depends on land cover/use patterns (e.g.,
impervious surface, vegetation, water, buildings, and bare soil),
seasons, and day/night (Deilami et al., 2018). Its main
contributor is urban growth which results in the change of land
cover from pervious surfaces to artificial impervious ones (i.e.,
most urban materials are dark which trap heat, and have low
permeability with reduced ability to dissipate the heat because
of sparse pores to store moisture). It is reported that impervious
surfaces explain around 70% of the total land surface
temperature variance in the 38 most populated cities in the US
(Imhoff et al., 2010). Seasonal variation is another factor that

impacts the intensity of UHI. Solar radiation reaching the
earth’s surface and also metabolic activity of vegetation varies
in different seasons. As a result, UHI is varied and usually is
higher in spring and summer than in autumn and winter.
Seasonal variation in UHI is also affected by geographical
location. For instance, it is showed that there is no UHI intensity
during the summer in Cairo (Taheri Shahraiyni et al., 2016).
Generally, its intensity is much less when a city is located in an
arid or semiarid climate (Deilami et al., 2018). UHI exists at any
time of day and night, but its intensity is higher during the
night-time. Because of the high thermal capacity of urban
materials, the cooling process of the city center after sunset is
slower than of suburbs (Haashemi et al., 2016).

In general, UHI worsen urban microclimate. Taking into
account the urban microclimate can strongly improve the urban
policies, such as buildings regulation, and help to speed up the
sustainable and resilient development of a city (Bitelli et al.,
2020). Accordingly, the development of different measurement
methods to have a clearer view in time and space of the urban
thermal environment is crucial. The main threat for the next
generation is climate change in this regard. Therefore, more
ambitious, and broad goals for climate and energy are set by the
Covenant of Mayors. These goals are considering not only
climate change mitigation but also adaptation (Ventura et al.,
2010). Bologna is the first Italian town adopting the new goals
and adaptation plans that are presented by the Covenant of
Mayors, and it performed enormous number of thermal studies
(Nardino et al., 2021; Zauli Sajani et al., 2008).

Different strategies have been developed to determine UHI. In-
situ is the most frequent approach which are divided into two
categories, fixed and mobile measurement. For the fixed
measurement, data are collected from some meteorological
stations (fixed campaigns) placed in different areas of the city
and within the atmospheric layer (Bahi et al., 2020). These
stations are permanently installed to provide data on a daily,
weekly, seasonal, or annual basis, and they are not implemented
solely to measure air temperature but also to study other
problems such as dispersion of air pollution and vertical air
temperature profile. Widespread weather private stations, able
to provide online temperature time series, could be also
adopted, but the inhomogeneity in their realization and
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placement gives little guarantee on their massive use without a
careful selection. On the other hand, for the mobile
measurement, a traveling path within the urban area is defined
and then the thermal data are obtained on foot or by using a
means of transport like a bicycle or a car. The applied sensors
should be protected from the vehicle exhaust heat and
temperature changes along the travel path, and the temperature
measurements should be corrected by selecting the same
endpoint as the start point. It can be carried out at any time with
high spatial density (Imhoff et al., 2010). Therefore, it allows
access to a large part of the urban area, and it theoretically can
cover all the city streets. However, when a single sensor is used,
this approach cannot measure temperature simultaneously at
different positions. To overcome this problem, data from mobile
measurement should be adjusted temporally with the help of
reference temperature measured at the start and endpoint of the
path. Another way could be to use more mobile sensors, but the
operational cost will increase (Imhoff et al., 2010). Using data
acquired from satellite sensors and remote sensing is another
way of measuring UHI, and they may be coupled with geomatic
methods for geometric urban 3D modeling (Bitelli et al., 2018;
Africani et al., 2013). However, measurements in some urban
parts are dismissed from remote sensing, such as the covered
area with plant canopy, vertical surfaces, and walls. Therefore,
ground observations are required to modify the true temperature
of 3D surfaces. Another limitation is the lack of continuous
information records over a daily period, depending on the
characteristics of the spatial missions. Lastly, computer
modeling can be applied to simulate the thermal spatial
distribution and energy flow in the urbanized area to analyze the
UHI phenomenon. This approach is a way to overcome the
limitation of the fixed in-situ measures (Bahi et al., 2020).

The main objective of this study is to propose a methodology
for the temporal adjustment of the temperature data acquired
with a car along a transect, using the logs of a limited number of
weather stations sparse in the city; the nocturnal temperature
changes (since these changes are much more obvious during the
night) in the city center of Bologna compared to its suburbs are
also measured. The results can help understanding the different
thermal regions of Bologna to support the city’s development
strategies and microclimate adaptation.

2. MATERIALS AND METHODS

2.1 The Study Area

The survey is done in the city of Bologna, on the 19 March
2021. With about 400,000 inhabitants and 150 different
nationalities, Bologna is the capital and largest city of the
Emilia Romagna region in northern Italy, (44.4949° N;
11.3426° E) (Ventura et al., 2010). Its urban area covers about
60 km2 (Zauli Sajani et al., 2008). It is a meeting point between
the north and the south, and between the east and the west of the
country. Bologna has a temperate climate, which the monthly
average temperature ranges from 3.5 °C in January to 25.5 °C in
July (Nardino et al., 2021). It is an ancient city with particular
architecture in the center, which is mainly characterized by a
dense pattern of short buildings, remaining from the medieval
and renaissance eras, with relatively narrow roads and a high
presence of porticoes (Nardino et al., 2021). Conversely, in the
peripheral and productive districts a wider variety of modern
building types can be found (e.g., industrial sheds and
condominiums), and many open spaces are present (Trevisiol et
al., 2022). This varying building density may produce different
temperature patterns in the districts.

2.2 Data Acquisition

Temperature data are collected from a mobile survey throughout
the city and the suburbs, 15 selected online weather stations,
and 5 fixed thermometers that were placed in different parts of
the city during the experiment. A car equipped with a
thermometer (DeltaOhm DO9847 datalogger with probe
HP472ACR with an accuracy of ±0.25 °C) on its roof (Figure 1)
traveled to measure air temperature and relative humidity.
DeltaOhm air temperature probe was chosen since it is faster
and more responsive compared to the thermometers used for
fixed stations. A multiplate shield (shaped as a Stevenson’s
screen) was used to protect the thermometer from the wind. The
car moved in a predefined path designed to be as representative
as possible of the whole area of study. It started from the
northeastern part of the city and finished at the same point, after
crossing the city center in NE-SW and SE-NO directions.
Figure 2 shows the car transect while different colors represent
raw values of the air temperature. The survey started on 19
March 2021, at 22:16, and finished at 00:57 (total duration of 2
hours and 41 minutes). The average speed of the car was around
28 km/h, traveling approximately 75 km. Data acquisition speed
was one temperature record per second.

Figure 1. Placement of the thermometer on the car’s roof.

Figure 2. The car path (points colored by the raw temperature
values) and positions of the fixed stations.
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Two types of fixed stations are used to acquire temperature
data. The first group is online weather stations. After finding all
the weather stations in the region (total of 49 stations), first,
their locations were checked and those which were far from the
car transect were deleted. Then, it was checked if they are active
and at what time interval they provide temperature data. To do
so, the online stations were checked daily for approximately one
month (from 13 January to 9 February 2021). Throughout this
procedure, some of the stations were removed, and finally, a
total of 15 were selected (Figure 2). All the online stations are
located at a high elevation above the ground, except for a1, a2,
and a3 which are placed at 2 meters. Also, for most of the
stations, one data is provided every 5 minutes (stations wg1,
wg2, wg3, wg6, wg7, wg11, and wg12) except for wg4 and wg9
(one temperature data every 10 minutes), wg8 and wg10 (one
temperature data every 15 minutes) and a2 and a3 (one
temperature data every 30 minutes) and a1 (one temperature
data every hour).

The second group of fixed stations consists of thermometers
that was installed manually in different parts of the city. A total
number of five thermometers, named C02, C04, C10, T1, and
T2, were placed in the city’s urban area on the 19 March 2021
(Figure 2). The first three are of the model Extech RHT10 (with
the temperature range from -40 °C to +70 °C, resolution of 0.1
°C, and accuracy of ±1.0 °C) providing temperature data every
60 seconds. Other data acquired are relative humidity and
dewpoint. Whereas in T1 and T2 two Extech SD200 were used,
with a temperature range from -100 °C to +1300 °C, resolution
of 0.1 °C and accuracy of ±(0.5% + 0.5 °C). The sampling rate
was set to 5 minutes, and also relative humidity and air pressure
are measured. Data collection from the fixed stations started on
the same day as the car transect, therefore, on the 19 March
2021, between 21:00 and 03:00 (the morning of the next day).

2.3 Data Correction

2.3.1 Traditional Method

The traditional method considers a linear change of the
temperature over the traveling path (Equation 1). To calculate
the coefficients of equation 1, the temperature range over the
transaction path is first determined, which is the difference in
temperature measured in the same location at the beginning and
the end of the survey (the transect started and ended in the same
point). Then, linear equation passing the start and end times is
calculated.

(1)

where ΔT = temperature difference
 t = time

Using equation 1, corrected ΔT and then corrected temperatures
are calculated at any time of the survey. With this method, fixed
stations are not considered.

2.3.2 Proposed Method

In this method, the regression equations that best describe the
data from each of the fixed stations were determined. Three
different curves, linear, exponential, and second-degree
polynomial were fitted for each station. Since for the majority
of the stations, the polynomial regression of degree-two was
found the best option to describe the temperature behavior, it is
selected as the trend, considering the value of the R-squared

(R2) and assuming that its higher amount shows a better fit and
lower error.

Furthermore, for each fixed station, it was decided to calculate
the temperature difference at each measurement point with
regard to a reference temperature. The assumed reference was
the temperature at the starting point of the mobile transect (at
10:00 PM, 19 March 2021). Therefore, temperature differences
for all the data acquired after 10:00 PM are calculated. Then,
the second-degree polynomial curve (Equation 2) is fitted to the
temperature differences. Figure 3 is an example of the fitted
polynomial on the temperature differences over time and for the
fixed station T1. In this case, a, b, and c coefficients are -48.91,
112.51, and -61.54, respectively.

(2)

(3)

where ΔT = temperature difference of fixed stations
T = raw temperature data from car transect
Tcorr = corrected temperature
t = time

Figure 3. Polynomial second-degree fitted on the temperature
differences of the fixed station T1.

If the second order polynomial proves to effectively model the
trend of temperature decrease during the time span of the
survey, then this model can be used to detrend the temperature
measured by the car. The problem is that the coefficients of the
polynomial vary from station to station and can assume
different values in every location. To solve this problem, some
advanced interpolation approaches (Voronoi tessellation
polygons, trend surface fitting, triangulation irregular networks
(TINs), inverse distance weighted (IDW) and Kriging) are
tested to map the coefficient of the second order polynomial
over the whole area of the city. In other words, different
interpolation methods are applied to each coefficient of equation
2. Figure 4 is an example of applying Kriging interpolation on
the a-coefficient achieved from all the fixed stations. Tanks to
the interpolation, the value of a-coefficient can be derived for
all the transect path. This is done for all the coefficients and
applying different interpolation methods. Interpolating these
coefficients allows calculating temperature differences along the
travelling path, which then are used to derive the corrected
temperatures. This is done using Equation 3 and the original
temperatures.

To check the effectiveness of the corrections, the correlation
between raw mobile data and the corrected ones (using different

∆T = at + c

∆T = at2 + bt + c

Tcorr = T + ∆T
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interpolation methods) is also computed. The correlation
coefficient can be achieved from Equation 4 (Rumsey, 2021).

(4)

where r = correlation coefficient
n = total number of data in each data set
X and Y = data from the two data set
X̅ and Y̅ = mean value for each data set
sX and sY = standard deviation for each data set

The correlation coefficient r can have a value between -1 and 1
(where -1 and 1 show strong negative and positive correlations
between the two data sets, respectively).

Figure 4. Interpolation of ‘a’ coefficient over the study area
using Kriging.

One method of data interpolation is to define an area of
influence for each station by applying Voronoi tessellation
polygons. Then, each mobile temperature data is corrected
based on the polynomial regression for the station in which it is
located. Next method is to find a surface over transect area
which describes the behavior of the air temperature data. Then,
mobile temperatures can be corrected based on the equation of
this surface. To do so, a simple planar surface and a bilinear
saddle are firstly created. Then using both surfaces, approximate
values of the coefficients (Equation 2) are achieved for each
measure of the car transect. Another method that has been
applied is TINs. This method creates a network of triangles over
the study area and using the coefficients of the second order
polynomial regression for the temperature differences (Equation
2). After that, the approximate values of these coefficients and
as a result, the corrected temperatures are calculated for each
measurement of the car transect. Similar to the previous models,
the IDW method was used to interpolate the coefficients of the
polynomial regression and to find the corrected temperatures.
The last method was Kriging, which, similarly to the previous
methods, is applied to the coefficients of Equation 2, and then
the corrected thermal data are achieved. The size of the gridding
window is very important since small windows tend to
exaggerate local extreme values, while large ones have a
smoothing effect on the predicted field value (Huisman & de
By, 2009). Here, cell size is set to 100 m, as a trade-off value,
for all the tested interpolation methods.

3. RESULTS AND DISCUSSION

Mobile temperature acquisition happened during the night and
took almost three hours to be finished. Normally, during the

night, the air temperature tends to decrease at different rates in
different locations. To rectify these various trends, mobile
temperatures need to be corrected using a model based on
temperature records from the fixed stations. Some of them are
close to the car route, i.e. wg3, wg10, a3 and T2. Table 1
compares the raw temperatures extracted from the transect with
the temperatures measured by the stations at the time when the
car passed close to them. Sensible differences can be observed,
especially for the stations wg3, a3, and T2.

Table 1. Comparison of raw temperature data from mobile and
close fixed stations.

Station Time Fixed
Temp.

Mobile
Temp.

Difference

wg3 00:32 1.44 0.88 -0.56
a3 23:30 3.80 5.05 1.25
T2 23:25 5.40 3.58 -1.82

wg10 23:14 2.83 2.72 0.02

The highest temperature difference is observed when the car
passed near station wg3 with an absolute amount of 0.56 °C
(39% lower than the quantity which was measured by wg3 and
at 23:25 midnight). The lowest temperature difference of around
one percent is observed when the car passed wg10 (Table 1).

First, the traditional method is applied to correct the mobile
temperatures and the result is summarized in Figure 5. This
could be used as a framework to validate the other methods of
correcting data. The temperature difference between the
beginning (mobile temperature at 22:16 was 5.13°C) and the
ending point (mobile temperature at 00:57 was 3.72°C) of the
survey was -1.41 °C. Considering that the temperature changes
linearly over the traveling path, linear Equation 1 is calculated
for the data and rewritten as Equation 5. The correlation
between the raw and corrected data is calculated to be
approximately 98%. This method is acceptable and used widely
in the past studies (Bitelli et al., 2020).

(5)

Figure 5. Comparison of car data temperatures and corrected
ones using the traditional method.

However, selecting the best interpolation method is not always
straightforward and significantly depends on the type and
quality of the measured data. It is important to remember that
there is no single optimal interpolation method (Huisman & de
By, 2009). Normally, three steps are involved in selecting the
best interpolation method. First is the evaluation of the data
supported by their visualization. The second is to apply
interpolation methods that are most suitable for both the data
and the objective of the study. Finally, the results from different
methods should be compared and the privileged one should be
selected (Gentile et al., 2013). In this study, all three steps of
selecting the best interpolation method are performed.

∆T = −12.60 t + 11.69

r =
1

n− 1
ቆ
∑ ∑ (X − Xഥ)(Y − Yഥ)YX

sXsY
ቇ
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In the case of trend surface fitting (or global trend), simple
planar surface represented a better interpolation with regard to
the bilinear saddle, especially for the data which are far from the
fixed stations. For those data, global trend performs an
extrapolation of the values. The extrapolation of data and
applying especially the bilinear saddle, creates significant errors
(i.e., the two peaks occurred at the time 22:55 and 00:20 – see
Figure 6 – illustrate occurrence of high errors). The results of
the simple planar surface interpolation are acceptable, given the
correlation of 95% (Table 2). However, global interpolators do
not consider the spatial structure of the data; therefore, other
interpolators are also examined.

Figure 6. Mobile raw and corrected temperatures using the
global trend interpolation.

Figure 7. Mobile raw and corrected temperatures using the
Voronoi Tessellation Polygons.

Using Voronoi polygons for data correction, the first thing that
can be seen is the discontinuity of the corrected temperature
data. This is the main problem associated with the Voronoi
polygon (Gentile et al., 2013). These discontinuities are due to
the fact that each polygon has its regression to be applied to the
original temperature data. As a result, when moving from one
polygon to its adjacent one (i.e., the boundaries), we observe an
abrupt change. These changes may not be considered, but in this
case and for some points they are quite high (Figure 7). For
instance, the biggest jump occurred at 23:39:26 and when
passing from station wg1 to a1 with an amount of 1.28 °C. At
the time 23:40:32, 23:43:15, 23:43:21, 23:46:53, 00:36:27,
00:40:17, 00:43:00, 00:48:50, and 00:51:50, the changes were
around 1 °C, and the other jumps were less than 1°C. The
lowest change occurred when passing from station mn3 to wg10
and at the time of 23:13:50 (0.02°C). The car did not pass
through the area of influence of stations wg2, wg9, wg11, wg12,
and wg14. However, at least, part of the path goes inside the
area of influence of the other stations. A correlation of 98% are
achieved between the corrected and raw temperatures (Table 2).
However, the mentioned discontinuities appearing in the

interpolated temperatures make the Voronoi polygons an
unsuitable method of interpolation for this study.

Table 2. The correlation between corrected temperatures from
different interpolation methods and raw mobile temperature

data.
MODEL CORRELATION

TRADITIONAL METHOD 0.978

VORONOI TESSELLATION 0.936

GLOBAL TREND (SIMPLE
PLANAR SURFACE)

0.951

GLOBAL TREND
(BILINEAR SADDLE)

0.508

TINS 0.831
IDW 0.962

KRIGING 0.989

As for the TIN interpolation, the generated surface does not
cover all the data from the car path, because it is limited by the
concave hull of the stations. Therefore, only part of the transect
can be corrected. This is visible in Figure 8, where there is no
data (discontinuities) in some parts of the corrected temperature
curve. It can be considered as a drawback since the corrected
temperatures of all the data cannot be achieved. It could be
fixed if other measurement points (fixed stations) were present
in the suburb of the city. Another problem is associated with the
shape of the triangles. Some of them are extremely stretched so
they cannot be considered optimal triangles. It is because the
number of fixed stations is low, and they are not located
perfectly in the studied area. These issues make the TINs
interpolation method unsuitable to be used in the correction
procedure of the mobile temperature data despite of good
correlation of 83% between corrected and raw data (Table 2).

Figure 8. Mobile raw and corrected temperatures using the
TINs.

The result of IDW interpolation is graphed in Figure 9. The
corrected temperature curve follows the trend of the original
temperature data, and there are no gaps nor sudden jumps or
drops in the corrected temperatures. The correlation between the
corrected and raw thermal data is 96%, which is slightly higher
than the traditional method (Table 2). Although this model
could be the one, Kriging interpolation is performed as well
(Figure 10). The concept of Kriging is similar to IDW which
uses weighting factors for the surrounding measured points to
approximate the unknown value. However, another factor that is
considered in Kriging is the overall spatial arrangement of the
measured points and the spatial correlation between their values
(Huisman & de By, 2009). The result gives the best correlation
coefficient of 99% (Table 2). It can be seen that Kriging shows
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a better interpolation in comparison to the other methods, since
its value is closer to the raw data at the start, where the
correction is expected to be zero. Indeed, at the beginning of the
survey, temperature differences between raw and corrected by
IDW and Kriging are 0.75°C and 0.24°C, respectively (Figures
9 and 10). Ordinary Kriging has the advantages of doing the
prediction based on a spatial statistical analysis, being the best
linear unbiased estimator; it is applicable to various data sets
(i.e., different Kriging models is available), also sparse ones
(since it automatically accounts for clustering and screening
effects), and it has the capacity to consider variation bias toward
specific directions and to quantify interpolation errors (Gentile
et al., 2013). Kriging is therefore selected, considering its
advantages and especially as it can perform a good interpolation
with a low number of data (i.e., the number of fixed stations
based on which mobile temperature correction was carried out,
was 20). Considering the study area, which is larger than 60
km2, and also the fact that almost all the fixed stations are
located in the city center, Kriging appears to be the best
interpolation method among all the interpolation methods for
the temperature data of this study.

Figure 9. Mobile raw and corrected temperatures using the
IDW.

Figure 10. Mobile raw and corrected temperatures using
Kriging.

In addition, when compared with the raw data from the car, the
divergence of the corrected temperatures using Kriging
increases over time. At the beginning of the survey (22:16:15),
it is approximately 0.75 °C, whilst it is around 2.60 °C at the
end of the trip (00:57:21). This is expected, as the method
intends correcting the decreasing trend during nighttime.
However, the last corrected temperature is not exactly equal to
the first one (they are 5.35 °C and 5.37 °C, respectively, and
start and end point of the transect is the same). This behavior,
which is actually observed for all the interpolation method, may
be explained by the accumulation of the interpolation errors,
since polynomial regression degree-two was used (Equation 2).
However, this residual error is negligible considering the overall
precision of the adopted methodology.

4. CONCLUSION

The presence of an adequate number of weather stations,
together with the data achieved from the fixed and mobile
thermometers, allowed to perform a thermal study over the city
of Bologna with the purpose of studying the urban
microclimate. The nocturnal temperature measurement of the
city center showed a considerable difference compared to its
suburban area. It proved the presence of UHI phenomenon and
the need for mitigation and adaptation strategies to reduce the
UHI effects towards a more resilient city. High resolution
mobile temperature measurements were acquired by an
equipped car. The UHI is clearly visible looking just at the raw
mobile temperatures. These data were then corrected using
thermal data acquired from 15 weather stations and five
thermometers placed in different parts of the city center. First, a
second order polynomial is used to model the thermal trends of
the fixed temperatures. This regression model has coefficients
which are different for the various fixed stations. Then, the
mobile temperatures are corrected using a traditional method as
well as different interpolation methods, such as Voronoi
tessellation, global trend, TINs, IDW and Kriging. Kriging
interpolation model, which properly accounts for the spatial
structure, showed the best performance with a correlation of
99%.

If the urban development continues in the same way as it has
been until now, more frequent occurrences of heat stresses and
extreme climate events would be expected. UHI is a very good
indicator for urban sustainability, public health, and energy
efficiency. Therefore, thermal studies of the city are essential to
develop a better understanding of the city’s thermal anomalies
and to provide the optimal measures of tackling those (i.e.,
mitigation methods such as the use of green roofs and lighter-
colored surfaces in urban areas, which reflect more sunlight and
absorb less heat).
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